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A Jacobi–Davidson algorithm for large eigenvalue problems from opto-electronics

Peter Arbenz
Christof Vömel

Ratko G. Vepřek

The construction of prototypes of nowadays opto-electronic components during their develop-
ment is very expensive. Therefore, they are developed and simulated on the computer. This
procedure admits to determine and optimize their characteristics, in particular their optical
characteristics, in advance. The progressive miniaturization of opto-electronic components leads
to numerous quantum-mechanical effects, that cannot be treated by the usual classical models.
Quantum-mechanical methods have to be employed. The states of the charge carriers and the
dispersion relations are determined by coupled Schrödinger equations. Their discretization by
means of the finite element method leads to large sparse generalized complex Hermitian matrix
eigenvalue problems. If multiple bands of the electronic band structure are simulated by the
k·p method the matrix becomes indefinite.

Because of their size the solution of these eigenvalue problems requires sophisticated eigen-
solvers. We present a variant of the Jacobi–Davidson (JD) algorithm that is based on a real
symmetric formulation of the complex Hermitian eigenvalue problem. The correction equations
that have to be solved in each step of JD are solved by a conjugate gradient-type algorithm pre-
conditioned by a V-cycle of smoothed aggregation multigrid. In the indefinite case the spectrum
is folded to arrive at positive definite problems.
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A Linearization Method for Polynomial Eigenvalue Problems Using a Contour Integral

Junko Asakura
Tetsuya Sakurai
Hiroto Tadano

Tsutomu Ikegami
Kinji Kimura

We consider a numerical method for solving polynomial eigenvalue problems. The polynomial
eigenvalue problem (PEP) [1, 3] involves finding an eigenvalue λ and corresponding nonzero
eigenvector x that satisfy F (λ)x = 0, where F (λ) =

∑l
i=0 λiAi with real or complex coefficient

matrices. Polynomial eigenvalue problems can be used in a variety of problems in science and
engineering. However, its applications are more complicated than standard and generalized
eigenvalue problems. We herein propose a linearization scheme, which prevents the inflation
of the matrix dimension. Indeed, we can instead reduce the dimension of the problem by
focusing on only the eigenvalues of physical interest. The Sakurai-Sugiura (SS) method [2],
which solves a generalized eigenvalue problem, finds certain eigenvalues in a given domain. The
SS method can deal with non-Hermitian systems and is compatible with modern distributed
parallel computers. We show that the SS method is directly applicable to PEP. The proposed
method enables us to obtain the eigenvalues of the matrix polynomial by solving the generalized
eigenvalue problem, which is derived by solving systems of linear equations. Since these linear
systems are independent for each equation, they can be solved in parallel. We discuss the
proposed method from a theoretical point of view, and present numerical examples that confirm
the theoretical observations.

References

[1] I. Gohberg, P. Lancaster, F. Rodman, Matrix Polynomials, Academic Press (1982).

[2] T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue problems, J. Com-
put. Appl. Math., 159 (2003) 119–128.

[3] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001) 235–
286.
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On the Convergence of Block Kogbetliantz Methods for Calculating the SVD

Zvonimir Bujanović, Zlatko Drmač

For a given matrix A ∈ Cn×n, the Kogbetliantz method calculates its singular value decompo-
sition A = UΣV ⋆. It achieves this goal by applying a series of plane rotations (Uk)k and (Vk)k
to the initial matrix A0 = A, generating the sequence Ak = U⋆

k Ak−1Vk. At each step k, the
rotations are chosen so that a couple of elements of Ak−1 at mutually transposed positions is
annihilated. Forsythe and Henrici [3] have shown that if elements to be annihilated are chosen
in a row-cyclic order, then (Ak)k converges to Σ under certain conditions and Fernando [2]
further refined the proof by loosening the constraints under which the convergence occurs.

In this presentation, we introduce the block Kogbetliantz method. The initial matrix is parti-
tioned into blocks, and instead of annihilating a couple of elements by plane (2 by 2) rotations
at each step, we consider annihilating a couple of blocks at mutually transposed positions by
more general block rotations.

Following the idea of Drmač [1], we discuss conditions that block rotations have to satisfy in
order for a row-cyclic algorithm to converge. We also prove convergence of left and right singular
vectors.

References

[1] Z. Drmač: A Global Convergence Proof of Cyclic Jacobi Methods with Block Rotations, to
appear

[2] K. V. Fernando: Linear Convergence of the Row Cyclic Jacobi and Kogbetliantz Methods,
Numer. Math. 56, 73-91 (1989)

[3] G.E. Forsythe, P. Henrici: The Cyclic Jacobi Method for Computing the Principal Values
of a Complex Matrix, Transactions of the American Mathematical Society, Vol. 94, No. 1.
(Jan., 1960), pp. 1-23
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Extremum Properties of Orthogonal Quotients Matrices

Achiya Dax

In this talk we explore extremum properties of Orthogonal Quotients matrices. The Orthogo-
nal Quotient Equality that we prove expresses the Frobenius norm of a difference between two
matrices as a difference between the norms of two matrices. This turns the Eckart-Young mini-
mum norm problem into an equivalent maximum norm problem. The symmetric version of this
equality involves traces of matrices, and adds new insight into Ky Fan’s extremum problems.
A comparison of the two cases reveals a surprising similarity between the Eckart-Young mini-
mum principle and Ky Fan’s maximum principle. Returning to Orthogonal Quotients matrices,
we derive extended extremum principles, which consider maximizing (or minimizing) sums of
powers of singular values.
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Implicit standard Jacobi gives high relative accuracy on rank revealing decompositions

Froilán M. Dopico
Joint work with: Plamen Koev and Juan M. Molera

Given the real matrices X, with full column rank, and D, diagonal and nonsingular, we show
that the standard cyclic Jacobi algorithm implicitly applied on X computes all the eigenval-
ues of XDXT , including the tiniest ones, with relative errors bounded by O(ǫκ2(X)), where
ε is the machine precision and κ2(X) is the condition number of X. The eigenvectors are
computed with errors bounded by O(ǫκ2(X)) divided by the relative gap between eigenvalues.
Since accurate rank revealing factorizations XDXT , with X well conditioned, can be computed
for many classes of symmetric matrices, the implicit Jacobi algorithm allows us to compute
eigenvalues and eigenvectors with high relative accuracy for many types of symmetric matrices.
The algorithm we introduce is the first algorithm that computes eigenvalues and eigenvectors of
symmetric factorized matrices XDXT with high relative accuracy, preserving the symmetry of
the problem, and by using only orthogonal transformations. We present in this talk a detailed
description of this algorithm, backward and forward error analyses, and a comparison with
previously existing algorithms in the literature.
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Spectral Calculations for Quasiperiodic Schrödinger Operators

David Damanik, Mark Embree, Anton Gorodetski, Serguei Tcheremchantsev

One-dimensional discrete Schrödinger operators are among the fundamental objects in mathe-
matical physics, yet aspects of their spectral theory continue to pose significant theoretical and
computational challenges. Such a bounded, self-adjoint operator H on ℓ2(Z) can be viewed as
a doubly-infinite tridiagonal matrix with ones on the super- and sub-diagonals, and the nth
entry of the main diagonal given by the potential V (n) for n ∈ Z. When V (n) is periodic,
the spectrum is absolutely continuous: it is the union of closed real intervals (“bands”) whose
boundaries can be determined by solving finite-dimensional eigenvalue problems of dimension
equal to the length of the period. At the other extreme are random potentials, which give rise
to the celebrated phenomenon of Anderson localization and allow for almost-sure statements
about the spectrum.

Between periodic and random potentials fall a variety of deterministic, non-periodic models,
which are of physical interest as models of quasi-crystals. In this talk we shall focus on the
quasi-periodic Fibonacci potential, given by

V (n) =

{
0, (n/φ mod 1) < 1 − 1/φ;
λ, otherwise,

where φ = 1
2(1 +

√
5) is the golden ratio and λ > 0 is fixed. It is well-known that the spectrum

of this operator has zero measure and Cantor-like structure; see [1] for details.

The nature of the spectrum is of substantial physical interest, as it relates to the rate at which
solutions to the dynamical system ut = −iHu spread in time given a perfectly localized initial
condition, u(0) = δj (a vector zero everywhere except for one in the jth position). Periodic
potentials lead to rapid spreading, while random potentials typically give rise to localized eigen-
vectors and slow spreading. Knowledge of the spectrum allows for estimates of the spreading
in the quasi-periodic case.

Approximations for the Fibonacci potential obtained from the eigenvalues of finite sections of
the doubly infinite matrix H provide only a coarse impression of this beautiful spectrum. Finer
detail can be obtained using a procedure due to Sütő [4], whereby the quasiperiodic potential
is approximated by one that is periodic, and whose spectrum thus comprises the union of
finitely many real intervals bands. One might hope to use such approximations to estimate the
fractal dimension of the spectrum; however, the number of bands grows combinatorially as the
approximation to the potential is refined, thus posing a considerable computational obstacle.
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Fortunately, a careful characterization of the manner in which the bands develop from one level
of approximation to the next [3] facilitates more precise statements. In particular, we show
that the number of bands obey combinatorial formulas related to the coefficients of Chebyshev
polynomials; this observation, together with an understanding of the asymptotic properties of
the band widths, allows for the explicit characterization of the fractal dimension of the spectrum
in the large λ regime: dim(σ(H)) log λ → log(1 +

√
2) as λ → ∞ [2].

In this talk we shall provide a brief survey of one-dimensional Schrödinger operators, then
describe the computational challenges surrounding our calculation of the fractal dimension.
Our path to this rigorous result was guided through a variety of computational tools, including
MATLAB, Mathematica, the On-Line Encyclopedia of Integer Sequences [5], and finally the
Inverse Symbolic Calculator [6].

[1] D. Damanik. Strictly ergodic subshifts and associated operators. In Spectral Theory and
Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 505-
538, American Mathematical Society, Providence, 2006.

[2] D. Damanik, M. Embree, A. Gorodetski, and S. Tcheremchantsev. The Fractal Dimension
of th Spectrum of the Fibonacci Hamiltonian. Comm. Math. Phys., to appear.

[3] R. Killip, A. Kiselev, and Y. Last. Dynamic upper bounds on wavepacket spreading.
Amer. J. Math. 125 (2003) 1165–1198.

[4] A. Sütő. The spectrum of a quasiperiodic Schrödinger operator. Comm. Math. Phys. 111
(187) 409–415.

[5] http://www.research.att.com/~njas/sequences

[6] http://oldweb.cecm.sfu.ca/projects/ISC
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Eigenvalues of tridiagonals from triple dqds

Carla Ferreira
Beresford Parlett

We present some aspects of the real unsymmetric tridiagonal eigenproblem and our new
algorithm 3dqds which uses only real arithmetic and takes three dqds steps at once. We show
some interesting numerical examples.

C. Ferreira. The Unsymmetric Tridiagonal Eigenproblem, University of Minho, July 2007,
http://hdl.handle.net/1822/6761.
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NLA techniques for efficient, reliable and asymptotically exact eigenvalue estimation

Luka Grubǐsić

Using the 2D Dirichlet Laplacian on (possibly) non-convex domains as a model problem, we con-
sider an efficient and reliable assessment of finite element approximations of multiple or clustered
eigenvalues and their associated invariant subspaces. Using the weakest possible regularity as-
sumptions, we prove the equivalence of our hierarchical estimator—with explicit and reasonable
constants—and the true discretization error. Furthermore, we present an abstract framework
for establishing asymptotic exactness of a large class of residuum based eigenvalue/vector es-
timators. To demonstrate the power of our abstract approach we give an example of how to
adapt our analysis of the hierarchical error estimator to considerations of estimators which are
based on gradient recovery techniques. Our analysis is based on an error representation formu-
lae which originate from Numerical Linear Algebra and we argue that this approach is natural
for the error estimation problem at hand. To strengthen this argument we present numerical
experiments which demonstrate the effectiveness of the derived practical procedures even on
coarse meshes. This is a joint work with Jeffrey S. Ovall.
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[1] C. Carstensen and S. A. Funken. Constants in Clément-interpolation error and residual
based a posteriori error estimates in finite element methods. East-West J. Numer. Math.,
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[2] S.-K. Chua and R. L. Wheeden. Estimates of best constants for weighted Poincaré inequal-
ities on convex domains. Proc. London Math. Soc. (3), 93(1):197–226, 2006.

[3] L. Grubǐsić. On eigenvalue estimates for nonnegative operators. SIAM J. Matrix Anal.
Appl., 28(4):1097–1125, 2006.

[4] L. Grubǐsić. A posteriori estimates for eigenvalue/vector approximations. PAMM Proc.
Appl. Math. Mech., 6(1):59–62, 2006.

[5] L. Grubǐsić. On Temple–Kato like inequalities and applications. submitted. 2005–Preprint
available from http://arxiv.org/abs/math/0511408.

[6] L. Grubǐsić and K. Veselić. On weakly formulated Sylvester equation and applications.
Integral Equations and Operator Theory, 58(2):175–204, 2007.
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A quadratic two-parameter eigenvalue problem arising from delay differential equations

Michiel Hochstenbach, Elias Jarlebring

We study critical delays for time-delay systems (differential equations with a delay): the delays
for which the system has a purely imaginary eigenvalue. We show that this may lead to a new
type of eigenvalue problem: a quadratic two-parameter eigenvalue problem, which combines
properties of the quadratic eigenvalue problem and the linear two-parameter eigenvalue problem.

We present some properties of the problem and a subspace approach to numerically approximate
critical delays for large matrices.
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Matrix analysis in stability theory

Olga Holtz

I will discuss various theoretical and algorithmic connections between the theory of stable uni-
variate polynomials and matrix theory, including linear algebra of structured matrices, matrix
functions, and the theory of moments.
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Accurate Eigenvalues of Random Matrices

Plamen Koev

While the subject of numerically computing the eigenvalues of matrices is quite mature, the
problem of computing eigenvalue distributions of random matrices is still in its infancy. The
problem is to compute the distributions of the eigenvalues given the distributions of the matrix
entries for certain random matrix classes, e.g., Wishart, Jacobi, etc.

Somewhat surprisingly, explicit formulas for these eigenvalue distributions have been available
since the 1960s, but only in terms of the hypergeometric function of a matrix argument – a no-
toriously slowly converging series of multivariate orthogonal polynomials called Jack functions.
The accurate and efficient evaluation of such distributions had eluded the researchers for over
40 years even though the matrices involved are sometimes as small as 3 × 3.

In this talk I will present the basic ideas and connections from combinatorics, representation
theory, and Fast Fourier transforms, which make the accurate and efficient eigenvalue compu-
tation possible.

The computational aspects quickly revert back to classical numerical linear algebra as one is
forced to compute accurate solutions to (block) Toeplitz matrices.

Many computational problems remain open and I will present some of the ideas we have for
approaching them.
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Accurate solution of eigenvalue problems in industrial life-cycle simulations

Louis Komzsik

Life-cycle simulations are important components of the virtual product development in the
industry. Historically only the structural integrity of a product was the topic of computer
simulations, for example the natural vibrations of the cars or airplane wings. That has changed
significantly with the concept of the life-cycle simulations.

Life-cycle simulations also consider the environment the structure operates in during the prod-
ucts life. Some operational scenarios involve the structures rotating, containing fluid, or operat-
ing in a fluid flow. Other operational interactions are structural impacts and road excitations.
The mathematical models describing the dynamic behavior of structures under these consider-
ations involve un-symmetric and sometimes complex matrices.

These challenging simulations require very specific, robust and efficient computational solu-
tions. These solutions, in many cases, are based on modal methods, a technology that is in its
renaissance. The physical fidelity of the simulation depends on the completeness of the modal
space and may be improved by various dynamic reduction techniques.

The most crucial component of modal solution methods is an accurate solution of eigenvalue
problems. These problems in the industry involve very wide frequency ranges and exhibit
constantly growing problem sizes. Hence the high performance of the accurate solution is of
utmost significance, and to achieve this, industrial solutions undergo a constant evolution.

The presentation will briefly review lifecycle simulations and the role of accurate eigenvalue
computations therein. The evolution of eigenvalue solutions in the past three decades of the
industry will be demonstrated with problem and solution statistics. The current state of the
art industrial solutions of NASTRAN will also be discussed. The presentation will conclude
with future requirements and directions.
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Relative Perturbations for s.d.d. Matrices with Applications

Josip Matejaš
Vjeran Hari

Improved relative perturbation bounds for the eigenvalues of scaled diagonally dominant Her-
mitian matrices and new bounds for the singular values of the symmetrically scaled diagonally
dominant square matrices are derived. In the case of definite Hermitian matrices, the new
result reduces to the existing one. The result extends to some other classes of scaled diagonally
dominant matrices, like skew-Hermitian and “hidden Hermitian” matrices. Using the standard
technique with the Wielandt matrix one obtains an appropriate result for the singular values.

A new relative perturbation result for the singular values of a square, symmetrically scaled
matrix, which uses the scaled polar factors in the bound, is also presented.

The new results are used to prove the relative accuracy of the standard two-sided Jacobi
method on scaled diagonally dominant indefinite Hermitian matrices and also of the Kog-
betliantz method for computing the singular value decomposition of triangular matrices. Using
a subtle error analysis, very sharp eigenvalue perturbation bounds coming from a single Jacobi
step and from a whole Jacobi sweep are derived. As for the Kogbetliantz method, the standard
Voevodin formulas for computing the SVD of 2 × 2 triangular matrices are modified to define
a relatively accurate algorithm. Using a subtle error analysis, the appropriate error bounds
are derived, which compare favorably to the bounds for the existing *LAEV2 routine from
LAPACK, which are also obtained by the same analysis.
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Numerical solution of eigenvalue problems from acoustic field computations

Volker Mehrmann

We present numerical methods for the solution of large scale structured nonlinear eigenvalue
problems arising in the context of acoustic field computations in car interiors.

These eigenvalue problems are very ill-conditioned and badly scaled as well. We discuss different
numerical solution techniques and their advantages and disadvantages.

We show some real world applications form the project with our industrial partner and present
numerical examples.
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On Spectral Bipartite Clustering Algorithm and Automatic Determination of the
Number of Clusters

Ivančica Mirošević
Nevena Jakovčević Stor

The main idea of spectral clustering is in modeling of a data set in a form of a simple undirected
weighted graph, and observing the graph Laplacian spectrum. Usually, data partition can be
reconstructed from dominant eigenvectors.

We introduce several heuristic algorithms for accurate determination of number of clusters. The
algorithms are based on properties of coupling matrix introduced in [1]. In this presentation
we give several examples of datasets sucessfully clustered by our algorithms, both artificial and
real-world ones.

References
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Numerical Method for Two-Parameter Quadratic Polynomial Eigenvalue Problems

Andrej Muhič
Bor Plestenjak

We consider the quadratic two-parameter eigenvalue problem

(A1 + λB1 + µC1 + λ2D1 + λµE1 + µ2F1)x = 0
(1)

(A2 + λB2 + µC2 + λ2D2 + λµE2 + µ2F2)y = 0,

where Ai, Bi, . . . , Fi are given ni × ni complex matrices, x ∈ Cn1 , y ∈ Cn2 nonzero vectors
and λ, µ ∈ C. We say that (λ, µ) is an eigenvalue of (1) and the tensor product x ⊗ y is the
corresponding eigenvector. In the generic case problem (1) has 4n1n2 eigenvalues.

Linearizing (1) we obtain the two-parameter eigenvalue problem



A(1)

︷ ︸︸ ︷


A1 B1 C1

0 I 0
0 0 I


 +λ

B(1)

︷ ︸︸ ︷


0 D1
1
2E1

−I 0 0
0 0 0


 +µ

C(1)

︷ ︸︸ ︷


0 1
2E1 F1

0 0 0
−I 0 0







w1︷ ︸︸ ︷


x
λx
µx


 = 0

(2)


A(2)

︷ ︸︸ ︷


A2 B2 C2

0 I 0
0 0 I


 +λ

B(2)

︷ ︸︸ ︷


0 D2
1
2E2

−I 0 0
0 0 0


 +µ

C(2)

︷ ︸︸ ︷


0 1
2E2 F2

0 0 0
−I 0 0







w2︷ ︸︸ ︷


y
λy
µy


 = 0,

where matrices A(i), B(i), and C(i) are of size 3ni × 3ni.

The usual approach for two-parameter eigenvalue problems of type
(
A(1) + λB(1) + µC(1)

)
w1 = 0

(3)(
A(2) + λB(2) + µC(2)

)
w2 = 0

is to define operator determinants

∆0 = B(1) ⊗ C(2) − C(1) ⊗ B(2),

∆1 = C(1) ⊗ A(2) − A(1) ⊗ C(2),

∆2 = A(1) ⊗ B(2) − B(1) ⊗ A(2)
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on the tensor product space C3n1⊗C3n2 and consider the coupled generalized eigenvalue problem

∆1z = λ∆0z
(4)

∆2z = µ∆0z,

where z = w1 ⊗ w2.

If A(i), B(i), and C(i) are generic matrices of size 3ni × 3ni for i = 1, 2, then ∆0 is nonsingular.
In such case we say that (3) is a nonsingular two-parameter eigenvalue problem. From well
known results for nonsingular two-parameter eigenvalues problems [1] it follows that matrices
∆−1

0 ∆1 and ∆−1
0 ∆2 commute, and that problem (3) has 9n1n2 eigenvalues (λ, µ) that can be

computed from eigenvalues of ∆−1
0 ∆1 and ∆−1

0 ∆2.

In our case, where A(i), B(i), and C(i) are from linearization (2), ∆0 is singular and (3) is a
singular two-parameter eigenvalue problem. The theory for singular two-parameter eigenvalue
problems is scarce and there are no general results linking eigenvalues of (3) to eigenvalues of
(4). For the particular case (2) we are able to prove that eigenvalues of (1) are contained in
the common regular part of pencils ∆1 − λ∆0 and ∆2 − µ∆0. As we can also show that the
regular part of each of the pencils ∆1 − λ∆0 and ∆2 − µ∆0 is of size 4n1n2, it turns out that
the eigenvalues of (1) are exactly the regular eigenvalues of (4).

In order to solve the singular two-parameter eigenvalue problem we derive an algorithm for
the extraction of the common regular part of two matrix pencils. Motivation for the algorithm
can be found in [2]. In our case, the algorithm returns matrices Q and U with orthonormal
columns that define matrices ∆̃i = QH∆iU of size 4n1n2 × 4n1n2 for i = 0, 1, 2, such that ∆̃0 is

nonsingular, matrices ∆̃0
−1

∆̃1 and ∆̃0
−1

∆̃2 commute, and the eigenvalues of the quadratic two-
parameter eigenvalue problem (1) are exactly the eigenvalues of the projected pencils ∆̃1−λ∆̃0

and ∆̃2 − µ∆̃0.

We were able to apply this algorithm to some other singular two-parameter eigenvalue problems
as well, for example to the polynomial two-parameter eigenvalue problem or to problems that
appear in model updating.

References

[1] F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York, 1972.

[2] P. Van Dooren, The Computation of Kronecker’s Canonical Form of a Singular Pencil,
Lin. Alg. Appl., 27 (1979), pp. 103-141.
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The Envelope Method for computing orthogonal eigenvectors belonging to isolated
clusters of very close eigenvalues of a symmetric tridiagonal matrix

Beresford Parlett

There is structure in the invariant subspace for a cluster of close eigenvalues that is well sep-
arated from the rest of the spectrum. This structure is captured by the cluster’s ”envelope”
which reveals a distinguished sparse basis which, in turn, permits the rapid calculation of both
eigenvectors and eigenvalues. Recently we found an inexpensive way to obtain an adequate
approximation of this envelope whose justification rests on a simple result that is a complement
to Gersgorin’s circle theorem.
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Do we need yet another Code for Symmetric Tridiagonals?

Rui Ralha
Carlos Campos

We will give examples of indefinite symmetric tridiagonal matrices which define well their eigen-
values and for which the unique LAPACK code that delivers highly accurate results is DSTEBZ.
This routine uses bisection to compute eigenvalues with prescribed accuracy. The bisection
method is able to guarantee approximations which are the exact eigenvalues of a matrix which
differs from the original one by small relative perturbations in the off-diagonal entries.

Furthermore, the bisection method adapts well to the mixed precision paradigm. This new
paradigm is triggered by the arrival to the market of processors that are much faster in single
precision than they are in double precision. For example, on the Intel’s Pentium IV, floating
point operations can be performed up to two times faster in single precision, as compared to
double precision, and on the IBM’s Cell Broad Engine processor this ratio goes up to ten [1].

A critical issue in the design of a mixed precision bisection algorithm is a good criteria for
switching from single to double precision. Perturbation theory of the eigenvalues is at the center
of this topic. We will present some results (initiated in [2]) to tackle this problem in the case of
matrices with entries and eigenvalues of different orders of magnitude. For these matrices, we
also demonstrate the advantages of using, in a combined way, the three pythagorean means to
compute iteration points.

[1] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari and J. Dongarra, Exploiting the
performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy, LAPACK working
note 175, 2006.

[2] R. Ralha, Perturbation splitting for more accurate eigenvalues, accepted for publication in
SIMAX.
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Computing Smallest and Interior Eigenvalues in SLEPc

Jose E. Roman

SLEPc, the Scalable Library for Eigenvalue Problem Computations [1], is a software library for
the solution of large, sparse eigenvalue problems on parallel computers. It can be used for the
solution of problems formulated in either standard or generalized form, both Hermitian and
non-Hermitian, with either real or complex arithmetic, as well as other related problems such
as the singular value decomposition (SVD). SLEPc is built on top of PETSc [2], and extends
it with all the functionality necessary for the solution of eigenvalue problems. It is publicly
available and used in many applications around the world.

The current version provides the following eigensolvers:

• Krylov-Schur (the default).
• Explicitly restarted Arnoldi and Lanczos.
• Subspace iteration and Power/RQI iteration.
• Seamlessly integrated third-party software, including ARPACK, PRIMME, and BLOPEX.

In addition, SLEPc provides built-in support for different types of problems and spectral trans-
formations such as shift-and-invert or Cayley transform. For solving the associated linear sys-
tems, the user can select from many different direct and iterative solvers and preconditioners,
provided by PETSc.

A partial SVD of a rectangular matrix can be computed either by making use of one of the
above eigensolvers or via specific solvers such as restarted Lanczos bidiagonalization.

Although SLEPc is being successfully used in many application areas, it still has important
limitations. The most remarkable one is arguably the difficulty of computing eigenvalues (or
singular values) that have smallest magnitude or are located in the interior of the spectrum. In
this talk, we will discuss SLEPc’s current ability to handle these cases, as well as ongoing devel-
opments for improving the functionality. These developments are based on the well-established
concepts of harmonic projection [3] and refined extraction [4]. We analyze how these techniques
fit in the different available eigensolvers and SVD solvers, and illustrate the performance with
a set of test cases.

Finally, we mention preliminary work related to preconditioned eigensolvers in SLEPc, as well
as other potential research lines for the future.
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An Inner/Outer Loop Free Parallel Method for Interior Eigenvalue Problems

Tetsuya Sakurai
Hiroto Tadano

We present a method for finding a limited set of eigenpairs in a given domain of the generalized
eigenvalue problem Ax = λBx, where A is real symmetric, and B is symmetric positive definite.
When matrices A and B are large-scale and sparse, iterative methods are often employed.
Most of iterative subspace methods require two nested loops, an inner loop to construct an
approximate subspace, and an outer loop to update approximate eigenvectors. Since these
loops are recurrently repeated, the parallel performance is limited.

Our method is based on contour integral presented in [2]. The major advantage of this method
is that the iterative processes for constructing subspaces and updating approximate eigenvectors
are not required. We recently proposed a Rayleigh-Ritz type method[3] and a block variant of
the method[1] in order to improve numerical stability.

The numerical accuracy of the presented method depends on some parameters, i.e. the di-
mension of the projected pencil, the number of nodes for numerical integration, and the block
size. In this paper, we discuss the influence of these parameters, and show some numerical
properties of the method. The computation at each contour involves linear system solutions
where the coefficient matrices are derived from A and B. These systems can be solved indepen-
dently, allowing a variety of parallel programming model. Some experimental results applied
for large-scale molecular orbital computations in a parallel computing environment are also
included.
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Parallel Implementations of the One–Sided Indefinite Block Jacobi Methods

Sanja Singer
Saša Singer
Vjeran Hari

Krešimir Bokulić
Davor Davidović
Marijan Jurešić

Aleksandar Ušćumlić

The indefinite one-sided Jacobi algorithm for computing the hyperbolic singular value decom-
position of a rectangular matrix is known to be accurate in the relative sense. However, it is
far too slow for serial computation, when compared with some other accurate algorithms. On
the other hand, Jacobi-type methods are considered to be ideal for parallelization, when prop-
erly implemented to achieve data independency that is required by simple models of parallel
computing.

Modern computer clusters have a more complex architecture than such simple models. This is
due to a multi-level memory hierarchy, which includes a local cache memory inside each cluster
member.

This memory hierarchy structure can be efficiently exploited by blocking of the algorithm. First,
we describe two different approaches for obtaining block generalizations of the simple indefinite
Jacobi algorithm: a block oriented and a full block approach.

Then we construct a parallel, locally fast Jacobi algorithm which respects a three-level memory
hierarchy consisting of: distant data, locally stored data, and local cache memory. This is done
by using two levels of blocking:

– The “outer” level of blocking uses the modulus block strategy for data independence to
achieve proper load balancing between different processors.

– The “inner” level of blocking uses the cyclic block strategy to reuse data that is already
in the local cache memory of each processor.

Since both of the above approaches can be used for blocking at each level, we obtain many
variants of the algorithm.
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We will also describe various implementation details that affect the speedup, and present a
series of numerical results that show an almost ideal speedup of properly implemented versions
of the indefinite block Jacobi algorithm.

Finally, it can be shown that all proposed block modifications preserve the relative accuracy of
the original unblocked algorithm. With regards to theory, the work in progress includes proving
the global convergence for some important variants, and block partitioning that ensures the
asymptotic quadratic convergence.
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Fast computation of QR factorisation and eigenvalue decomposition
via one-sided plane rotations

Ivan Slapničar
Krešimir Veselić
Zlatko Drmač

By using one-sided Givens rotations and adequate block strategy in choosing pivot elements, it is
possible to attain the speed comparable to the LAPACK implementation of the QR factorisation
which uses BLAS 3 routines. The advantage of the new approach is simpler implementation.
Similar approach also gives very good results in computing eigenvalues and eigenvectors of
symmteric matrices, where one-sided Jacobi-type rotations are applied to a symmetric factor-
ization obtained in double of the working precision.
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A Quadratically Constrained Eigenvalue Minimization Problem Arising from PDE of
Monge-Ampère Type

D.C. Sorensen
R. Glowinski

This talk concerns the development and analysis of a solution technique for a quadratically
constrained eigenvalue minimization problem. This class of problems arises in the numerical
solution of fully-nonlinear boundary value problems of Monge-Ampère type. Though it is most
important in the three dimensional case, the solution method is directly applicable to systems
of arbitrary dimension.

The focus here shall be on solving the minimization subproblem which is part of a methodology
to numerically solve a Monge-Ampère type equation. These subproblems must be evaluated
many times in this numerical solution technique and thus efficiency is of utmost importance.

A novelty of the minimization algorithm is that the method is finite with the exception of
solving a very simple rational function of one variable. This function is essentially the same for
any dimension. This result is quite surprising given the nature of the minimization problem.
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On B-Orthogonalization

G. W. Stewart

Orthogonalization in the inner product generated by a positive definite matrix B is used in some
algorithms for solving the generalized eigenvalue problem Ax = λBx. This talk (which reports
ongoing research) will consider three related topics. First, given a projector P, we characterize
the positive definite matrices B whose inner product generates P. Second, we present a rounding
error analysis of the B-Gram–Schmidt step in which a vector x is B-orthogonalized against a
B-orthonormal matrix U . The error is shown to depend primarily on the spectral norm of U .
Finally, we consider the problem of semi-definite B. The problem here is that the B-Gram–
Schmidt step cannot purge vectors in the null space of B. For ordinary B-orthogonalization,
this appears not to be a serious problem. When it is a Krylov sequence that is being B-
orthogonalized, however, the null space errors can grow dramatically. Reasons are given for
believing that this phenomenon is associated with the convergence or Ritz vectors.
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Modal approximation to linear damped systems

Krešimir Veselić

Proportional and modal damping is a common approximation when dealimg with damped linear
systems. Practitioners often leave aside the assessment of it, while it is known that it may lead to
catastophically false predictions. We study these approximations by means of the perturbation
theory. The results give rigorous meaning to some known asymptotic estimates.
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Quasi-Minimal Residual Eigenpairs

Jens-Peter M. Zemke

We motivate a new type of eigenpair extraction from a Krylov subspace entitled quasi-minimal
residual eigenpairs (QMR eigenpairs). This approach is obtained by extending the quasi-
minimal residual approach of Roland Freund et al. for the approximation of the solution of
a linear system using Krylov subspace methods to eigenpair approximation. The defining rela-
tion for a QMR eigenpair (θ̀, v̀), where θ̀ ∈ C is called a QMR eigenvalue and v̀ ∈ Ck is called
a QMR eigenvector, is

‖(θ̀Ik − Ck)v̀‖
‖v̀‖ = min

z∈C,v∈Ck

‖(zIk − Ck)v‖
‖v‖ . (5)

Here, C denotes the field of complex numbers, Ik is a k + 1 by k identity matrix, Ck is an
unreduced extended k+1 by k Hessenberg matrix, and the minimization is a local minimization
with respect to both parameters. The relation (5) appears in several contexts, some of them
fairly new and still developing.

By analyzing relation (5), we extend the work of N. J. Lehmann on optimal eigenvalue inclusions
to general complex square matrices, the price to pay is the replacement of the forward error
bounds directly related to the accuracy of the eigenvalues by backward error bounds. Whereas
Lehmann was interested in theoretical bounds, we shift the focus to the numerical computation
of “best” or “optimal” bounds.

Our results and the connections to various other eigenpair extraction methods used in the
Krylov subspace method setting, e.g., Ritz-Galërkin, shifted harmonic Ritz, ρ-values, and Jia’s
refinement of approximate eigenvectors are described. The links between these methods are
used to highlight certain peculiar assets and drawbacks of particular methods. These theoretical
aspects are linked to easy-to-understand pictures capturing the main information, which are
suitable for a classroom introduction of eigenpair extraction based on Krylov subspace methods.

The theory behind QMR eigenpairs roots in Grassmannian optimization, minimization of real-
analytic complex functions including Wirtinger derivatives, and complex SVD perturbation
theory, which is related to the non-analytic perturbation theory of Hermitean matrices. There
are intimate connections to pseudospectra, eigenvalues of rectangular matrices and rectangular
pencils, and the distance of a controllable pair of matrices to the nearest uncontrollable pair.

We give a few examples that are intended to highlight some more or less surprising aspects of
the QMR eigenvalues (and eigenvectors), many of them already noted in other related contexts.
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A special example is the analytic solution of the QMR eigenproblem for an extended Jordan
block, which is related to the distinct properties of finite and infinite Toeplitz operators, the
field of values of a Jordan block, and to the distance to uncontrollability.

We state a few of the many possible algorithms and briefly compare the accuracy and speed
of the computations when carried out in IEEE 754 arithmetic using known building blocks,
e.g., BLAS and LAPACK. Our main aim is to work out the relations between the choice of the
extraction method and the applications.
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21000 Split, Croatia
nevena@fesb.hr

Plamen Koev

Department of Mathematics, North Carolina State University, Box 8205
Raleigh, NC 27695, U.S.A.
pskoev@ncsu.edu

www4.ncsu.edu/∼pskoev

Louis Komzsik

Siemens PLM Software, 10824 Hope Street
Cypress, CA 90630, USA
louis.komzsik@siemens.com

www.siemens.com/ugs

36



Daniel Kressner

Department of Mathematics, ETH Zurich, Rämistr. 101
8092 Zurich, Switzerland
kressner@math.ethz.ch

Josip Matejaš
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Dep. de Matemática , Univ. do Minho, Campus de Gualtar
4710-057 Braga, Portugal
r ralha@math.uminho.pt

37



Jose E. Roman
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