On Solving Large Eigenvalue Problems from Opto-Electronics

Peter Arbenz ${ }^{1} \quad$ Christof Vömel ${ }^{1}$ Ratko Veprek ${ }^{2}$
${ }^{1}$ Institute of Computational Science, ETH Zurich,
${ }^{2}$ Integrated Systems Laboratory, ETH Zurich
Work in progress

IWASEP, Dubrovnik, Croatia, June 9-12, 2008.

Introduction I

- In solid state physics, the (electronic) band structure of a solid describes ranges of energy that an electron can assume.
- Electrons of single free-standing atom occupy atomic orbitals, that form discrete set of energy levels. When a large number of atoms are brought together to form a solid, the number of orbitals becomes exceedingly large, and the difference in energy between them becomes very small. Bands of energy levels are

From wikipedia.org form rather than discrete energy levels. Intervals that contain no orbitals are called band gaps.

Introduction II

- Any solid has a large number of bands, in theory, ∞ many. However, all but a few lie at energies so high that any electron that reaches those energies escapes from the solid. These bands are usually disregarded.

Introduction III

- The uppermost occupied band is called valence band by analogy to the valence electrons of individual atoms. The lowermost unoccupied band is called the conduction band because only when electrons are excited to the conduction band can current flow in these materials.

Introduction IV

- A numerical evaluation of the band structure takes into account the periodic nature of a crystal lattice. The Schrödinger equation for a single particle in a cristal lattice is given by

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m_{0}} \nabla^{2}+V(\mathbf{r})\right) \Psi(\mathbf{r})=E \Psi(\mathbf{r}) \tag{1}
\end{equation*}
$$

where the potential V exhibits the cristal periodicities: $V(\mathbf{r})=V(\mathbf{r}+\mathbf{R})$ for all lattice vectors \mathbf{R}. Solutions of (1) are Bloch functions:

$$
\begin{equation*}
\Psi_{n \mathbf{k}}(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} u_{n \mathbf{k}}(\mathbf{r}) \tag{2}
\end{equation*}
$$

where $u_{n k}(\mathbf{r})$ is lattice-periodic.

Introduction V

Here, \mathbf{k} is called the wave vector, and is related to the direction of motion of the electron in the crystal, and n is the band index, which simply numbers the energy bands. The wave vector \mathbf{k} takes on values within the Brillouin zone corresponding to the crystal lattice.
Plugging (2) into (1) yields

$$
\begin{equation*}
\frac{\hbar^{2}}{2 m_{0}}\left(-\nabla^{2}+2 i \mathbf{k} \cdot \nabla+|\mathbf{k}|^{2}+V(\mathbf{r})\right) u_{n \mathbf{k}}(\mathbf{r})=E_{n}(\mathbf{k}) u_{n \mathbf{k}}(\mathbf{r}) \tag{3}
\end{equation*}
$$

For each of the possible \mathbf{k} there are infinitely many $n=1,2, \ldots$.

Introduction VI

- There are a number of possible ways to compute the spectral bands.
(1) Solve (3) for $\mathbf{k}=\mathbf{k}_{0}=\mathbf{0}$ and determine the rest of the eigenvalues by perturbation theory. (Effective mass m_{*})
(2) Solve (3) in a subspace spanned by a small number of eigenfunctions (zone-centered Bloch functions) $u_{n 0}$ (Kane, 1957).
(3) In the $\mathbf{k} \cdot \mathbf{p}$ method the two methods are somehow combined by writing

$$
\begin{equation*}
\Phi(\mathbf{r})=\sum_{i=1}^{m} g_{i}(\mathbf{r}) u_{i 0}(\mathbf{r}) \tag{4}
\end{equation*}
$$

Here, the so-called envelope g_{i} replaces the plane wave $e^{i \mathbf{k} \cdot \mathbf{r}}$ in (2) (Luttinger-Kohn, 1955; Löwdin, 1951).

We go for the $\mathbf{k} \cdot \mathbf{p}$ method for its superior accuracy.

Introduction VII

- We finally arrive at an eigenvalue problem for the envelopes:

$$
\begin{equation*}
\left(\sum_{i, j=1,2,3} \mathbf{H}_{i j}^{(2)}(\mathbf{r}) \partial_{i} \partial_{j}+\mathbf{H}_{i}^{(1)}(\mathbf{r}) \partial_{i}+\mathbf{H}^{(0)}(\mathbf{r})+\mathbf{U}(\mathbf{r})\right) \mathbf{g}(\mathbf{r})=E \mathbf{g}(\mathbf{r}) \tag{5}
\end{equation*}
$$

Here, the perturbation $\mathbf{U}(\mathbf{r})$ takes into account an impurity potential of the material or quantum dot, etc.
Note, that \mathbf{g} is a m-vector (field).

- For the numerical computation \mathbf{g} is represented by piecewise (linear) finite elements.

The linear algebra problem

We end up with the generalized complex Hermitian eigenvalue problem

$$
\begin{equation*}
A \mathbf{x}=\lambda M \mathbf{x} \tag{6}
\end{equation*}
$$

where

$$
A^{*}=A \in \mathbb{C}^{n \times n}, \quad M^{T}=M \in \mathbb{R}^{n \times n}
$$

Depending on the bands included, A is either definite or indefinite. The latter holds if valence and conduction band are taken into account.

Just a small number $(k=1-8)$ of bands are used. Matrices have $k \times k$ blocks.

Only a few of the eigenvalues closest to 0 of (6) are desired.

Transformation complex Hermitian \rightarrow real symmetric I

For $A=A_{r}+i A_{i} \in \mathbb{C}^{n \times m}, A_{r}, A_{i} \in \mathbb{R}^{n \times m}$, define the mapping (Day \& Heroux, 2001)

$$
\varphi: \mathbb{C}^{m \times n} \longrightarrow \mathbb{R}^{2 m \times 2 n}: A \longmapsto \varphi(A):=\left(\begin{array}{rr}
A_{r} & -A_{i} \tag{7}\\
A_{i} & A_{r}
\end{array}\right)
$$

that transforms a complex $m \times n$ matrix into a real $2 m \times 2 n$ matrix. If operations are allowed, then

$$
\begin{equation*}
\varphi(A B)=\varphi(A) \varphi(B) \tag{8}
\end{equation*}
$$

- Many codes for solving eigenvalue problems, in particular for large sparse eigenvalue problems, are available only in real arithmetic.
- Very often the sparsity structures of real and imaginary parts of the underlying matrices differ considerably.

Transformation complex Hermitian \rightarrow real symmetric II

We can rewrite the complex eigenvalue problem

$$
\begin{equation*}
A \mathbf{x}=\mathbf{x} \lambda \tag{9}
\end{equation*}
$$

in the real form

$$
\begin{equation*}
\varphi(A \mathbf{x})=\varphi(A) \varphi(\mathbf{x})=\varphi(\mathbf{x} \lambda)=\varphi(\mathbf{x}) \varphi(\lambda) \tag{10}
\end{equation*}
$$

or,

$$
\left(\begin{array}{rr}
A_{r} & -A_{i} \tag{11}\\
A_{i} & A_{r}
\end{array}\right)\left(\begin{array}{rr}
\mathbf{x}_{r} & -\mathbf{x}_{i} \\
\mathbf{x}_{i} & \mathbf{x}_{r}
\end{array}\right)=\left(\begin{array}{rr}
\mathbf{x}_{r} & -\mathbf{x}_{i} \\
\mathbf{x}_{i} & \mathbf{x}_{r}
\end{array}\right)\left(\begin{array}{rr}
\lambda_{r} & -\lambda_{i} \\
\lambda_{i} & \lambda_{r}
\end{array}\right)
$$

So, a complex eigenvalue of A becomes a pair of complex conjugate eigenvalues of $\varphi(A)$.
A Hermitian $\Longrightarrow \lambda_{i}=0$.

Transformation complex Hermitian \rightarrow real symmetric III

Special cases:

$$
\varphi\left(\mathbf{x}^{*}\right) \varphi(\mathbf{x})=\varphi\left(\|\mathbf{x}\|^{2}\right) \Longleftrightarrow\left(\begin{array}{cc}
\mathbf{x}_{r}^{T} & \mathbf{x}_{i}^{T} \\
-\mathbf{x}_{i}^{T} & \mathbf{x}_{r}^{T}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{x}_{r} & -\mathbf{x}_{i} \\
\mathbf{x}_{i} & \mathbf{x}_{r}
\end{array}\right)=\|\mathbf{x}\|^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Enforcing $\mathbf{x}^{*} \mathbf{y}=0$ thus means that $\binom{\mathbf{y}_{r}}{\mathbf{y}_{i}}$ is made orthogonal to both $\binom{\mathbf{x}_{i}}{\mathbf{x}_{r}}$ and $\binom{\mathbf{x}_{r}}{-\mathbf{x}_{i}}$. The companion vector $\binom{-\mathbf{y}_{i}}{\mathbf{y}_{r}}$ will then automatically be orthogonal to these two vectors.

Computation is done with just one vector; orthogonality is forced against two.

Transformation complex Hermitian \rightarrow real symmetric IV

Rayleigh-Ritz procedure

- Given a search space $\mathcal{R}\left(V_{k}\right), V_{k}^{T} M V_{k}=I$, determining Ritz pairs amounts to determining eigenpairs of $V_{k}^{T} A V_{k}$:

$$
\left(\begin{array}{cc}
V_{r} & -V_{i} \\
V_{i} & V_{r}
\end{array}\right)^{T}\left(\begin{array}{cc}
A_{r} & A_{i}^{T} \\
A_{i} & A_{r}
\end{array}\right)\left(\begin{array}{cc}
V_{r} & -V_{i} \\
V_{i} & V_{r}
\end{array}\right)=\left(\begin{array}{ll}
\hat{A}_{r} & \hat{A}_{i}^{T} \\
\hat{A}_{i} & \hat{A}_{r}
\end{array}\right)
$$

- The 2×2 block matrix on the right can be orthogonally transformed in the direct sum of two identical symmetric tridiagonal matrices (LAPACK subroutine zlarfg). Instead of Householder reflectors unitary matrices of the form

$$
I-\nu \mathbf{u} \mathbf{u}^{*}, \quad|\nu-1|=1
$$

need to be employed.

Computing only a few eigenpairs

Case 1. A is positive definite. Compute eigenvalues one by one starting with the smallest.
Case 2: A is indefinite. (M is always spd.)

- SI-Lanczos if the problem is not too big.
- Generate two new positive definite eigenvalue problems

$$
\begin{equation*}
\left(A-\sigma_{i} M\right) M^{-1}\left(A-\sigma_{i} M\right) \mathbf{x}=\lambda M \mathbf{x}, \quad i=1,2 . \tag{12}
\end{equation*}
$$

where σ_{1} is close to the smallest positive eigenvalue of (A, M) and σ_{2} is close to the smallest negative eigenvalue of (A, M) (Vömel, 2007; Shi Shu, 2006).

- Compute eigenvalues of (12) with shift σ_{1} one by one starting with the smallest.
- Compute eigenvalues of (12) with shift σ_{2} one by one starting with the smallest.
- Preconditioner? AMG preconditioner?

Restarted Shift-and-Invert Lanczos (SI-Lanczos)

- Choose shift σ close to desired eigenvalues.
- Transform $A \mathbf{x}=\lambda M \mathbf{x}$ into

$$
\begin{equation*}
(A-\sigma M)^{-1} M \mathbf{x}=\mathbf{x}, \quad \mu=\frac{1}{\lambda-\sigma} \tag{13}
\end{equation*}
$$

- Apply Lanczos algorithm, i.e., construct ON-basis of Krylov space

$$
\mathcal{K}_{k}\left((A-\sigma M)^{-1} M, \mathbf{v}_{0}\right)=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\mathcal{R}\left(V_{k}\right)
$$

- Typical (ARPACK) approach:
- Full reorthogonalization to avoid loss of orthogonality.
- Limitation of dimension of Krylov spaces to avoid excessive memory consumption.
- Entails restarting procedure.

Remarks on SI-Lanczos

- Shift-and-Invert emphasizes the eigenvalues close to the shift. Large relative gaps between eigenvalues speed up convergence.
- Restarting makes full reorthogonalization feasible.
- Main problem: System solve with $A-\sigma M$.
- LU - factorization if problem is small (2D)
- Iterative solve requires high accuracy if 3-term recurrence shall hold.

Davidson

(Davidson, 1975)

- Let $\mathcal{V}_{k}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}, \mathbf{v}_{k}^{T} M \mathbf{v}_{j}=\delta_{k j}$, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair $(\tilde{\lambda}, \tilde{\mathbf{q}})$ in \mathcal{V}_{k} with $\tilde{\lambda}$ closest to some target value τ.
- Convergence: If $\left\|\tilde{\mathbf{r}}_{k}\right\|_{M^{-1}} \equiv\|(A-\tilde{\lambda} M) \tilde{\mathbf{q}}\|_{M^{-1}}<\varepsilon\|\tilde{\mathbf{q}}\|_{M}$ then we have found an eigenpair
- Otherwise, solve for \mathbf{t}_{k},

$$
\begin{equation*}
K \mathbf{t}_{k}=-\tilde{\mathbf{r}}_{k}, \quad K \approx A-\tau M \tag{14}
\end{equation*}
$$

K is called a preconditioner for $A-\tau M$.

- M-orthonormalize \mathbf{t}_{k} to \mathcal{V}_{k} to obtain \mathbf{v}_{k+1}
- Expand search space: $\mathcal{V}_{k+1}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k+1}\right\}$.

Remarks on Davidson

- Principle problem with the "preconditioner": must not be too good. If $K=A-\tau M$ we get back the residual.
- $K=A-\tau M$ has bad condition if τ is close to $\sigma(A ; B)$.
- The method was found to be successful in many instances, in particular with diagonally dominant problems.
- Eigenvectors corresponding to higher eigenvalues are computed in the orthogonal complement of previously computed eigenvectors.
- To keep the subspace size bounded: If $k=j_{\max }$ reduce size of the search space to $j_{\text {min }}$. Use $j_{\text {min }}$ 'best' Ritz vectors in $\mathcal{V}_{j_{\text {max }}}$ to define $\mathcal{V}_{j_{\text {min }}}$.

Symmetric Jacobi-Davidson (JDSYM)

(Sleijpen/van der Vorst, 1996; Geus, 2003)

- Let $\mathcal{V}_{k}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}, \mathbf{v}_{k}^{T} M \mathbf{v}_{j}=\delta_{k j}$, be the actual search space (not a Krylov space).
- Rayleigh-Ritz-Galerkin procedure: Extract Ritz pair $(\tilde{\lambda}, \tilde{\mathbf{q}})$ in \mathcal{V}_{k} with $\tilde{\lambda}$ closest to some target value τ.
- Convergence: If $\left\|\mathbf{r}_{k}\right\|_{M^{-1}} \equiv\|(A-\tilde{\lambda} M) \tilde{\mathbf{q}}\|_{M^{-1}}<\varepsilon\|\tilde{\mathbf{q}}\|_{M}$ then we have found an eigenpair
- Solve correction equation for $\mathbf{t}_{k} \perp_{M} \tilde{\mathbf{q}}$,

$$
\begin{equation*}
\left(I-M \tilde{\mathbf{q}} \tilde{\mathbf{q}}^{T}\right)\left(A-\eta_{k} M\right)\left(I-\tilde{\mathbf{q}} \tilde{\mathbf{q}}^{T} M\right) \mathbf{t}_{k}=-\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T} M \mathbf{t}_{k}=0 \tag{15}
\end{equation*}
$$

- M-orthonormalize \mathbf{t}_{k} to \mathcal{V}_{k} to obtain \mathbf{v}_{k+1}
- Expand search space: $\mathcal{V}_{k+1}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k+1}\right\}$.

Remarks on JDSYM

- In exact arithmetic, 'one-vector JD' is Rayleigh quotient iteration. Eigenvalue approximations converge cubically.
- Stabilization: Shift η_{k} in (15) is set to target value τ initially (\sim inverse iteration) and to the Rayleigh quotient $\rho(\tilde{\mathbf{q}})$ close to convergence.
- Keep subspace size bounded: If $k=j_{\max }$ reduce size of the search space to $j_{\text {min }}$. Use $j_{\text {min }}$ 'best' Ritz vectors in $\mathcal{V}_{j_{\text {max }}}$ to define $\mathcal{V}_{j_{\text {min }}}$.
- The correction equation is solved only approximatively. We use a Krylov space method: QMRS (admits indefinite preconditioner) (Freund, 1992).
- Eigenvectors corresponding to higher eigenvalues are computed in the orthogonal complement of previously computed eigenvectors.

Locally Optimal Block Preconditioned Conjugate Gradient

 Method (LOBPCG)- Preconditioned Conjugate Gradient Method Minimize the Rayleigh quotient

$$
\begin{aligned}
& \rho\left(\mathbf{x}_{k+1}\right)=\rho\left(\mathbf{x}_{k}+\delta_{k} \mathbf{p}_{k}\right), \quad \mathbf{p}_{k}=-K^{-1} \mathbf{g}_{k}+\alpha_{k} \mathbf{p}_{k-1} \perp_{A} \mathbf{p}_{k-1} . \\
& \mathbf{g}_{k}=\nabla \rho\left(\mathbf{x}_{k}\right)
\end{aligned}
$$

- Locally optimal Conjugate Gradient Method (Knyazev, 2001)

$$
\rho\left(\mathbf{x}_{k+1}\right)=\min _{\delta_{k}, \gamma_{k}} \rho\left(\mathbf{x}_{k}-\delta_{k} K^{-1} \mathbf{g}_{k}+\gamma_{k} \mathbf{p}_{k-1}\right)
$$

One degree of freedom more \Longrightarrow faster convergence.

- Block version (LOBPCG): $X_{k+1} \in \mathbb{C}^{n \times p}$ is determined to contain the p 'smallest' Ritz vectors of

$$
\rho\left(\mathbf{X}_{k+1}\right)=\rho\left(\left[\mathbf{X}_{k}, K^{-1} \mathbf{G}_{k}, \mathbf{P}_{k-1}\right]\right)
$$

Remarks on LOBPCG

- All eigenpairs are computed simultaneously. However some come earlier than others: Locking of converged vectors.
- Computing $K^{-1} G_{k}$ completely parallel.
- Preconditioning is more important than so-called local optimality.
- Columns of $\left[\mathbf{X}_{k}, K^{-1} \mathbf{G}_{k}, \mathbf{P}_{k-1}\right]$ may become linearly dependent.
Remedy: Restart with random vectors in the orthogonal complement of the already computed eigenvectors.

Preconditioning the correction equation

The correction equation is given by

$$
\left(I-M \tilde{\mathbf{q}} \tilde{\mathbf{q}}^{T}\right)\left(A-\eta_{k} M\right)\left(I-\tilde{\mathbf{q}} \tilde{\mathbf{q}}^{T} M\right) \mathbf{t}_{k}=-\mathbf{r}_{k}, \quad \tilde{\mathbf{q}}^{T} M \mathbf{t}_{k}=0
$$

Preconditioning means solving with a system of the form

$$
\begin{equation*}
\left(I-M \tilde{\mathbf{q}} \tilde{\mathbf{q}}^{T}\right) K\left(I-\tilde{\mathbf{q}} \tilde{\mathbf{q}}^{T} M\right) \mathbf{c}=\mathbf{b}, \quad \tilde{\mathbf{q}}^{T} M \mathbf{c}=0 \tag{16}
\end{equation*}
$$

where K is a preconditioner for $A-\rho_{k} M$.
As we are looking for just a few of the smallest eigenvalues we take $K \approx A-\tau M$ where τ is our target close to the desired eigenvalues.

Preconditioners

- Incomplete Cholesky/LU factorization preconditioners.

$$
K=L_{K} U_{K}^{*} \approx A-\tau M
$$

- ILU(0) transfers the nonzero structure of A to L and U.
- The parallel version of the IFPACK ILU(0) performs the factorization only locally.
- Algebraic Multigrid (AMG) based on Smoothed Aggregation (SA).

Setup procedure for an abstract multigrid solver

```
1: Define the number of levels, \(L\)
2: for level \(\ell=0, \ldots, L-1\) do
3: if \(\ell<L-1\) then
4: \(\quad\) Define prolongator \(P_{\ell}\);
5: \(\quad\) Define restriction \(R_{\ell}=P_{\ell}^{T}\);
6: \(\quad K_{\ell+1}=R_{\ell} K_{\ell} P_{\ell}\);
7: \(\quad\) Define smoother \(S_{\ell}\);
8: else
9: \(\quad\) Prepare for solving with \(K_{\ell}\);
10: end if
11: end for
```


Smoothed aggregation (SA) AMG preconditioner I

(1) Build adjacency graph \mathcal{G}_{0} of $K_{0}=K$. (Take $m \times m$ block structure into account.)
(2) Group graph vertices into contiguous subsets, called aggregates. Each aggregate represents a coarser grid vertex.

- Typical aggregates: $3 \times 3 \times 3$ nodes (of the graph) up to $5 \times 5 \times 5$ nodes (if aggressive coarsening is used)
- (Par)METIS
- Note: The matrices K_{1}, K_{2}, \ldots need much less memory space than K_{0} !
Typical operator complexity for SA: 1.4 (!!!!)

Smoothed aggregation (SA) AMG preconditioner II

(3) Define a grid transfer operator:

- Low-energy modes (near-kernel) are 'chopped' according to aggregation

$$
B_{\ell}=\left[\begin{array}{c}
B_{1}^{(\ell)} \\
\vdots \\
B_{n_{\ell+1}}^{(\ell)}
\end{array}\right]
$$

$B_{j}^{(\ell)}=$ rows of B_{ℓ} corresponding to grid points assigned to $j^{\text {th }}$ aggregate.

- Let $B_{j}^{(\ell)}=Q_{j}^{(\ell)} R_{j}^{(\ell)}$ be QR factorization of $B_{j}^{(\ell)}$ then

$$
B_{\ell}=\widetilde{P}_{\ell} B_{\ell+1}, \quad \widetilde{P}_{\ell}^{T} \widetilde{P}_{\ell}=I
$$

with

$$
\widetilde{P}_{\ell}=\operatorname{diag}\left(Q_{1}^{(\ell)}, \ldots, Q_{n_{\ell+1}}^{(\ell)}\right) \quad \text { and }
$$

Columns of $B_{\ell+1}$ span the near kernel of $K_{\ell+1}$.

$$
B_{\ell+1}=\left[\begin{array}{c}
R_{1}^{(\ell)} \\
\vdots \\
R_{n_{\ell+1}}^{(\ell)}
\end{array}\right] .
$$

- Notice: matrices K_{ℓ} are not used in constructing tentative prolongators \widetilde{P}_{ℓ}, near kernels B_{ℓ}, and graphs \mathcal{G}_{ℓ}.

Smoothed aggregation (SA) AMG preconditioner III

(9) For elliptic problems, it is advisable to perform an additional step, to obtain smoothed aggregation (SA).

$$
P_{\ell}=\left(I_{\ell}-\omega_{\ell} D_{\ell}^{-1} K_{\ell}\right) \widetilde{P}_{\ell}, \quad \omega_{\ell}=\frac{4 / 3}{\lambda_{\max }\left(D_{\ell}^{-1} K_{\ell}\right)},
$$

smoothed prolongator

In non-smoothed aggregation: $P_{\ell}=\widetilde{P}_{\ell}$
(5) Smoother S_{ℓ} : polynomial smoother

- Choose a Chebyshev polynomial that is small on the upper part of the spectrum of K_{ℓ} (Adams, Brezina, Hu, Tuminaro, 2003).
- Parallelizes perfectly, quality independent of processor number.

'Matrix-free' multigrid

- Our approach: pcg which "almost" smoothed aggregation AMG preconditioning
- We set $K=K_{0}=A-\sigma M$ in the positive definite case and $K=(A-\sigma M) M_{\text {lumped }}^{-1}(A-\sigma M)$ in the indefinite case. (We apply K_{0}.)
We lump because M^{-1} is dense. \mathcal{G}_{0} is the graph corresponding to $(A-\sigma M) M_{\text {lumped }}^{-1}(A-\sigma M)$.
- P_{0} is not smoothed, i.e. $P_{0}=\widetilde{P}_{0}$.
- $K_{1}=P_{0}^{T} K_{0} P_{0}$ is formed explicitely.
- All graphs, including \mathcal{G}_{0}, are constructed.

The Software Environment: Trilinos

- The Trilinos Project is an effort to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications.
- See http://software.sandia.gov/trilinos/
- Provides means to distribute (multi)vectors and (sparse) matrices (Epetra and EpetraExt packages).
- Provides solvers that work on these distributed data. Here we use iterative solvers and incomplete factorization preconditioners (packages AztecOO/IFPACK), smoothed aggregation multilevel AMG preconditioner (ML), direct solver wrappers (Amesos) and data distribution for parallelization (Zoltan/ParMETIS).

Problem sizes

$$
\begin{aligned}
& \text { Problem 1D quantum wire } \\
& 4 \times 4 \mathrm{n}=1532, \mathrm{nnz}=18352,2 * \mathrm{n}=3064 \mathrm{spd} \\
& 6 \times 6 \mathrm{n}=2297, \mathrm{nnz}=41292,2 * \mathrm{n}=4596 \mathrm{spd} \\
& 8 \times 8 \mathrm{n}=3064, \mathrm{nnz}=73408,2 * \mathrm{n}=6128 \mathrm{sym} . \text { indef. } \\
& \text { Problem 2D quantum wire } \\
& 4 \times 4 \mathrm{n}=12764, \mathrm{nnz}=447216,2 * \mathrm{n}=25528 \mathrm{spd} \\
& 6 \times 6 \mathrm{n}=19146, \mathrm{nnz}=1006236,2 * \mathrm{n}=38292 \mathrm{spd} \\
& 8 \times 8 \mathrm{n}=25528, \mathrm{nnz}=1788864,2 * \mathrm{n}=51056 \mathrm{sym} . \text { indef. } \\
& \text { Problem 2D big quantum wire } \\
& 4 \times 4 \mathrm{n}=49860, \mathrm{nnz}=1770384,2 * \mathrm{n}=99720 \mathrm{spd} \\
& 6 \times 6 \mathrm{n}=74790, \mathrm{nnz}=3983364,2 * \mathrm{n}=149580 \mathrm{spd} \\
& 8 \times 8 \mathrm{n}=99720, \mathrm{nnz}=4868556,2 * \mathrm{n}=199440 \mathrm{sym} . \text { indef. }
\end{aligned}
$$

Problem sizes

- Number of eigenvalues: 4
- Subspace dimensions
- IRA: $20=5 \times$ nev
- Davidson: 20
- JDBSYM: 20 (restart: 8)
- LOBPCG: 4 = nev
- Convergence criterion:

$$
\left\|\mathbf{r}_{k}\right\|_{M^{-1}}<\varepsilon\left\|\mathbf{x}_{k}\right\|_{M}, \quad \varepsilon=10^{-6}
$$

- Reordering:
- Mumps: METIS
- Umfpack: AMD

Numerical results

Solver	Criterion	1D Wire			2D Wire			2D Wire(big)		
		4-band	6-band	8-band	4-band	6-band	8-band	4-band	6-band	8-band
Shift-Invert	Time [sec]	0.4	0.9	0.96	17.25	42.97	75.47	79.40	166.94	291.57
Lanczos	OpVecs	52	52	52	68	68	84	68	68	68
(Umfpack)	Fact.[sec]	0.05	0.1	0.17	7.35	23.75	54.98	55.83	182.46	441.66
Shift-Invert	Time [sec]	0.29	0.37	0.48	5.55	10.44	17.25	25.92	49.74	101.44
Lanczos	OpVecs	52	52	52	68	68	68	68	68	84
(Mumps)	Fact.[sec]	0.03	0.08	0.11	5.95	21.23	54.11	51.99	181.26	421.77
$\begin{aligned} & \text { J.-Davidson } \\ & \text { JDBSYM } \\ & \text { (ML) } \end{aligned}$	Time [sec]	3.17	6.53		43.76	146.65		400.48	752.29	
	Outer It.	33	32		25	34		34	35	
	Inner It.	16.4	14.3		11.2	8.9		14.1	13.4	
	Prec.[sec]	0.05	0.05		0.55	1.33		2.41	5.16	
J.-Davidson JDBSYM (Ifpack)	Time [sec]	0.19	0.35	0.38	10.03	17.93	43.30	66.05	148.79	395.04
	Outer It.	16	18	19	23	22	35	38	41	52
	Inner It.	1.1	1.1	1.3	10.8	10.2	9.2	10.6	11.4	17.3
	Prec.[sec]	0.06	0.15	0.17	1.88	5.46	11.98	7.56	22.03	43.89
Davidson (ML)	Time [sec]	12.54	29.82		56.05	140.46		643.65	1748.6	
	MatVecs	4228	4404		836	1044		2300	3132	
Davidson (Ifpack)	Time [sec]	0.16	0.12		10.35	18.08		129.06	237.74	
	MatVecs	84	84		732	692		2108	2132	
$\begin{aligned} & \text { LOBPCG } \\ & (\mathrm{ML}) \end{aligned}$	Time [sec]	3.28	11.39		29.82	67.69		222.08	555.32	
	MatVecs	452	816		212	248		384	496	
LOBPCG (Ifpack)	Time [sec]	0.2	0.18		7.51	17.01		62.87	109.63	
	MatVecs	48	48		220	280		392	408	

Remarks on numerical results

- With SI-Lanczos, factorization with UMFPACK and MUMPS take about the same time. MUMPS is a much more effective solver.
- Same preconditioners are used for the Jacobi-Davidson, Davidson, and LOBPCG algorithms, the construction time is only reported once.
- Overall time for LOBPCG is with Incomplete Factorization preconditioner performes best if it converges at all. Not suited for interior eigenvalues.
- The ML preconditioner cannot be applied to the indefinite 8 -band problems directly. Folding does not work (yet) and may be expensive anyway.
- All problems are so small that the admit factorization of $A-\sigma M$. SI-Lanczos may win if more eigenvalues are desired.

Parallelization of SI-Lanczos with MUMPS solver

Solver	Criterion	2D Wire			2D Wire(big)		
		4-band	6-band	8-band	4-band	6-band	8-band
1-processor runs							
Shift-Invert	Time [sec]	5.55	10.44	17.25	25.92	49.74	101.44
Lanczos	OpVecs	68	68	68	68	68	84
(Mumps)	Fact.[sec]	5.95	21.23	54.11	51.99	181.26	421.77
2-processor runs							
Shift-Invert	Time [sec]	4.02	6.52	10.54	16.71	30.94	61.58
Lanczos	OpVecs	68	68	68	68	68	68
(Mumps)	Fact.[sec]	4.30	13.18	33.08	31.38	106.89	229.50
4-processor runs							
Shift-Invert	Time [sec]	4.04	7.04	10.57	11.58	25.23	30.32
Lanczos	OpVVcs	68	68	68	68	84	68
(Mumps)	Fact.[sec]	3.22	8.25	17.52	16.46	51.62	117.20

Parallelization of JDBSYM with IFPACK preconditioner

Solver	Criterion	2D Wire			2D Wire(big)		
		4-band	6-band	8-band	4-band	6-band	8-band
1-processor runs							
J.-Davidson	Time [sec]	10.03	17.93	43.30	66.05	148.79	395.04
JDBSYM	Outer It.	23	22	35	38	41	52
(Ifpack)	Inner It.	10.8	10.2	9.2	10.6	11.4	17.3
	Prec.[sec]	1.88	5.46	11.98	7.56	22.03	43.89
2-processor runs							
J.-Davidson	Time [sec]	10.18	21.28	29.53	62.41	125.31	402.28
JDBSYM	Outer It.	32	30	35	40	41	55
(Ifpack)	Inner It.	17.9	20.9	14.7	19.2	22.6	21.0
	Prec.[sec]	0.98	2.65	5.97	3.75	10.76	21.76
4-processor runs							
J.-Davidson	Time [sec]	7.28	14.95	31.30	38.85	113.58	156.24
JDBSYM	Outer It.	32	30	36	42	43	51
(Ifpack)	Inner It.	21.9	22.9	17.9	24.3	25.0	20.7
	Prec.[sec]	0.44	1.26	3.41	1.80	5.58	10.56

Parallelization of LOBPCG with IFPACK preconditioner

Solver	Criterion	2D Wire			2D Wire(big)		
	4-band	6-band	8-band	4-band	6-band	8-band	
1-processor runs							
LOBPCG	Time [sec]	7.51	17.01	62.87	109.63		
(Ifpack)	MatVecs	220	280	392	408		
	Prec.[sec]	1.88	5.46	11.98	7.56	22.03	43.89
2-processor runs							
LOBPCG	Time [sec]	10.20	15.59	70.12	102.64		
(Ifpack)	MatVecs	436	536	992	776		
	Prec.[sec]	0.98	2.65	5.97	3.75	10.76	21.76
4-processor runs							
LOBPCG	Time [sec]	5.21	9.94	49.76	66.94		
(Ifpack)	MatVecs	520	608	1172	900		
	Prec.[sec]	0.44	1.26	3.41	1.80	5.58	10.56

Conclusions

- SI-Lanczos is an efficient eigensolver. The time for computing the factorisation may be much larger than the actual computation of the desired eigenvalues.
- 'Iterative' eigensolvers outperform SI-Lanczos if only very few eigenpairs are sought.
- LOBPCG is more efficient than JDBSYM for spd problems.
- JD also solves indefinite problems
- The SA multilevel preconditioner is slower than ILU for the problem sizes treated here.
- The SA multilevel preconditioner does not work satisfactory, that is, it exhibits large iteration counts.
- Is spectrum folding a reasonable means to solve indefinite problems?

