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Motivation

Drma£ and Veseli¢ (2006, see LAWN #169, 170) derivedan SVD routine whih is:as fast or faster than the QR method from(D,S)GESVD andhighly aurate.Key ingredients of the algorithm are:QR fatorization with pivoting,QR fatorization,one-sided Jaobi method with tiling-based pivoting.
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Tiling

Example: hoie of pivoting positions for n = 8 andblok-size nb = 3:
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Ideas

1. Compare Givens QR fatorisation with tiling and thestandard BLAS 3 Householder implementation,2. Improve the Demmel-Veseli¢ implementation of thehighly aurate algorithm for positive de�niteeigenvalue problem (make it faster) �fast Cholesky with pivoting + one sided Jaobi withtiling.
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Memory hierarchy

Size
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Speed & Price

Data tra� between RAM and Cahe in done by movingonseutive bloks of memory (pages).

Conlusion: use data in ahe as muh as posible
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BLAS

Basi Linear Algebra Subroutines

level operands example data �opBLAS 1 vetor, vetor ddot, daxpy O(n) O(n)BLAS 2 matrix, vetor αAx + βy O(n2) O(n2)BLAS 3 matrix, matrix αAB + βC O(n2) O(n3)

ddot: d = xTy =
∑

i xiyi

daxpy: y ← α x + y (yi ← α xi + yi)Conlusion: use matrix operations as muh as possible(or ahieve similar e�et with tiling)
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It matters

Intel Xeon (em64t) has ∼5,000 M�ops peak with Intel MathKernel Library (mkl). For ddot and daxpy we obtain
a(:, i) · a(:, i + 1) a(:, i) · a(i, :) a(i, :) · a(i + 1, :)

-O4 502 166 173
mkl 573 165 173

daxpy_1 daxpy_1n

-O4 312 136

mkl 312 135Conlusion: approah data olumn-wise
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It matters a lot

m n M�ops (-O4) M�ops (mkl)4 4 71 12532 16 636 161232 32 540 285664 32 781 357164 64 729 4347128 4 442 1190128 64 854 4542128 128 818 4340Matrix multipliation Amn ·Bnn with DGEMM
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QR factorization

A = QR =

[

R0

0

]

, Q orthogonal, R upper triangular

Example for m = 5 and n = 3:
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Implementation with Householder
reflectors

Hx =

(

I − 2
vvT

vT v

)

x = x− v
2(vT x)

vT v
.This requires O(6n) �op. Similarly,

β = −
2

vT v
, w = βAT v HA = A + vwT ,whih requires O(n2) �op. Operation ount for R is

n
∑

i=1

4 i2 ≈
4

3
n3.

The same holds for Q if we ompute (otherwise it is O(2n3))

Qn, Qn−1 ·Qn, Qn−2 · (Qn−1 ·Qn), · · ·
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Block algorithm

Good: we are aessing data olumn-wiseBad: we are not using BLAS 3.Solution: use blok transformations:Dietrih (1976): Hk = I − 2Vk(V
T
k Vk)

−1V T
k .Bishof and Van Loan (1986): WY representation:

Hk = I +WkY
T
k , A ← QT

k A = A+Yk(W
T
k A)The operation ount inreases by fator (1 + k/n).

DGEQRF takes 0.4 seonds →
((4/3) · 10003)/0.4 = 3, 333 Mflops
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Givens rotation
[

c s

−s c

] [

x

y

]

=

[

r

0

]

r = sign(y)
√

x2 + y2, c =
x

r
, s =

y

rComputation of c, s and r is implemented in srotg and

drotg.Rotation is implemented in srot and drot.
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QR with Givens rotations
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Operation ount for R is
n

∑

i=1

6 i (i− 1) ≈ 2n3 flop
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Implementation

Bad: we are aessing data row-wiseBad: we are not using BLAS 3Bad: operation ount is too large (2n3 v.s. 4n3/3)

Solution: work on the transposed matrix � ompute

Solution: use tiling - REUSE DATA IN CACHESolution: use fast self-saling rotations (Anda and Park)- BUT NOT ON QUAD CORE
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Fast rotations

Standard:

[

1 β

−α 1

] [

δ

δ

]

,

[

β 1

−1 α

] [

δ

δ

]

,

δs are aumulated in the vetor d.Self-saling: for example, for θ ≤ π/4 and di ≥ dj

[

1 0

−α 1

] [

1 β

0 1

] [

1/δ

δ

]

There exist three more variants. Operation ount is now

4n3/3 �op.
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Experiments Pentium

DL DG DGT DGTF DLP DGP SL SG SGT SGTF SLP SGP
0

1

2

3

4

5

6

7

8

9

10

tim
e 

(s
)

QRTEST with ifort (Pentium) for n=1000

Q,R rand
Q,R tril
R rand
R tril
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Experiments Pentium (mkl)

DL DG DGT DGTF DLP DGP SL SG SGT SGTP SLP SGP
0

1

2

3

4

5
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7

8

9
QRTEST with ifort and mkl (Pentium) for n=1000

tim
e 

(s
)

Q,R rand
Q,R tril
R rand
R tril
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Experiments Xeon

DL DG DGT DGTF DLP DGP SL SG SGT SGTF SLP SGP
0
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QRTEST with ifort (Xeon) for n=1000

Q,R rand
Q,R tril
R rand
R tril
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Experiments Xeon (mkl)
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Experiments Xeon Quad Core (mkl)

Parallelism is needed!
DL DG DGT DGTF  DGT+P SL SG SGT SGTF  SGT+P

0

0.5

1

1.5

2

2.5

tim
e 

(s
)

QRTEST, mkl, Quad Core, threads=4, schedule(runtime), n=1000u

 

 
Q,R, rand
Q, R, tril
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Parallelism
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Should be ideal, but it is not - there is not enoughontrol of memory aess in OpenMP implementation.
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CONCLUSION

Results depend on arhiteture and ompiler.

Quad Core proessors are new issue. Nvidia - unknown!

Givens rotations are:omparable in speed with the Householder re�etors,simpler to implement.

Plane rotations with tilings and parallel strategy shouldbe ondsidered for other problems.
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Eigenvalue computations

Ax = λx, A = AT → QTAQ = Λ, QTQ = IQR method:tridiagonalization with Householder re�etorsiterate { T = QR (fatorize), T = RQ (multiply) }Jaobi method (1845.): iterate
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High relative accuracy

QR omputes:

|δλ| ≤ ε|λ|κ(A).For A positive de�nite, Jaobi omputes:
|δλ| ≤ ε λ κ(AS).

( κ(A) = ‖A‖ ‖A−1‖, AS = DAD, D = diag(A)−1/2.)Bad: Jaobi is several times slower than QR.Solution: two-step algorithm (Demmel & Veseli¢, 1989):Cholesky fatorization A = LLTone-sided Jaobi on L
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One-sided Jacobi

Diagonalize LTL by applying only transformations on L,
Lk+1 = LkUk.Here

c and s are omputed from the 2× 2 submatrix of

(LUk)
T (LUk) (1 salar produt).

Lk onverges to a matrix with orthogonal olumns.Let U =
∏

Uk. Then UTLTUL = Λ.Let Q = LUΛ−1/2. Then QTAQ = Λ.

Bad: two-step algorithm is still slower than QR.
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Implementation

Use Cholesky with pivoting - this has a diagonalizinge�et and makes Jaobi part faster (Demmel &Veseli¢).We use blok & pivoting version by Luas (2004) -very fast!One-sided Jaobi aesses data olumn-wise.We add tiling (Drma£ & Veseli¢) and fast rotations.

c and s are omputed in double preision - this helpsspeed and auray.
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Experiments

Pentium Pentium mkl Xeon Xeon mkl Quad Core mkl
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tim
e(

s)
EVD with ifort and mkl for n=1000

 

 
Dble Lapack
Sngl Lapack
Two step I
Two step II

Two-step II: 1-4 threads � 2.00s, 1.84s, 1.73s, 1.62s,respetively � there is plae for improvement!
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