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Deflations Preserving Relative Accuracy

William Kahan

Deflation turns a matrix eigenproblem into two of smaller dimensions by annihilating a block of
off-diagonal elements. When can this be done without changing the eigenvalues of an Hermitian
matrix beyond each one’s last significant digit or two no matter how widespread are eigenval-
ues’ magnitudes? We seek practicable answers to this question, particularly for tridiagonals.
Answers for bidiagonals’ singular values were found by Ren-Cang Li in 1994.
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Accurate Computation of Eigenvalues by an Analytical Level Set Method

Pavel Grinfeld

A numerical technique, based on an analytical level set method, is presented. The proposed
technique yields eigenvalues for a broad range of smooth shapes with arbitrarily high accu-
racy. The technique applies to most common linear operators, including the Laplace operator
which will be the focus of the presentation. The method is characterized by utmost simplicity,
exponential convergence, ease of analysis and the ability to produce an exact solution to an
approximate problem.

3



Orthogonal Functions and Inverse Eigenvalue Problems

Marc Van Barel

Orthogonal polynomials on the real line satisfy a three term recurrence relation. This relation
can be written in matrix notation by using a tridiagonal matrix. Similarly, orthogonal poly-
nomials on the unit circle satisfy a Szegő recurrence relation that corresponds to an (almost)
unitary Hessenberg matrix. It turns out that orthogonal rational functions with prescribed
poles satisfy a recurrence relation that corresponds to diagonal plus semiseparable matrices.
This leads to efficient algorithms for computing the recurrence parameters for these orthogonal
rational functions by solving corresponding inverse eigenvalue problems. In this talk we will
study several of these connections between orthogonal functions and matrix computations and
give some numerical examples illustrating the numerical behaviour of these algorithms.
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Spectral Dichotomy for Toeplitz Matrices

Alexander Malyshev

The spectral dichotomy algorithms compute invariant (or reducing) subspaces of a matrix (or
a pencil) corresponding to the eigenvalues inside a given contour. Quadratically convergent
algorithms for the unit circle as a contour are based on the doubling idea: starting from a
matrix pencil λB0 − A0, the pencil λBj+1 − Aj+1 is derived from λBj − Aj by the formulas
Aj+1 = XjAj and Bj+1 = YjBj , where the matrices Xj and Yj satisfy XjBj + YjAj = 0 and
are such that the matrix [Xj Yj ] is nonsingular.

Some applications, e.g., factorization of polynomials, may require A0 and B0 with the Toeplitz
(or companion) structure. It is attractive to take advantage of the structure and devise faster
variants of the doubling algorithms.

A fast implementation will be presented for the iteration, where Xj = Aj(Aj + Bj)
−1 and

Yj = Bj(Aj +Bj)
−1, which is an analog of the well-known iteration producing the matrix sign

function. Results for other doubling iterations may be announced too.

5



On the Ritz Values of Normal Matrices

Zvonimir Bujanović

The implicitly restarted Arnoldi method (IRAM) introduced by Sorensen [2] is a well-known
algorithm for computing a few eigenpairs of a large, generally non-symmetric sparse matrix.
The eigenvalue approximations in this algorithm are usually taken as the Ritz or the harmonic
values computed from a Krylov subspace.

The convergence of the IRAM has been a subject of intensive study. While Sorensen proved
the convergence when the algorithm is used to compute the extreme eigenvalues of Hermitian
matrices, the conditions for the convergence in the general case are still unknown. In particular,
Embree [1] constructed a class of matrices for which the algorithm fails to converge, even in the
exact arithmetic. A key property that ensures the failure is the non-normality of the example
matrices. Furthermore, Tebbens et al. [3] show that an arbitrary convergence history for the
Arnoldi method is possible.

In our talk, we discuss the convergence of IRAM for normal matrices. We demonstrate the
difficulty in keeping the monotonicity of the Ritz values, which was essential for the convergence
in the Hermitian case. A simple condition for a set of complex numbers to appear as Ritz values
of a normal matrix is given: it is necessary and sufficient that a certain Cauchy matrix has a
positive vector in its kernel. This fact is then used to explore the more complex geometry of
Ritz and harmonic Ritz values in the normal case, which in turn has implications on the IRAM’s
convergence. We also present a variant of the Cauchy interlacing lemma.
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Condition Numbers of Randomly Sampled Orthonormal Matrices

Ilse Ipsen

We consider two strategies for sampling rows from mxn matrices Q with orthonormal columns.
The first strategy samples c rows with replacement, while the second one treats each row as
an iid Bernoulli random variable, and samples it with probability g=c/m. We present different
probabilistic bounds for the condition numbers of the sampled matrices and express them in
terms of the coherence of Q. Numerical experiments confirm the accuracy of the bounds, even for
small matrix dimensions. We also present algorithms to generate matrices with user-specified
coherence, and apply the bounds to the solution of general, full-rank least squares problems
with the randomized preconditioner from BLENDENPIK. This is joint work with Thomas
Wentworth.

7



Computing Jordan Blocks of Irreducible Totally Nonnegative Matrices

Plamen Koev

In 2005 Fallat and Gekhtman fully characterized the Jordan Canonical Form of the irreducible
totally nonnegative matrices. In particular, all nonzero eigenvalues are simple and the possible
Jordan structures of the zero eigenvalues are well understood and described. Starting with
the bidiagonal decomposition of these matrices, we present an algorithm for computing all the
eigenvalues, including the Jordan blocks, to high relative accuracy in what we believe is the
first example of Jordan structure being computed accurately in the presence of roundoff errors.
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The Newton Polygon and Structured Eigenvalue Perturbation

Julio Moro

Abstract: The Newton polygon, an elementary geometric construction first devised by Sir
Isaac Newton, has been often used in the context of perturbation theory as a tool for deriving
explicit first-order eigenvalue perturbation expansions. On one hand, this usually gives useful
information on the directions in which perturbed eigenvalues move, something which is crucial in
several practical situations when eigenvalues need to be pushed in certain specific directions, or
must be moved as fast as possible away from a critical (or dangerous) region by a perturbation,
which is typically small. On the other hand, these asymptotic expansions often lead to sharp
bounds on the condition number of eigenvalues.

Most of these results, however, are obtained for arbitrary, nonstructured perturbations. If the
matrix or operator under study belongs to a specific class of structured operators, it makes sense
to consider only perturbations having the same structure, thereby restricting the admissible
Newton polygons. So far, it seems that the structures most amenable to such a structured
perturbation analysis via the Newton polygon are those defined via indefinite scalar products
for which structured canonical forms are available.

In this talk we will both review classic results for unstructured perturbation as well as explore
the case of structured perturbations. Taking as a guide a specific example, involving zero
eigenvalues of complex skew-symmetric matrices, we will illustrate the interplay between matrix
structure and the Newton polygon.

This talk corresponds to joint work with Mara Pelez, Daniel Kressner, Jim Burke, Michael
Overton, Rafik Alam, Shreemayee Bora, Michael Karow and Volker Mehrmann.
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Accurate Eigenvalue Decomposition of Arrowhead Matrices and Applications

Nevena Jakovčević Stor
Ivan Slapničar
Jesse Barlow

We present a new, improved, algorithm for solving an eigenvalue problem of real symmetric
arrowhead matrix. Under certain conditions the algorithm computes all eigenvalues and all
components of the corresponding eigenvectors with high relative accuracy in O(n2) operations.
The algorithm is based on shift-and-invert technique and limited use of double precision arith-
metic when necessary. Each eigenvalue and the corresponding eigenvector can be computed
separately, which makes the algorithm suitable for cases when only part of the spectrum is
required and for parallel computing.

We also present perturbation theory, applications to Hermitian arrowhead matrices and sym-
metric tridiagonal matrices, diagonal-plus-rank-one matrices, and numerical examples.
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Smooth Local Bases for
Perturbed Invariant Subspaces

G. W. Stewart

Let A be a matrix of order n and let X be an invariant subspace of A; i.e., AX ⊂ X . Under
appropriate conditions it can be shown that if Ã = A+E is a sufficiently small perturbation of A
then Ã has a unique subspace X̃ that can be identified with X in the sense that limE→0 X̃ = X .

In applications it is not sufficient simply to know that X̃ exists. Instead a basis for X̃ is
required, whose construction is not a trivial matter. Kato [2, §II.4], for example, works with
a matrix A(z) whose elements are analytic functions of the complex variable z and derives a
differential equations whose solution X(z) is a basis for the invariant subspace corresponding to
the perturbation A(z) = A(z0)+[A(z)−A(0)]. Chatelin [1, §2.9] assumes that A(z) = A(0)+zH
and produces bases as power series in z.

In [3, 4] the presenter assumed a general perturbation E and determined bases of the form
X + Y P , where X is an orthonormal basis for X Y is an orthonormal basis for the orthogonal
complement of X , by solving a nonlinear equation for P . This procedure produces a cluster
of bases surrounding X and it is natural to ask about their relation to one another. Are they
continuous functions of E? Differentiable functions? The main result of this work is that if
E is small enough then the matrices P (E) are Frechet differentiable with respect to E. An
informative bound for ‖P ′(E)‖ is also derived. As an application the result is used to give an
elementary proof that if A(z) is analytic then P [E(z)] is also analytic — a result that overlaps
with Kato’s.
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Minimization Principle for Linear Response Eigenvalue Problem

Zhaojun Bai and Ren-Cang Li

We present two theoretical results for the linear response eigenvalue problem. The first result is a
minimization principle for the sum of the smallest eigenvalues with the positive sign. The second
result is Cauchy-like interlacing inequalities. Although the linear response eigenvalue problem
is a nonsymmetric eigenvalue problem, these results mirror the well-known trace minimization
principle and Cauchy’s interlacing inequalities for the symmetric eigenvalue problem.
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Efficient Linear Algebra Processing Inside a Database Management System

Carlos Garcia-Alvarado, Carlos Ordonez, Naveen Mohanam
Edgar Martinez-Encarnacion, Predrag T. Tosic

Linear algebra algorithms are of utmost importance in data mining. It has been a common
practice to export data sets outside of the database management system (DBMS) for data
mining processing. However, this creates a considerable performance bottleneck that is espe-
cially restrictive for large data sets. The integration of linear algebra algorithms into a DBMS
is a difficult task due to the DBMS’s relational model foundation, system architecture, and
lack of support for native array and matrix processing, which make the implementation very
challenging and hinder efficient performance.

As a consequence, all linear algebra algorithms, starting with the most basic routines such
as matrix multiplication, have to be reworked for accuracy and efficient performance inside a
DBMS. In our research [1, 2], we present different efficient algorithms that exploit multiple
data set layouts, SQL queries, and database extensibility mechanisms (e.g. User-Defined Func-
tions) for solving fast linear regression and singular value decomposition (SVD) inside a DBMS.
These algorithms are incorporated into a database system through predefined routines (stored
procedures) that can directly analyze relational tables to compute statistical models and store
the resulting models as relational tables, as well. The proposed optimizations include table
layouts for storing matrices (vertical and horizontal layouts), computation of one-pass sufficient
statistics, parallelization of tasks through SQL queries and User-Defined Functions, and efficient
memory management. Preliminary work has also been done for integrating well-known external
numerical libraries such as LAPACK and Intel’s Math Kernel Library. Last but not least, we
demonstrate that our algorithms can analyze large and high-dimensional data sets faster than
external data mining tools such as R.
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Local Convergence of Inexact Newton-like Methods for Nonlinear Algebraic Eigenvalue
Problems

Daniel Szyld and Fei Xue

Nonlinear algebraic eigenvalue problems of the form T (λ)v = 0 arise naturally in a variety of
science and engineering applications. This talk concerns the local convergence rates of several
inexact Newton-like algorithms for the solution of a simple eigenpair of the nonlinear eigenvalue
problem. We show how the tolerances for the approximate solution of the linear systems arising
in these algorithms affect the local convergence rates. In particular, with appropriately chosen
tolerances for the inner solves, the inexact algorithms can achieve the same order of convergence
as the exact methods. The analysis is illustrated by numerical experiments.
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Comparative Survey of Sparse Eigensolvers and Effect of Initialization on Problems
with Low Rank Perturbations of Small Norm

Poster Submission

Tim Mitchell
Michael L. Overton

Josef Sifuentes

In applications and algorithms for stability analysis and control, it is often necessary to solve
many related sparse eigenvalue problems in each of which at most only a few eigenvalues are
of interest. In particular, the recent algorithms for approximating the pseudospectral abscissa
and radius of linear dynamical systems [Gugliemli and Overton] and correspondingly, the H∞
norm for systems with input and output [Gugliemli, Gürbüzbalaban, and Overton], require only
computing the eigenvalue of largest real part or modulus (along with corresponding left and
right eigenvectors) for a particular perturbation of the input matrix at every iteration. Though
these methods only guarantee a lower bound approximation, they often do compute an exact
solution in practice and furthermore are fast when the systems are large and sparse, unlike
previous exact methods. By computing a sequence of rank-1 updates to the fixed input matrix,
the new methods enable each eigenproblem to be efficiently solved using sparse eigensolver
codes, whose main computational cost consists of matrix-vector products. As these perturbation
sequences are not only rank-1 but also of low norm and converging, it is natural to ask whether
information from a previously solved eigenproblem can effectively accelerate a subsequent one
in the iteration. While the implicitly restarted Arnoldi method [Sorensen] is one of the most
efficient and robust sparse algorithms available (and specifically, its implementation ARPACK),
it may only be initialized with a single starting vector and modifying the algorithm to accept
a recycled starting space for general problems appears to be difficult. On the other hand, the
Jacobi-Davidson QR/QZ algorithms introduced by Fokkema, Sleijpen and Van der Vorst can
both be started with an initial space as well as make use of a preconditioner, though it is not
clear how competitive these features are in practice. We present a comparative survey of IRAM
and JDQR for solving perturbed problems given information from the unperturbed problem’s
solution, using a variety of vectors and spaces, as well as preconditioning, as input parameters.
Both random matrices and highly non-normal matrices from EigTool are considered, augmented
with random rank-2 perturbations and structured rank-1 perturbations of small norm.
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Multicore and the Challenges of the Nonsymmetric Eigenvalue Problem

Matthew Nabity

The computational challenges of solving the nonsymmetric eigenvalue problem on multicore
processors are significant. We survey critical issues of multi-core architectures and programming
models. To achieve both high performance and portability across a range of new architectures,
several common issues arise. We present recent work on computational kernels integral to
several approaches to the nonsymmetric eigenvalue problem.
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A modified dqds algorithm

Sheng-Guo Li, Ming Gu, Beresford N. Parlett

We present some new deflation strategies and some modified shift strategies for dqds algorithm.
One of the deflation strategies is tailored for some matrices which are currently found difficult
for LAPACK code, xLASQ. Through many numerical tests we show each of these techniques
helps for most of the matrices. These techniques together make our implementation can be up
to 11x faster for the difficult matrices and 20% faster in general.
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Automating DEIM for Nonlinear Model Reduction

Danny Sorensen

Recently, we developed a new method for nonlinear model reduction that is based upon proper
orthogonal decomposition (POD) combined with discrete empirical interpolation (DEIM). This
POD-DEIM approach has provided spectacular dimension and complexity reduction for chal-
lenging systems large scale ordinary differential equations(ODEs). Reductions from 15,000 vari-
ables to 40 variables in the reduced model with very little loss of accuracy have been achieved.
Several examples will be shown.

The DEIM is surprisingly simple and amounts to replacing orthogonal projection with an in-
terpolatory projection of the nonlinear term that only requires the evaluation of a few selected
components of the nonlinear term. This is the crux of the improvement over POD and it has
potential for being automated as well. The technology used for automatic differentiation can
be adapted to enable the automatic generation of a code for the reduced order function and its
Jacobian from the code for the original high dimensional problem.
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A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of
Communication-Avoiding Krylov Subspace Methods

Erin Carson and James Demmel

Krylov subspace methods (KSMs) are a class of iterative algorithms commonly used to solve
linear systems. In each iteration, the recursively computed approximate solution xk and corre-
sponding residual rk = b−Axk are updated. These updates can be written in the form

xk = xk−1 + αk−1p
k−1, rk = rk−1 − αk−1Apk−1 (1)

or something similar. This encompasses algorithms such as Conjugate Gradient (CG), steepest
descent, Biconjugate Gradient (BICG), Conjugate Gradient Squared (CGS), and Stabilized
Biconjugate Gradient (BICGSTAB).

It is important to notice that xk and rk have different round-off patterns in finite precision
arithmetic. Therefore, computational errors made in xk are not self-correcting. Throughout
the iteration, these errors accumulate and cause deviation of the true residual, b − Axk, and
computed residual, rk. This limits the maximum attainable accuracy, which indicates how ac-
curately we can solve the system on a computer with machine precision ε. When the algorithm
reaches this maximum attainable accuracy, the computed residual will appear to continue de-
creasing in norm, whereas the norm of the true residual stagnates. This can lead to a very large
error in the solution despite the algorithm reporting a very small residual norm.

This motivates the use of strategies such as residual replacement, which limit the deviation of
the two residuals by replacing the computed residual by the true residual at select iterations.
(see, e.g., [13, 17]). In this way, errors which occur after a replacement do not depend on
errors accumulated before the replacement. While performing a residual replacement in each
iteration would maintain agreement between the two residuals, it may cause deterioration in the
convergence of rk due to large perturbations to the Lanczos recurrence relation for the residual
vectors [13, 17]. Residual replacement strategies must then carefully select iterations where
residual replacement takes place to satisfy two objectives: 1) the deviation of the computed
and true residual must remain small, and 2) the Lanczos recurrence for the computed residuals
is sufficiently maintained. Determining iterations where both requirements are met requires
keeping track of an estimate of the accrued rounding error in the algorithm. Van der Vorst and
Ye have successfully implemented such a strategy for standard Krylov methods [17]. There are
many other analyses of the behavior of various KSMs in finite precision arithmetic (see, e.g.,
[6, 9, 10, 16, 11]).

The computation that occurs in each iteration in standard Krylov methods, namely, the up-
dates of xk and rk, consist of one or more sparse matrix-vector multiply (SpMV) and vector
operations. Because there are dependencies between iterations in standard Krylov methods
and the main kernels in each iteration have low computation to communication ratios, standard
Krylov method implementations are communication-bound on modern computer architectures.

This motivated s−step, or, Communication-Avoiding KSMs (CA-KSMs), which are equivalent
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to the standard KSM implementations in exact arithmetic. These variants use blocking strate-
gies to perform s computation steps of the algorithm for each communication step, allowing an
O(s) reduction in total communication cost (see, e.g., [1, 2, 4, 5, 7, 8, 12, 14, 15]). Despite the
potential performance benefits of CA-KSMs, the finite precision error in these variants grows
with s, an obstacle to their use in practice. This means the deviation of the true and computed
residual observed in standard KSMs is potentially worse for CA-KSMs, further decreasing the
accuracy of the method. Although many previous authors have observed this behavior in CA-
KSMs (see, e.g., [2, 3, 8, 12, 18]), we are the first, to our knowledge, to provide a quantitative
analysis of round-off error in these algorithms which limits the maximum attainable accuracy.

Following the work of Van der Vorst and Ye , we bound the deviation of the true and computed
residual in finite precision CA-KSMs, which leads to an implicit residual replacement strategy.
We show how to implement our strategy without affecting the asymptotic communication or
computation cost of the algorithm. Numerical experiments demonstrate the effectiveness of our
residual replacement strategy for both CA-CG and CA-BICG. Specifically, it is shown that ac-
curacy of order O(ε)||A||·||x|| can be achieved with a small number of residual replacement steps
for an appropriately chosen polynomial basis, which demonstrates the potential for practical
use of CA-KSMs.
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Subspace Iteration with Random Start Matrix

Ming Gu

The power method and subspace iteration method can be used to find a few largest eigenvalues or
singular values. It is well-known that their convergence rate critically depends on the separation
of the eigenvalues or singular values as well as the start matrix. In this talk, we develop new
convergence results for these methods.
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On Sensitivity and Perturbation analysis of Eigenproblems

Rafikul Alam

Nonlinear eigenvalue problems such as holomorphic and rational eigenproblems occur in many
applications. As such these eigenproblems can be represented in several ways and each such
representation plays an important role in influencing the conditioning of the eigenproblem. We
discuss conditioning of eigenvalues of holomorphic and rational eigenproblems relative to a given
representation. Specially, we discuss conditioning of a rational eigenproblem when represented
as a minimal realization of rational matrix function and then discuss the effect of linearization
on the conditioning of the eigenvalues. Various notions of separations of matrices and matrix
pencils play an important role in perturbation analysis of eigenproblems. We revisit the issues
of separations of matrix pencils and discuss solutions of some associated distance problems. We
also discuss some local and global perturbation bounds for approximate eigenvalues.

References

[1] S. S. Ahmad and R. Alam, Sensitivity and perturbation analysis of nonlinear eigenprob-
lems, preprint

[2] R. A. Smith, The condition numbers of the eigenvalue problem, Numer. Math., 10(1967),
pp.232-240.

[3] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, 1990.

[4] F. Tisseur, Backward error and condition of polynomial eigenvalue problem, Linear Al-
gebra Appl., 309 (2000), pp. 339–361.

[5] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University press, 1965.

23



Accurate SVD of Cauchy–type matrices and applications

Zlatko Drmač

Our current work is focused on the development of efficient and reliable numerical algorithms
for model order reduction in the H2 norm. As parts of different computational tasks, accurate
SVD and eigenvalue decompositions of various matrices are required. Interestingly, in many
situations, the key matrices have rich structure. In particular, related to various forms of ratio-
nal approximations in Hardy spaces, the matrices are Cauchy–like, e.g. the Pick and Löwner
matrices, paired Cauchy or Vandermonde matrices etc. For example, least squares approxi-
mation by rational functions is based on the matrix LS problem, where the coefficient matrix
is A = (C1, C2) with paired generalized rectangular Cauchy matrices C1, C2. This motivates
development of new algorithms for accurate SVD and eigenvalue computations with various
generalizations of classical matrices of Cauchy type. Our perturbation theory reveals condition
numbers that determine how many digits of accuracy are feasible in floating point computation.
We will present some of the new methods capable of achieving the accuracy exactly to the level
determined by the perturbation theory.
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Optimal Parameters for Damping Optimization in Linear Vibrating Systems

Zoran Tomljanović

A mathematical model of a linear vibrational system will be considered. This model is described
with second-order differential equation

Mẍ+Dẋ+Kx = 0,

where the mass matrix M and the stiffness matrix K are positive definite matrices of order n.
The damping matrix is D = Cu +C, where Cu is positive semidefinite matrix which represents
the internal damping and the positive semidefinite matrix C represents the external damping.

The damping parameters of interest are positions of dampers, their viscosities and modal damp-
ing parameters.

The problem of determination of optimal damping parameters can be reformulated as the
minimization of the trace of the solution of the Lyapunov equation

AX +XAT = −GGT ,

where A is the 2n× 2n matrix obtained from linearization. The matrix G depends on the part
of the undamped eigenfrequencies to be damped. If G = I then all undamped eigenfrequencies
have to be damped, but usually, G has small rank which corresponds with the damping of the
part of the undamped spectrum.

Finding the optimal damping positions and viscosities, such that traceX(C) is minimal, is a
very demanding numerical problem, caused by the large number of trace calculations which can
be required for larger matrix dimensions.

We propose a different techniques which significantly accelerate the optimization process.

On the other hand the optimal modal damping parameters have been derived as a solutions of
certain systems of equations depending on damping models.
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These results have been obtained partly in joint work with: Peter Benner (Max Planck Insti-
tute for Dynamics of Complex Technical Systems, Magdeburg, Germany), Ivana Kuzmanović,
(Department of Mathematics, J.J. Strossmayer University of Osijek, Osijek, Croatia), Ninoslav
Truhar (Department of Mathematics, J.J. Strossmayer University of Osijek, Osijek, Croatia)
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Stability Issues of Large-Scale Fast Matrix Multiplication

Grey Ballard
James Demmel

Olga Holtz
Benjamin Lipshitz

Oded Schwartz

Parallel matrix multiplication algorithms based on the classical (O(n3)) algorithm are typically
preferred over theoretically faster algorithms for matrix multiplication (such as Strassen’s) for
two main reasons. The first concern is that the asymptotic advantage is irrelevant for matrix
sizes that are used in practice. The second concern is stability. We address these two concerns
and suggest that parallel fast matrix multiplication algorithms should be used in practice.

The performance concern is dealt with in our recent paper [1], where we show a communication
avoiding parallel fast matrix multiplication that is faster than any classical parallel matrix
multiplication algorithms, both in theory (asymptotically) and in practice, for large matrices
and for small matrices when many processors are used.

The stability concern is considered by Higham [2] and by Demmel et al. [3]. In this talk we
provide experimental tests of the diagonal scaling technique suggested in [3], showing that their
stabilizing technique works not just in theory but also in practice.
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Communication-Avoiding Non-symmetric Eigensolver using Spectral Divide & Conquer

Grey Ballard
James Demmel
Ioana Dumitriu

Algorithms have two kinds of costs: arithmetic and communication. Communication means
moving data, either between levels of a memory hierarchy, or between processors over a network.
The cost of communication can greatly exceed the cost of arithmetic, so we seek algorithms that
minimize communication. We present parallel and sequential algorithms for the non-symmetric
eigenvalue problem that do asymptotically less communication than conventional algorithms,
and in fact attain communication lower bounds presented in [1]. We present the algorithms and
analyze their convergence properties and communication costs. Our algorithms use random-
ization in two ways; we know of no numerically stable, communication-optimal non-symmetric
eigenvalue algorithm that does not use randomization. The same algorithm extends to the gen-
eralized non-symmetric eigenvalue problem, symmetric eigenvalue problem, and singular value
decomposition, again doing asymptotically less communication than conventional algorithms,
and attaining communication lower bounds. In the talk we will focus in particular on how
randomization is used within the algorithms and also on comparisons to standard algorithms.
This work is currently available as a technical report [2].
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Accurate eigenvalues of totally nonnegative matrices
by means of the discrete hungry Toda equation

Akiko Fukuda
Yusaku Yamamoto

Emiko Ishiwata
Masashi Iwasaki

Yoshimasa Nakamura

The recursion formula of the qd algorithm is known as being just equal to the integrable discrete
Toda equation. In this talk, we consider the discrete hungry Toda (dhToda) equation [1],

Q
(n+M)
k = Q

(n)
k + E

(n)
k − E(n+1)

k−1 , k = 1, 2, . . . ,m, (2)

E
(n+1)
k =

Q
(n)
k+1

Q
(n+M)
k

E
(n)
k , k = 1, 2, . . . ,m− 1, E

(n)
0 := 0, (3)

which is a generalization of the discrete Toda equation with a positive integer M . We show
in [2] that the dhToda equation is applicable for computing eigenvalues of a class of totally
nonnegative (TN) matrices, which are matrices with all minors nonnegative. The algorithm is
named the dhToda algorithm, and can be regarded as an extension of the dqd algorithm for
computing the eigenvalues of a symmetric tridiagonal matrix. The band width of TN matrix
corresponds to the parameter M . The dhToda equation gives a sequence of LR transformations.
The differential form is presented for numerical stability, and the shift of origin is introduced for
convergence acceleration [3]. Global convergence of the differential shifted dhToda algorithm is
also clarified. Error analysis guarantees that the dhToda algorithm computes all the eigenvalues
with high relative accuracy. Thus the dhToda algorithm inherits some properties of the dqds
algorithm.
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dqds and Quasiseparable Matrices

Beresford Parlett

We begin by introducing the qds and dqds algorithms, discussing the difference between them
and showing how they may be extended (as eigensolvers) beyond the tridiagonal case. As
an example we present recent work by P.Zhlobich that extends qds to all quasiseparable (qs)
matrices and dqds to those that are also Hessenberg. The latter class includes companion
matrices and the former includes CMV and Green’s matrices.
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Stability theorem of the dqds with aggressive deflation for singular values

Kensuke Aishima, Yuji Nakatsukasa, Ichitaro Yamazaki

The dqds algorithm is the standard method for computing all the singular values of a bidiagonal
matrix with high relative accuracy [2]. Its efficient implementation is now available as a LA-
PACK subroutine DLASQ [4]. Recently, in order to reduce the dqds runtime, we incorporated
into dqds a technique called aggressive deflation, which had been applied successfully to the
Hessenberg QR algorithm [1]. We proposed an efficient and stable implementation by taking
advantage of the bidiagonal structure [3]. Numerical results illustrate that our aggressive de-
flation strategy often reduces the dqds runtime significantly. In addition, a shift-free version of
our algorithm has a potential to be parallelized in a pipelined fashion.

In this talk, we focus on a stability theorem which states that our aggressive deflation strategy
preserves high relative accuracy of singular values in floating point arithmetic. The theorem is
proved by using a mixed forward-backward error analysis.

References

[1] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. II. Aggressive early
deflation, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 948–973.

[2] K. V. Fernando and B. N. Parlett, Accurate singular values and differential qd algorithms,
Numer. Math., 67 (1994), pp. 191–229.

[3] Y. Nakatsukasa, K. Aishima, I. Yamazaki, dqds with aggressive early deflation, SIAM J.
Matrix Anal. Appl., vol. 33 (2012), pp. 22–51.

[4] B. N. Parlett and O. A. Marques, An implementation of the dqds algorithm (positive case),
Linear Algebra Appl., 309 (2000), pp. 217–259.

31



Biorgaphy

September 1983, born in Japan.

March 2006, Bachelor of Engineering from Faculty of Engineering, The University of Tokyo.

March 2008, Master of Information Science and Technology from Graduate School of Informa-
tion Science and Technology, The University of Tokyo.

March 2011, Doctor of Information Science and Technology from Graduate School of Informa-
tion Science and Technology, The University of Tokyo.

April 2008 - March 2011, Research Fellow of the Japan Society for the Promotion of Science
(DC1).

Since April 2011, Assistant Professor, The University of Tokyo.

Publications

K. Aishima, T. Matsuo, K. Murota, M. Sugihara: On convergence of the dqds algorithm for
singular value computation, SIAM Journal on Matrix Analysis and Applications, vol. 30 (2008),
pp. 522–537.

K. Aishima, T. Matsuo, K. Murota: Rigorous proof of cubic convergence for the dqds algorithm
for singular values, Japan Journal of Industrial and Applied Mathematics, vol. 25 (2008), pp.
65–81.

K. Aishima, T. Matsuo, K. Murota, M. Sugihara: Superquadratic convergence of DLASQ for
computing matrix singular values, Journal of Computational and Applied Mathematics, vol.
234 (2010), 1179–1187.

K. Aishima, T. Matsuo, K. Murota, M. Sugihara: A survey on convergence theorems of the
dqds algorithm for computing singular values, Journal of Math-for-Industry, vol. 2 (2010), pp.
1–11.

K. Aishima, T. Matsuo, K. Murota: A note on the dqds algorithm with Rutishauser’s shift
for singular values, Japan Journal of Industrial and Applied Mathematics, vol. 28 (2011), pp.
251–262.

K. Aishima, T. Matsuo, K. Murota, M. Sugihara: A Wilkinson-like multishift QR algorithm
for symmetric eigenvalue problems and its global convergence, to appear in Journal of Compu-
tational and Applied Mathematics.

Y. Nakatsukasa, K. Aishima, I. Yamazaki: dqds with aggressive early deflation, SIAM Journal
on Matrix Analysis and Applications, vol. 33 (2012), pp. 22–51.

32



Error control for hp-adaptive approximations of semi-definite eigenvalue problems

Luka Grubǐsić
Stefano Giani
Jeffrey Ovall

We present a highly accurate finite element computational method for obtaining eigenvalue/eigenvector
approximations of differential operators with known null spaces (e.g. operators having Neumann
or periodic boundary conditions). In this context we identify two types of problems. Prototype
examples for these problems are the Neumann Laplace operator and the operator describing
the cell problem which is obtained by the Floquet analysis of photonic crystals.

In the case of the Laplace operator on a simply connected polygonal domain with the Neumann
boundary condition the null vector is contained in the piecewise polynomial finite element
space. In the case of the periodic model problem from the modeling of photonic crystals, the
zero eigenvector contains exponential function(s) and so it is not contained in a typical piecewise
polynomial finite element space.

The problems under study turn out to be rather challenging. We demonstrate this by analyzing
the Neumann version of the touching squares example of M. Dauge. This problem can exhibit
arbitrarily bad singularities in its eigenfunctions. However, using the penalization approach we
are able to present a robust and efficient residual estimators for hp-adaptive approximations for
both of these classes of problems.

In particular, we present reliable a-posteriori error estimates for hp-adaptive finite element ap-
proximations of semi-definite eigenvalue/eigenvector problems with explicitly known null spaces.
We also present detailed numerical experiments confirming our theory and give several bench-
mark results which could serve the purpose of numerical testing of other adaptive procedures.
Our estimators are implemented in the AptoFEM package.
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Kogbetliantz–like Method for the Hyperbolic SVD

Sanja Singer
Vedran Novaković

It is well–known that both the ordinary and the hyperbolic Jacobi SVD algorithms are accurate
in the relative sense. If a matrix is triangular, the Jacobi SVD algorithm can be replaced by the
Kogbetliantz SVD algorithm. For the last one, there is always a choice from which side (left-
or right-hand side) the transformations should be applied first, to obtain yet another accurate
SVD algorithm.

Our goal was to construct the Kogbetliantz–like hyperbolic SVD algorithm, that should be used
in the last phase of the orthogonalization, when the columns of a matrix are almost orthogonal.

To our surprise, there is only one pair of angles (trigonometric from the left, and hyperbolic
from the right) that diagonalize a nonsingular 2 × 2 matrix. The computation of tan(2ϕ) and
tanh(2ψ) can be made accurate, and the algorithm works satisfactory for small matrices.
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Towards Multi-GPU Jacobi (H)SVD

Vedran Novaković
Sanja Singer

We present a design and implementation of the Jacobi–type (hyperbolic) SVD algorithms tar-
geting NVidia GPU clusters. We build on a foundation of the Jacobi–type algorithms for
CPU clusters, but these algorithms have to be rethought in the view of GPU computational
constraints, such as “cheap” arithmetic, “slow” memory access, and fine granularity of inde-
pendent tasks. We aim at the large dense matrices—orders of tens of thousands are feasible for
the small hardware installations. However, the proposed algorithms scale to bigger problems
easily, whenever the available machinery permits.

The GPU-oriented SVD algorithms are a topic of an intensive research, e.g., in such projects as
MAGMA and CULA. But, unlike some hybrid CPU–GPU efforts, the inherent parallelism of
the Jacobi–type methods shifts the computation almost entirely to the GPUs, while the CPUs
have only the scheduling and synchronization roles.

The proposed algorithms are variants of the full-block (hyperbolic) Jacobi SVD, organized in
three blocking levels. The blocks of the outermost level are mapped, one-to-one, to the available
GPUs. Inside of the each GPU the inner blocking is performed according to the size of the small
but fast “shared” memory. In the innermost level a pointwise Jacobi algorithm is performed.

The role of blocking goes beyond the data partition—it ensures full utilization of the fastest
memories and communication channels. For data exchange at the outermost level, a class of
communication-optimal parallel pivoting strategies are generated. In the inner level, we have
to adapt the Cholesky or tall-and-skinny QR factorizations for the shared memory.

In this talk we shall further discuss the details and the choices that have to be made at the each
level. Finally, we shall briefly consider future research on Kepler GPUs and larger clusters.

This work is supported in part by NVidia Academic Partnership program.
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UBk+1V Block Sparse Householder Decomposition
talk submission

Gary W. Howell
http://www.ncsu.edu/itd/hpc/Documents/Publications/gary howell/contents.html

This talk describes Householder reduction of a rectangular sparse matrix to small band upper
triangular form. Using block Householder transformations gives good orthogonality, is compu-
tationally efficient, and has good potential for parallelization. The algorithm is similar to the
standard dense Householder reduction used as part of the usual dense SVD computation. For
the sparse algorithm, the original sparse matrix is accessed only for sparse matrix dense matrix
(SMDM) multiplications. For a triangular bandwidth of k+1, the dense matrices are the k rows
or columns of a block Householder transformation. Using an initial random block Householder
transformation allows reliable computation of a collection of largest singular values.

Recent progress has included

• Improving convergence criteria in terms of requests for a desired number of largest singular
values,

• Improving performance of “tall and skinny” and “long and thin” BLAS (the predominant
calculataion),

• Using the sparse block Householder algorithm to solve sparse least squares problems.
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Optimization of Eigenvalues of Hermitian Matrix Functions and Applications

Emre Mengi

The main theme of this talk is a Hermitian matrix function depending on its parameters analyt-
ically. We describe a numerical algorithm for the global optimization of a specified eigenvalue
of such a Hermitian matrix function over the space of parameters. The algorithm is driven
by piece-wise quadratic under-estimators for the eigenvalue function, and locating their global
minimizers. In the multi-dimensional case the global minimization of the piece-wise quadratic
models can be posed as quadratic programs. The algorithm generates sequences converging to
global optimizers at a linear rate in practice. The second part of the talk is devoted to specific
distance problems over the space of matrices leading to these Hermitian eigenvalue optimiza-
tion problems. We discuss problems such as the distance to a nearest defective matrix, and
the distances to matrix pencils and matrix polynomials with specified eigenvalues, which are
motivated by sensitivity analysis in numerical linear algebra as well as applications in control
theory and signal processing.

The talk is based on joint works with Michael Karow, Mustafa Kılıç, Daniel Kressner, Ivica
Nakić, Ninoslav Truhar and E. Alper Yıldırım
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Eigenvalue Algorithms for Symmetric Hierarchical Matrices

Thomas Mach

We will present three different approaches to compute the eigenvalues of symmetric hierarchical
(H-) matrices. The H-matrices have been introduced by W. Hackbusch in 1998 [1]. He also
introduced a subset of simple structured H-matrices called the H`-matrices.

The main advantage of H-matrices is their data-sparsity requiring only O (n (log2 n)α) storage
for a matrix M ∈ Rn×n. Further, many arithmetic operations, like matrix additions, multi-
plications and factorizations, can be performed with almost linear complexity in the matrix
dimension n.

We will use the cheap arithmetic to build cheap eigenvalue solvers that compute either one
eigenvalue in O (n (log2 n)α) or all in O

(
n2 (log2 n)α

)
.

First, we try to use the cheap Cholesky factorization for H-matrices to build an explicit LR
Cholesky algorithm, see [2]:

LiL
T
i := Mi − µI

Mi+1 := LTi Li + µI.

We observe that this algorithm does not lead to a structure preserving eigenvalue algorithm,
since the local block-wise ranks grow too much.

We will show that the structure of H`-matrices is almost preserved. The LR Cholesky algorithm
for H`-matrices is of almost quadratic complexity.

Second, we will use a bisectioning method to compute the eigenvalues of H`-matrices in a
more efficient way. The third approaches compute the smallest or some of the eigenvalues by
preconditioned inverse iteration.

This is joint work with Peter Benner (MPI Magdeburg).
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Fast and accurate con-eigenvalue algorithm for optimal rational approximations

Terry S. Haut

The need to compute small con-eigenvalues, and the associated con-eigenvectors, of positive-
definite Cauchy matrices naturally arises when constructing rational approximations with a
near optimally small L∞ error. Specifically, given a rational function with n poles in the unit
disk, a rational approximation with m� n poles in the unit disk can be obtained from the mth
con-eigenvector of an n × n Cauchy matrix, where the associated con-eigenvalue λm > 0 gives
the approximation error in the L∞ norm. Unfortunately, standard algorithms do not accurately
compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield
few or no correct digits for con-eigenvalues smaller than the machine roundoff.

In this talk, I will first describe the theory behind constructing near optimal rational approxima-
tions, and connect it with the problem of computing small con-eigenvalues of Cauchy matrices.
I will then present a new fast and accurate algorithm for computing con-eigenvalues and con-
eigenvectors of positive-definite Cauchy matrices, yielding even the tiniest con-eigenvalues with
high relative accuracy. The algorithm computes the mth con-eigenvalue in O

(
m2n

)
opera-

tions and, since the con-eigenvalues of positive-definite Cauchy matrices decay exponentially

fast, yields near optimal rational approximations in O
(
n
(
log δ−1

)2)
operations, where δ is

the approximation error in the L∞ norm. I will also present error bounds demonstrating the
high relative accuracy of the computed con-eigenvalues and the high accuracy of the unit con-
eigenvectors. Finally, I will briefly describe recent applications of this algorithm for comput-
ing near optimal rational approximations of functions with singularities and sharp transitions,
where approximation errors close to machine precision are reliably obtained. In one application
I will present, a numerical calculus based on this algorithm is used to compute highly accurate
solutions of viscous Burgers’ equation over long time intervals, with viscosity as small as 10−5.
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Reproducible Parallel Floating-Point Computations

Hong Diep Nguyen
James Demmel

Because of rounding errors, floating-point operations such as addition and multiplication are
not associative, so computed results depend also on the order of computation. Therefore we
cannot get the same answer from run-to-run even on the same machine with varying numbers of
available processors. That makes understanding the reliability of output harder, especially with
the increasing level of parallelism. In the specific field of testing and debugging for example,
each debug run should produce the same trace as the previous one. On the other hand, the
running time should not be too slow compared to a non-debug run. Our goals are to design
reproducible algorithms which are as efficient as the non-reproducible counter-parts.

Currently, our works focus on designing repeatable algorithms on shared-memory multicore
architecture, which is a subset of our overall goal, yet it is still difficult to achieve the same
performance as non-repeatable counter-parts. Our first approaches include using a reproducible
reduction tree, and using higher precision.

A set of parallel algorithms use a reduction tree to produce the final result. This reduction
tree is subject to change with varying numbers of computing threads, which is the source of
non-reproducibility. Our first approach is based on using a reproducible reduction tree, which
is fixed ahead of computing time and does not depend on available resources at run time. Input
data are split into fixed-size chunks, and the reduction tree is imposed over these chunks instead
of threads. Experimental results showed that the overhead of computing time introduced by
the reproducible reduction tree is negligible in comparison with the conventional reduction tree.

Non-reproducibility of floating-point computation comes from rounding-errors, so another so-
lution might be to eliminate these rounding errors. Using a higher precision reduces the effect
of rounding errors and might produce reproducible results given that the problem is not too
ill-conditioned. Nevertheless, using a higher precision (for ex. double-double precision) can
drastically increase the computing time. Our objective is to obtain reproducible results, not
accurate results, so we do not need to use higher precision everywhere, but only at some se-
lective points of computation. This technique has been embraced in testing and debugging.
Experimental results showed that using higher precision helps to provide reproducible results
for some set of not too ill-conditioned problems with a minor overhead of computing time.
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Numerical Solution of Two-Parameter Differential Eigenvalue Problems

B. Chanane (Joint work with A. Boucherif)

In an interesting paper published in 1963, F. M. Arscott [1] showed that the method of sep-
aration of variables used in solving boundary value problems for Laplace’s equation leads to
a two-parameter eigenvalue problem for ordinary differential equations with the auxiliary re-
quirement that the solutions satisfy boundary conditions at several points. This has led to an
extensive development of multiparameter spectral theory for linear operators. In the paper [2]
the authors give an overview results on two-parameter eigenvalue problems for second order lin-
ear differential equations. See [3] for latest account on the subject. Consider the two-parameter
Sturm-Liouville problem {

−y′′ + qy = (µ21w1 + µ22w2)y, 0 < x < 1
y(0) = 0 , y(c) = 0 , y(1) = 0

where w1, w2 are positive and in C2[0, 1] and q ∈ L[0, 1] and c ∈ (0, 1) some given constant.
By an eigenvalue of the above problem, we mean a value of the couple (µ1, µ2) for which problem
() has a non trivial solution. Conditions that insure the existence of eigenvalue can be found
in [3]. Our objective is to effectively compute the eigenpairs (µ21, µ

2
2) using the Regularized

Sampling Method (RSM) introduced by the author in [4] and tested on broad classes of Sturm-
Liouville problems (Singular, Non-Self-Adjoint, Non-Local, Impulsive,...). We should point out
that we have restricted our attention to Dirichlet boundary conditions in order to eliminate
technical details that might obscur the ideas.
We shall consider the associated initial value problem,{

y′′ + (µ21w1 + µ22w2)y = qy , 0 < x < 1
y(0) = 0 , y′(0) = 1

and deal first with the unperturbed case (q = 0) then with the perturbed case (q 6= 0). Let
PWβ1,β2 denote the Paley-Wiener space,

PWβ1,β2 =

{
h(z1, z2) entire / |h(z1, z2)| ≤ C exp {β1|z1|+ β2|z2|} ,∫∞

−∞
∫∞
−∞ |h(z1, z2)|2dz1dz2 <∞

}
• In the unperturbed case (q = 0),
Theorem The solution ϕ1 is an entire function of (µ1, µ2) ∈ C2 for each fixed x ∈ (0, 1] of
order (1, 1) and type (σ1(x), σ2(x)) and satisfies the estimate,

|ϕ1(x)| ≤ K1 exp [σ1(x)|µ1|+ σ2(x)|µ2|] , (µ1, µ2) ∈ C2

for each fixed x ∈ (0, 1] where, σi(x) = 2 {x
∫ x
0 wi(ξ)dξ}

1
2 for i = 1, 2. Moreover, the function

ϕ1 satisfies the estimate

|ϕ1(x)| ∼ K4(x)

|µ1|+ |µ2|
, as |µ1|+ |µ2| → ∞, (µ1, µ2) ∈ R2
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where K4 is bounded and is independent of (µ1, µ2) .

Thus, ϕ1 as a function of (µ1, µ2) is not in a Paley-Wiener space.

Lemma The function α defined by

α(x) = (sinc {σ1(x)µ1 + σ2(x)µ2})m

where sinc(z) = z−1 sin z and m is a positive integer, is an entire function of (µ1, µ2) ∈ C2

for each fixed x ∈ (0, 1] of order (1, 1) and type (σ1(x), σ2(x)). Furthermore, α satisfies the
estimate

|α(x)| ∼ K3(x)

|µ1|+ |µ2|
, as |µ1|+ |µ2| → ∞, (µ1, µ2) ∈ R2.

where K3 is bounded and is independent of (µ1, µ2) .

Theorem α(x)ϕ1(x) , as a function of (µ1, µ2) belongs to the Paley-Wiener space PWβ1,β2

where (β1, β2) = ((m+ 1)σ1(x), (m+ 1)σ2(x)) for each fixed x ∈ (0, 1].

• In the perturbed case (q 6= 0), we show that the solution y(x) is an entire function of (µ1, µ2)
for each x ∈ (0, 1], of order (1, 1) and type (σ1(x), σ2(x)) but not in a Paley-Wiener space.
However multiplication by α gives a function α(x)y(x) of (µ1, µ2) in a Paley-Wiener space
PWβ1,β2 for each x ∈ (0, 1]. More specifically, we have the following,

Theorem The function ỹ defined by ỹ(x) = α(x)y(x) , belongs to PWβ1,β2 where (β1, β2) =
((m+ 1)σ1(x), (m+ 1)σ2(x)) as a function of (µ1, µ2) ∈ C for each x ∈ (0, 1], and satisfies the
estimate,

|α(x)y(x)| ∼ K(x)

(|µ1|+ |µ2|)m+1 , as |µ1|+ |µ2| → ∞, (µ1, µ2) ∈ R2.

where K is bounded and is independent of (µ1, µ2) .

Hence, ỹ(x;µ1, µ2) can be recovered at each x ∈ (0, 1] from its samples at the latice points
(µ1j , µ2k) = (j π

(m+1)σ1(x)
, k π

(m+1)σ2(x)
), (j, k) ∈ Z2 using the rectangular cardinal series,

f(µ1, µ2) =
∞∑

j=−∞

∞∑
k=−∞

f(µ1j , µ2k)
sinβ1(µ1 − µ1j)
β1(µ1 − µ1j)

sinβ2(µ2 − µ2k)
β2(µ2 − µ2k)

for f ∈ PWβ1,β2 . The convergence of the series being uniform and in L2
dµ1dµ2

(R2), and µmn =

nπ/βm , m = 1, 2, n ∈ Z. The eigenpairs are therefore (µ21, µ
2
2) where (µ1, µ2) solve the nonlinear

system B1(µ1, µ2) := ỹ(1;µ1, µ2) = 0 , B2(µ1, µ2) := ỹ(c;µ1, µ2) = 0.
To illustrate the the efficiency of the method, we shall find some of the eigenpairs of the two-
parameter Sturm-Liouville problem with three- point boundary conditions given by{

−y′′ = (µ21 + µ22x)y , 0 < x < 1
y(0) = y(0.7) = y(1)
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The general solution y of the differential equation can be expressed in terms of the Airy functions
of the first and second kind Ai and Bi and their first derivatives as

y(x;µ1, µ2) =
(−1)2/3

(
Ai

(
3√−1µ21
µ
4/3
2

)
Bi

(
3√−1(µ21+µ22x)

µ
4/3
2

)
−Ai

(
3√−1(µ21+µ22x)

µ
4/3
2

)
Bi

(
3√−1µ21
µ
4/3
2

))
µ
2/3
2

(
Ai′

(
3√−1µ21
µ
4/3
2

)
Bi

(
3√−1µ21
µ
4/3
2

)
−Ai

(
3√−1µ21
µ
4/3
2

)
Bi′
(

3√−1µ21
µ
4/3
2

))
The eigenpairs (µ21, µ

2
2) can be obtained from the solutions (µ1, µ2) of the system ỹ(1;µ1, µ2) =

0 , ỹ(c;µ1, µ2) = 0. For numerical purposes we have truncated the associated series to
|j|, |k| ≤ N = 50 and took m = 5 in the function α. The next table shows the exact eigenpairs
together with their approximations using the Regularized Sampling Method (RSM).

µ1 (exact) µ2 (exact) µ1 (RSM) µ2 (RSM)

7.788149097670813 7.5908224365786845 7.78814883048352 7.590823605399021

4.194056047341936 22.273796542861913 4.194057357011064 22.273795699572364

15.597607295800684 15.165889997583099 15.597605904429917 15.1658929384375

13.87615754699624 30.597837626955204 13.876157718920586 30.59783713797321

No effort has been exerted to get higher precisions, thus all of the errors are between 10−6 and
10−7 . A simple shift in (µ1, µ2) could have allowed us having much higher precision.
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