The Envelope Method

for computing orthogonal eigenvectors belonging to isolated clusters of very close eigenvalues of a symmetric tridiagonal matrix

B. N. Parlett
Math. Dept. and Comp. Sci. Div. of the EECS Dept. University of California, Berkeley
parlett@math.berkeley.edu

IWASEP7
June 2008

Eigenvectors - The pure mathematician's solution

Givens' method

$$
(T-\lambda /) \mathbf{x}=\mathbf{0}
$$

$$
\left[\begin{array}{ccccc}
\alpha_{1}-\lambda & \beta_{1} & & & \\
\beta_{1} & \alpha_{2}-\lambda & \beta_{2} & & \\
& \beta_{2} & \alpha_{3}-\lambda & \beta_{3} & \\
& \ddots & \ddots & \ddots & \\
& & \beta_{n-2} & \begin{array}{c}
\alpha_{n-1}-\lambda \\
\beta_{n-1}
\end{array} & \beta_{n-1} \\
& & & \alpha_{n}-\lambda
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\mathbf{0}
$$

Assumption: $\beta_{i} \neq 0$, all i
[for the all talk]

Theorem 1. $\beta_{i} \neq 0$, all $i \Longrightarrow$ eigenvalues distinct
Theorem 2. $\beta_{i} \neq 0$, all $i \Longrightarrow x_{1} x_{n} \neq 0$
Givens method: set $x_{1}=1$

Eqn. 1	determines
Eqn. 2	x_{2}
x_{3}	

$$
\begin{aligned}
& \text { Eqn. } n-1 \quad " \quad x_{n} \\
& \text { [Eqn. } n \text { is redundant] } \\
& \text { Normalize, if required } \\
& \left\langle\text { could start with } x_{n}=1 \text { and proceed in reverse }\right\rangle
\end{aligned}
$$

Properties. Perfect in exact arithmetic with exact λ.
Defect 1 . What if 2 eigs agree to working precision?
What if 4 eigs agree too working precision?
Defect 2. Can fail even for an isolated eigenvalue (W_{21}^{-})

Is it difficult to compute numerically orthogonal eigenvectors belonging to an isolated cluster of very close eigenvalues?

Ans: yes, if you compute them one by one.

Ans: no , if you compute them all together.

Envelopes

The envelope of a vector v is

$$
|v|=\left[\left|v_{1}\right|,\left|v_{2}\right|, \ldots,\left|v_{n}\right|\right]^{t}
$$

Let Q be any orthonormal basis for a subspace $S \subseteq \mathbb{R}^{n}$ of dimension p. Then its envelope \mathcal{E}_{s} is given by

$$
\begin{aligned}
& \mathcal{E}_{s}(i)=\|Q(i, 1: p)\|_{2}, \quad i=1,2, \ldots, n \\
& \left\|\mathcal{E}_{s}\right\|_{2}=\|Q\|_{F}=\sqrt{p}
\end{aligned}
$$

The envelopes of invariant subspaces belonging to isolated clusters of very close eigenvalues of tridiagonal T have hills and valleys.

The smaller is

cluster width

cluster gap
the deeper are the valleys.
The number of hills \leq the number of eigenvalues in the cluster.

Distinguished sparse basis

To each hill associate a vector that is zero except for the hill (suitably extended).
Some hills may have two vectors assigned to them.

Figure: An eigenvector of a tridiagonal: most of its entries are negligible

Matrix comes from nuclear chemistry
George Fann matrix, $n=966$

Figure: Snapshot of Envelope (108 eigenvalues)
$n=2053$, cluster size 108
Cluster determined by submatrix 1:515

How to construct a distinguished basis from the envelope

Take each hill down to the valley on each side and extend smoothly to zero to obtain the indices first and last

This gives one submatrix T (first: last) per hill.

In pratice, we will not have the envelope.
We want to create the index pair (first:last) from the tridiagonal itself.

There are several methods.
We will describe a new inexpensive one later.

To create the basis vector(s)

- Use the submatrix T (first.last)
- Compute the eigenpair(s) with eigenvalue in the cluster interval.

λ_{21}	$10.746194182903393 .$.
λ_{20}	$10.746194182903322 .$.
\cdot	\cdot
\cdot	\cdot
λ_{13}	6.0002340.
λ_{12}	$6.0002175 .$.
\cdot	\cdot
.	\cdot
λ_{3}	$0.9475 .$.
λ_{2}	$0.2538 .$.
λ_{1}	$-1.1254 .$.

Table: Selected eigenvalues of W_{21}^{+}

$$
W_{21}^{+}=\left[\begin{array}{ccccccccccc}
10 & 1 & & & & & & & & & \\
1 & 9 & 1 & & & & & & & & \\
& 1 & 8 & 1 & & & & & & & \\
& & \ddots & \ddots & \ddots & & & & & & \\
& & & 1 & 1 & 1 & & & & & \\
& & & & 1 & 0 & 1 & & & & \\
& & & & & 1 & 1 & 1 & & & \\
& & & & & & \ddots & \ddots & \ddots & & \\
& & & & & & & 1 & 8 & 1 & \\
& & & & & & & & 1 & 9 & 1 \\
& & & & & 10
\end{array}\right]
$$

Figure: Envelope for $\lambda_{12}, \lambda_{13}$ from W_{21}^{+}

Figure: Vectors z_{+}and z_{-}for the pair near 6 on a log scale
$0<x<1, \quad x \longrightarrow-1 / \log _{10} x, \quad$ correct sign normalized

Figure: Bisectors of z_{+}and z_{-}on a log scale

Figure: Basis eigenvectors of W_{100} for $\left\{\lambda_{93}, \lambda_{94}, \lambda_{95}\right\}$
Glued Wilkinson matrix

$$
G_{2}\left(W_{25}^{+}, 4,0.3\right)
$$

4 copies of W_{25}^{+}, glue $=0.3$
Cluster structure 3-2-3
12.5778... 3
12.74619 .

2
$12.93911 \ldots 3$

Figure: Basis eigenvectors of W_{100} for $\left\{\lambda_{96}, \lambda_{97}\right\}$

Figure: Basis eigenvectors of W_{100} for $\left\{\lambda_{98}, \lambda_{99}, \lambda_{100}\right\}$

Figure: $G_{2}\left(W_{201}^{+}, 2, \sqrt{\varepsilon}\right), \quad \lambda_{3}, \lambda_{4} \sim 0.25$

Figure: Eigenvectors $x_{79}, x_{80}, x_{81}, x_{82}$ for T_{87} on a log scale

Wanted:
a cheap way to approximate the submatrices

Results complementary to Gersgorin's Circle Theorem

$B \in \mathbb{C}^{n \times n}$

$$
G_{j}^{\text {row }}:=\left\{\zeta:\left|\zeta-b_{j j}\right| \leq \sum_{k \neq j}\left|b_{j k}\right|\right\}
$$

G's Theorem. Each $\lambda \in \operatorname{eig}(B)$ is located in at least one G-disk.

A complementary result

If

$$
\lambda \notin G_{j}^{\text {row }} \text { for } j=p: q, \quad p<q,
$$

then
λ 's column eigenvector decays in entries $p: q$.
(the direction of decay varies, sometimes from p to q, sometimes q to p)

Corollary. The (local) maximal elements of an eigenvector occur only for indices k for which $\lambda \in G_{k}$.

For large n this corollary makes searching for a maximal entry more efficient.
E.g.

If $\lambda \notin G_{i}, i=1, \ldots, 500$, then start computing at index 501.

Are there any uses for indices i for which $\lambda \notin G_{i}$?

Symmetric Tridiagonal Case

$$
T=\left[\begin{array}{cccccc}
\alpha_{1} & \beta_{1} & & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \beta_{n-2} & \alpha_{n-1} & \beta_{n-1} \\
& & & & \beta_{n-1} & \alpha_{n}
\end{array}\right]
$$

Suppose that

$$
T-\lambda I=L D L^{t}
$$

$L:=\left[\begin{array}{ccccc}1 & & & & \\ l_{1} & 1 & & & \\ & l_{2} & 1 & & \\ & & \ddots & \ddots & \\ & & & I_{n-1} & 1\end{array}\right], \quad D:=\left[\begin{array}{lllll}d_{1} & & & & \\ & d_{2} & & & \\ & & \ddots & & \\ & & & d_{n-1} & \\ & & & & 0\end{array}\right]$
$(T-\lambda I) z=\mathbf{0} \Longrightarrow L^{t} z=\mathbf{e}_{n} z_{n} \Longrightarrow z_{j}=-l_{j} z_{j+1}, j=n-1, \ldots, 1$

Lemma. If $\lambda \notin G_{j}$ and $\left|I_{j-1}\right|<1$ then $\left|\ell_{j}\right|<1$.
Proof. $\quad \iota_{j}=\frac{\beta_{j}}{d_{j}}$

$$
d_{j}=\alpha_{j}-\lambda-l_{j-1} \beta_{j-1}
$$

$$
\begin{aligned}
\left|d_{j}\right| & \geq\left|\alpha_{j}-\lambda\right|-\left|I_{j-1}\right|\left|\beta_{j-1}\right| \\
& >\left|\alpha_{j}-\lambda\right|-\left|\beta_{j-1}\right|, \quad \text { since }\left|I_{j-1}\right|<1
\end{aligned}
$$

$$
\left|I_{j}\right|<\frac{\left|\beta_{j}\right|}{\left|\alpha_{j}-\lambda\right|-\left|\beta_{j-1}\right|}
$$

$$
<1, \quad \operatorname{since} \lambda \notin G_{j} \square
$$

Theorem. If $\lambda \notin G_{j}$ for $j=p: q, p<q$, and $\left|I_{p-1}\right|<1$ then

$$
\left|f_{j}\right|<1 \quad \text { for } j=p-1: q
$$

and

$$
\left|z_{j}\right|<\left(\prod_{i=j}^{q}\left|\ell_{i}\right|\right)\left|z_{q+1}\right| \quad \text { for } j=p-1: q
$$

Similar results for $T-\lambda I=U D U^{t}$.
Heuristic: replace d_{i}^{+}and d_{i}^{-}by $\alpha_{i}-\lambda$ Hence

$$
\prod_{i=j}^{q}\left|l_{i}\right| \approx \frac{\prod_{i=j}^{q} \beta_{i}}{\prod_{i=j}^{q}\left(\alpha_{i}-\lambda\right)}=: \frac{\text { num }}{\operatorname{den}}
$$

Test: num \leq tol.den

$$
\text { tol }=10^{-12} \text { or } 10^{-15}
$$

General Case

$$
\begin{gathered}
B-\lambda I=L^{+} D^{+} U^{+} \\
u_{k j}^{+}=\frac{b_{k j}}{d_{k}^{+}}, \quad k=1,2, \ldots, j-1 \\
d_{j}^{+}=\left(b_{j j}-\lambda\right)-\sum_{k<j} b_{j k} u_{k j}^{+} \\
u_{j l}^{+}=\frac{b_{j l}}{d_{j}^{+}}, \quad I=j+1: n \\
\sum_{l>j}\left|u_{j l}^{+}\right|=\frac{1}{\left|d_{j}^{+}\right|} \sum_{l>j}\left|b_{j l}\right|
\end{gathered} \begin{gathered}
\leq \frac{\sum_{l>j}\left|b_{j l}\right|}{\left|b_{j j}-\lambda\right|-\left(\sum_{k<j}\left|b_{j k}\right|\right) \max _{k<j}\left|u_{k j}^{+}\right|} \\
<\frac{\sum_{l>j}\left|b_{j l}\right|}{\left|b_{j j}-\lambda\right|-\sum_{k<j}\left|b_{j k}\right|}, \text { if } \max _{k<j}\left|u_{k j}^{+}\right|<1 \\
<1, \text { if } \lambda \notin G_{j}^{r o w}
\end{gathered}
$$

Theorem. If $\max _{k<p}\left|u_{k p}^{+}\right|<1$ and $\lambda \notin G_{j}^{\text {row }}$ for $j=p: q$ then

$$
\sum_{l>m}\left|u_{m l}^{+}\right|<1 \text { for } m=p: q .
$$

Figure: $W_{51}^{+}, \quad \lambda_{21}$

True vector vs. heuristic, $n=51, \lambda=15$

Figure: $W_{51}^{+}, \quad \lambda_{31}$

Figure: $W_{51}^{+}, \quad \lambda_{41}$

True vector vs. heuristic, $n=51, \lambda=25.7462$

Figure: $W_{51}^{+}, \quad \lambda_{51}$

Conclusion

For symmetric tridiagonal matrices the computation of numerically orthogonal eigenvectors for

> isolated cluster of close eigenvalues
is
easy and rapid
if the cluster is treated as a whole and

> almost impossible
if they are computed one by one.

