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Eigenvectors - The pure mathematician’s solution

Givens’ method

(
T − λI

)
x = 0

α1 − λ β1
β1 α2 − λ β2

β2 α3 − λ β3
. . . . . . . . .

βn−2 αn−1 − λ βn−1
βn−1 αn − λ





x1
x2
x3
...

xn−1
xn


= 0

Assumption: βi 6= 0, all i [for the all talk]



Theorem 1. βi 6= 0, all i =⇒ eigenvalues distinct

Theorem 2. βi 6= 0, all i =⇒ x1xn 6= 0

Givens method: set x1 = 1
Eqn. 1 determines x2
Eqn. 2 ” x3

. . .

Eqn. n − 1 ” xn
[Eqn. n is redundant]
Normalize, if required〈

could start with xn = 1 and proceed in reverse
〉

Properties. Perfect in exact arithmetic with exact λ.

Defect 1. What if 2 eigs agree to working precision?
What if 4 eigs agree too working precision?

Defect 2. Can fail even for an isolated eigenvalue (W−
21)



Is it difficult to compute numerically
orthogonal eigenvectors belonging to an

isolated cluster of very close eigenvalues?

Ans: yes, if you compute them one by one.

Ans: no , if you compute them all together.



Envelopes

The envelope of a vector v is

|v | =
[
|v1|, |v2|, . . . , |vn|

]t
.

Let Q be any orthonormal basis for a subspace S ⊆ Rn of
dimension p. Then its envelope Es is given by

Es(i) = ‖Q(i ,1 : p)‖2 , i = 1,2, . . . ,n

‖Es‖2 = ‖Q‖F =
√

p.



The envelopes of invariant subspaces belonging to isolated
clusters of very close eigenvalues of tridiagonal T have hills
and valleys.

The smaller is
cluster width
cluster gap

the deeper are the valleys.

The number of hills ≤ the number of eigenvalues in the cluster.

Distinguished sparse basis

To each hill associate a vector that is zero except for the hill
(suitably extended).

Some hills may have two vectors assigned to them.



Figure: An eigenvector of a tridiagonal: most of its entries are negligible

Matrix comes from nuclear chemistry
George Fann matrix, n = 966



Figure: Snapshot of Envelope (108 eigenvalues)

n = 2053, cluster size 108
Cluster determined by submatrix 1:515



How to construct a distinguished basis from the
envelope

Take each hill down to the valley on each side and extend smoothly to
zero to obtain the indices first and last

This gives one submatrix T (first : last) per hill.



In pratice, we will not have the envelope.

We want to create the index pair (first:last)
from the tridiagonal itself.

There are several methods.

We will describe a new inexpensive one later.

To create the basis vector(s)
I Use the submatrix T (first .last)
I Compute the eigenpair(s) with eigenvalue in the cluster

interval.



Table: Selected eigenvalues of W +
21

W+
21 =



10 1
1 9 1

1 8 1

. . .
. . .

. . .
1 1 1

1 0 1
1 1 1

. . .
. . .

. . .
1 8 1

1 9 1
1 10





Figure: Envelope for λ12, λ13 from W +
21



Figure: Vectors z+ and z− for the pair near 6 on a log scale

0 < x < 1, x −→ −1/ log10 x , correct sign
normalized



Figure: Bisectors of z+ and z− on a log scale



Figure: Basis eigenvectors of W100 for {λ93, λ94, λ95}
Glued Wilkinson matrix G2(W +

25, 4, 0.3)

4 copies of W +
25, glue= 0.3

Cluster structure 3− 2− 3
12.5778 . . . 3
12.74619 . . . 2
12.93911 . . . 3



Figure: Basis eigenvectors of W100 for {λ96, λ97}



Figure: Basis eigenvectors of W100 for {λ98, λ99, λ100}



Figure: G2(W +
201, 2,

√
ε), λ3, λ4 ∼ 0.25



Figure: Eigenvectors x79, x80, x81, x82 for T87 on a log scale

Lanczos



Wanted:

a cheap way to approximate the submatrices



Results complementary to Gersgorin’s Circle Theorem
B ∈ Cn×n

Grow
j :=

ζ : |ζ − bjj | ≤
∑
k 6=j

|bjk |


G’s Theorem. Each λ ∈ eig(B) is located in at least one G-disk.

A complementary result

If
λ /∈ Grow

j for j = p : q, p < q,

then

λ’s column eigenvector decays in entries p : q.

(the direction of decay varies, sometimes from p to q,
sometimes q to p)



Corollary. The (local) maximal elements of an eigenvector
occur only for indices k for which λ ∈ Gk .

For large n this corollary makes searching for a maximal entry
more efficient.

E.g.
If λ /∈ Gi , i = 1, . . . ,500, then start computing at index 501.

Are there any uses for indices i for which λ /∈ Gi?



Symmetric Tridiagonal Case

T =



α1 β1
β1 α2 β2

β2 α3 β3
. . . . . . . . .

βn−2 αn−1 βn−1
βn−1 αn


Suppose that

T − λI = LDLt

L :=


1
l1 1

l2 1
. . . . . .

ln−1 1

 , D :=


d1

d2
. . .

dn−1
0


(T − λI)z = 0 =⇒ Ltz = enzn =⇒ zj = −ljzj+1, j = n− 1, . . . ,1



Lemma. If λ /∈ Gj and |lj−1| < 1 then |lj | < 1.

Proof. lj =
βj

dj
dj = αj − λ− lj−1βj−1

|dj | ≥ |αj − λ| − |lj−1||βj−1|
> |αj − λ| − |βj−1|, since|lj−1| < 1

|lj | <
|βj |

|αj − λ| − |βj−1|

< 1, sinceλ /∈ Gj �



Theorem. If λ /∈ Gj for j = p : q, p < q, and |lp−1| < 1 then

|lj | < 1 for j = p − 1 : q

and

|zj | <

 q∏
i=j

|li |

 |zq+1| for j = p − 1 : q.

Similar results for T − λI = UD̊U t .

Heuristic: replace d+
i and d−i by αi − λ

Hence
q∏

i=j

|li | ≈
∏q

i=j βi∏q
i=j(αi − λ)

=:
num
den

Test: num ≤ tol .den tol = 10−12 or 10−15



General Case

B − λI = L+D+U+

u+
kj =

bkj

d+
k
, k = 1,2, . . . , j − 1

d+
j = (bjj − λ)−

∑
k<j

bjku+
kj

u+
jl =

bjl

d+
j
, l = j + 1 : n

∑
l>j

|u+
jl | =

1
|d+

j |
∑
l>j

|bjl | ≤
∑

l>j |bjl |
|bjj − λ| −

(∑
k<j |bjk |

)
max
k<j
|u+

kj |

<

∑
l>j |bjl |

|bjj − λ| −
∑

k<j |bjk |
, if max

k<j
|u+

kj | < 1

< 1, if λ /∈ Grow
j



Theorem. If max
k<p
|u+

kp| < 1 and λ /∈ Grow
j for j = p : q then

∑
l>m

|u+
ml | < 1 for m = p : q.



Figure: W +
51, λ21



Figure: W +
51, λ31



Figure: W +
51, λ41



Figure: W +
51, λ51



Conclusion

For symmetric tridiagonal matrices the computation of
numerically orthogonal eigenvectors for

isolated cluster of close eigenvalues

is

easy and rapid

if the cluster is treated as a whole and

almost impossible

if they are computed one by one.


