The Envelope Method

for computing orthogonal eigenvectors belonging to isolated clusters of very close eigenvalues of a symmetric tridiagonal matrix

B. N. Parlett Math. Dept. and Comp. Sci. Div. of the EECS Dept. University of California, Berkeley parlett@math.berkeley.edu

> IWASEP7 June 2008

(ロ) (同) (三) (三) (三) (○) (○)

Eigenvectors - The pure mathematician's solution

Givens' method

$$\begin{pmatrix} (T - \lambda I)\mathbf{x} = \mathbf{0} \\ \beta_1 & \alpha_2 - \lambda & \beta_2 \\ \beta_2 & \alpha_3 - \lambda & \beta_3 \\ \vdots \\ \beta_{n-2} & \alpha_{n-1} - \lambda & \beta_{n-1} \\ \beta_{n-1} & \alpha_n - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \mathbf{0}$$

Assumption: $\beta_i \neq 0$, all *i*

[for the all talk]

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 1. $\beta_i \neq 0$, all $i \implies$ eigenvalues distinct Theorem 2. $\beta_i \neq 0$, all $i \implies x_1 x_n \neq 0$ Givens method: set $x_1 = 1$ Eqn. 1 determines x_2 Egn. 2 X_3 . . . Eqn. *n* – 1 " Xn [Eqn. n is redundant] Normalize, if required (could start with $x_n = 1$ and proceed in reverse)

Properties. Perfect in exact arithmetic with exact λ .

Defect 1. What if 2 eigs agree to working precision? What if 4 eigs agree too working precision?

Defect 2. Can fail even for an isolated eigenvalue (W_{21}^{-})

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Is it difficult to compute numerically orthogonal eigenvectors belonging to an isolated cluster of very close eigenvalues?

(日) (日) (日) (日) (日) (日) (日)

Ans: yes, if you compute them one by one.

Ans: no , if you compute them all together.

Envelopes

The envelope of a vector v is

$$|\mathbf{v}| = [|\mathbf{v}_1|, |\mathbf{v}_2|, \dots, |\mathbf{v}_n|]^t.$$

Let *Q* be any orthonormal basis for a subspace $S \subseteq \mathbb{R}^n$ of dimension *p*. Then its envelope \mathcal{E}_s is given by

$$\mathcal{E}_{s}(i) = \|Q(i, 1:p)\|_{2}, i = 1, 2, ..., n$$

 $\|\mathcal{E}_{s}\|_{2} = \|Q\|_{F} = \sqrt{p}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The envelopes of <u>invariant</u> subspaces belonging to isolated clusters of very close eigenvalues of tridiagonal T have hills and valleys.

The smaller is

cluster width cluster gap

the deeper are the valleys.

The number of hills \leq the number of eigenvalues in the cluster.

Distinguished sparse basis

To each hill associate a vector that is zero except for the hill (suitably extended).

Some hills may have two vectors assigned to them.

Figure: An eigenvector of a tridiagonal: most of its entries are negligible

Matrix comes from nuclear chemistry George Fann matrix, n = 966

Figure: Snapshot of Envelope (108 eigenvalues)

ヘロト ヘ回ト ヘヨト ヘヨト

æ

n = 2053, cluster size 108 Cluster determined by submatrix 1:515

How to construct a distinguished basis from the envelope

Take each hill down to the valley on each side and extend smoothly to zero to obtain the indices *first* and *last*

ж

This gives one submatrix T(first : last) per hill.

In pratice, we will not have the envelope.

We want to create the index pair (first:last) from the tridiagonal itself.

There are several methods.

We will describe a new inexpensive one later.

To create the basis vector(s)

- Use the submatrix T(first.last)
- Compute the eigenpair(s) with eigenvalue in the cluster interval.

(日) (日) (日) (日) (日) (日) (日)

Table: Selected eigenvalues of W⁺₂₁

Figure: Envelope for λ_{12} , λ_{13} from W_{21}^+

Figure: Vectors z_+ and z_- for the pair near 6 on a log scale

<ロ> (四) (四) (三) (三) (三) (三)

 $0 < x < 1, x \longrightarrow -1/\log_{10} x$, correct sign normalized

Figure: Bisectors of z_+ and z_- on a log scale

Figure: Basis eigenvectors of W_{100} for $\{\lambda_{93}, \lambda_{94}, \lambda_{95}\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Glued Wilkinson matrix

 4 copies of W_{25}^+ , glue= 0.3

 Cluster structure 3 - 2 - 3

 12.5778...

 12.74619...

 2

 12.93911...

 $G_2(W_{25}^+, 4, 0.3)$

Figure: Basis eigenvectors of W_{100} for $\{\lambda_{96}, \lambda_{97}\}$

Figure: Basis eigenvectors of W_{100} for { $\lambda_{98}, \lambda_{99}, \lambda_{100}$ }

ヘロン 人間 とくほど 人ほど 一日

Figure: $G_2(W_{201}^+, 2, \sqrt{\varepsilon})$, $\lambda_3, \lambda_4 \sim 0.25$

Figure: Eigenvectors x_{79} , x_{80} , x_{81} , x_{82} for T_{87} on a log scale

Lanczos

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Wanted:

a cheap way to approximate the submatrices

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Results complementary to Gersgorin's Circle Theorem $B \in \mathbb{C}^{n \times n}$

$$G_{j}^{row} := \left\{ \zeta : |\zeta - b_{jj}| \le \sum_{k \ne j} |b_{jk}| \right\}$$

G's Theorem. Each $\lambda \in eig(B)$ is located in at least one G-disk.

A complementary result

lf

$$\lambda \notin G_j^{row}$$
 for $j = p : q, p < q$

then

 λ 's column eigenvector decays in entries p : q.

(the direction of decay varies, sometimes from p to q, sometimes q to p) Corollary. The (local) maximal elements of an eigenvector occur only for indices *k* for which $\lambda \in G_k$.

For large *n* this corollary makes searching for a maximal entry more efficient.

E.g. If $\lambda \notin G_i$, i = 1, ..., 500, then start computing at index 501.

Are there any uses for indices *i* for which $\lambda \notin G_i$?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetric Tridiagonal Case

 $(T - \lambda I)z = \mathbf{0} \Longrightarrow L^t z = \mathbf{e}_n z_n \Longrightarrow z_j = -I_j z_{j+1}, \ j = n-1, \dots, 1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma. If $\lambda \notin G_j$ and $|I_{j-1}| < 1$ then $|I_j| < 1$.

Proof.

$$\begin{split} l_{j} &= \frac{\beta_{j}}{d_{j}} \\ d_{j} &= \alpha_{j} - \lambda - l_{j-1}\beta_{j-1} \\ |d_{j}| &\geq |\alpha_{j} - \lambda| - |l_{j-1}| |\beta_{j-1}| \\ &> |\alpha_{j} - \lambda| - |\beta_{j-1}|, \quad \text{since} |l_{j-1}| < 1 \\ |l_{j}| &< \frac{|\beta_{j}|}{|\alpha_{j} - \lambda| - |\beta_{j-1}|} \\ &< 1, \quad \text{since} \lambda \notin G_{j} \quad \Box \end{split}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Theorem. If $\lambda \notin G_j$ for j = p : q, p < q, and $|I_{p-1}| < 1$ then

$$|l_j| < 1$$
 for $j = p - 1 : q$

and

$$|z_j| < \left(\prod_{i=j}^q |I_i|\right) |z_{q+1}|$$
 for $j = p-1:q$.

Similar results for $T - \lambda I = U \mathring{D} U^t$.

<u>Heuristic:</u> replace d_i^+ and d_i^- by $\alpha_i - \lambda$ Hence

$$\prod_{i=j}^{q} |I_i| \approx \frac{\prod_{i=j}^{q} \beta_i}{\prod_{i=j}^{q} (\alpha_i - \lambda)} =: \frac{\operatorname{num}}{\operatorname{den}}$$

Test: num \leq tol.den tol = 10⁻¹² or 10⁻¹⁵

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

General Case

$$B - \lambda I = L^+ D^+ U^+$$

$$u_{kj}^{+} = \frac{b_{kj}}{d_{k}^{+}}, \qquad k = 1, 2, \dots, j - 1$$

$$d_{j}^{+} = (b_{jj} - \lambda) - \sum_{k < j} b_{jk} u_{kj}^{+}$$

$$u_{jl}^{+} = \frac{b_{jl}}{d_{j}^{+}}, \qquad l = j + 1 : n$$

$$\sum_{l>j} |u_{jl}^{+}| = \frac{1}{|d_{j}^{+}|} \sum_{l>j} |b_{jl}| \leq \frac{\sum_{l>j} |b_{jl}|}{|b_{jj} - \lambda| - (\sum_{k< j} |b_{jk}|) \max_{k < j} |u_{kj}^{+}|} \\ < \frac{\sum_{l>j} |b_{jl}|}{|b_{jj} - \lambda| - \sum_{k < j} |b_{jk}|}, \text{ if } \max_{k < j} |u_{kj}^{+}| < 1$$

< 1, if $\lambda \notin G_{j}^{row}$

Theorem. If
$$\max_{k < p} |u_{kp}^+| < 1$$
 and $\lambda \notin G_j^{row}$ for $j = p : q$ then
 $\sum_{l > m} |u_{ml}^+| < 1$ for $m = p : q$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Figure: W_{51}^+ , λ_{21}

Figure: W_{51}^+ , λ_{31}

Figure: W_{51}^+ , λ_{41}

Figure: W_{51}^+ , λ_{51}

Conclusion

For symmetric tridiagonal matrices the computation of numerically orthogonal eigenvectors for

isolated cluster of close eigenvalues

is

easy and rapid

if the cluster is treated as a whole and

almost impossible

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

if they are computed one by one.