
Fast computation of QR factorization
and eigenvalue decomposition via

one-sided plane rotations
Ivan Slapnǐcar

University of Split, Croatia

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

Joint work with Krešimir Veselíca, Fernuniversität Hagen, and

Zlatko Drmǎc, University of Zagreb

aI. Slapnǐcar and K. Veselíc acknowledge the grant from the Croatian Science Foundation

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 1/27

Motivation

Drma£ and Veseli¢ (2006, see LAWN #169, 170) derivedan SVD routine whih is:as fast or faster than the QR method from(D,S)GESVD andhighly aurate.Key ingredients of the algorithm are:QR fatorization with pivoting,QR fatorization,one-sided Jaobi method with tiling-based pivoting.

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 2/27

Tiling

Example: hoie of pivoting positions for n = 8 andblok-size nb = 3:

• 1 2 4 5 6 13 14

• 3 7 8 9 15 16

• 10 11 12 17 18

• 19 20 22 23

• 21 24 25

• 26 27

• 28

•

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 3/27

Ideas

1. Compare Givens QR fatorisation with tiling and thestandard BLAS 3 Householder implementation,2. Improve the Demmel-Veseli¢ implementation of thehighly aurate algorithm for positive de�niteeigenvalue problem (make it faster) �fast Cholesky with pivoting + one sided Jaobi withtiling.
IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 4/27

Memory hierarchy

Size

RAM

Cache

Registers

Hard Drive

Cache

Hard Drive

RAM

Registers

Speed & Price

Data tra� between RAM and Cahe in done by movingonseutive bloks of memory (pages).

Conlusion: use data in ahe as muh as posible

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 5/27

BLAS

Basi Linear Algebra Subroutines

level operands example data �opBLAS 1 vetor, vetor ddot, daxpy O(n) O(n)BLAS 2 matrix, vetor αAx + βy O(n2) O(n2)BLAS 3 matrix, matrix αAB + βC O(n2) O(n3)

ddot: d = xTy =
∑

i xiyi

daxpy: y ← α x + y (yi ← α xi + yi)Conlusion: use matrix operations as muh as possible(or ahieve similar e�et with tiling)

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 6/27

It matters

Intel Xeon (em64t) has ∼5,000 M�ops peak with Intel MathKernel Library (mkl). For ddot and daxpy we obtain
a(:, i) · a(:, i + 1) a(:, i) · a(i, :) a(i, :) · a(i + 1, :)

-O4 502 166 173
mkl 573 165 173

daxpy_1 daxpy_1n

-O4 312 136

mkl 312 135Conlusion: approah data olumn-wise

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 7/27

It matters a lot

m n M�ops (-O4) M�ops (mkl)4 4 71 12532 16 636 161232 32 540 285664 32 781 357164 64 729 4347128 4 442 1190128 64 854 4542128 128 818 4340Matrix multipliation Amn ·Bnn with DGEMM
IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 8/27

QR factorization

A = QR =

[

R0

0

]

, Q orthogonal, R upper triangular

Example for m = 5 and n = 3:

× × ×

× × ×

× × ×

× × ×

× × ×

=

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × ×

0 × ×

0 0 ×

0 0 0

0 0 0

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 9/27

Implementation with Householder
reflectors

Hx =

(

I − 2
vvT

vT v

)

x = x− v
2(vT x)

vT v
.This requires O(6n) �op. Similarly,

β = −
2

vT v
, w = βAT v HA = A + vwT ,whih requires O(n2) �op. Operation ount for R is

n
∑

i=1

4 i2 ≈
4

3
n3.

The same holds for Q if we ompute (otherwise it is O(2n3))

Qn, Qn−1 ·Qn, Qn−2 · (Qn−1 ·Qn), · · ·

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 10/27

Block algorithm

Good: we are aessing data olumn-wiseBad: we are not using BLAS 3.Solution: use blok transformations:Dietrih (1976): Hk = I − 2Vk(V
T
k Vk)

−1V T
k .Bishof and Van Loan (1986): WY representation:

Hk = I +WkY
T
k , A ← QT

k A = A+Yk(W
T
k A)The operation ount inreases by fator (1 + k/n).

DGEQRF takes 0.4 seonds →
((4/3) · 10003)/0.4 = 3, 333 Mflops

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 11/27

Givens rotation
[

c s

−s c

] [

x

y

]

=

[

r

0

]

r = sign(y)
√

x2 + y2, c =
x

r
, s =

y

rComputation of c, s and r is implemented in srotg and

drotg.Rotation is implemented in srot and drot.

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 12/27

QR with Givens rotations

→

→

• • •

0 • •

× × ×

× × ×

× × ×

,

→

→

⊕ ⊕ ⊕

0 × ×

0 ⊕ ⊕

× × ×

× × ×

,

→

→

⊙ ⊙ ⊙

0 × ×

0 × ×

0 ⊙ ⊙

× × ×

, · · ·

Operation ount for R is
n

∑

i=1

6 i (i− 1) ≈ 2n3 flop

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 13/27

Implementation

Bad: we are aessing data row-wiseBad: we are not using BLAS 3Bad: operation ount is too large (2n3 v.s. 4n3/3)

Solution: work on the transposed matrix � ompute

Solution: use tiling - REUSE DATA IN CACHESolution: use fast self-saling rotations (Anda and Park)- BUT NOT ON QUAD CORE

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 14/27

Implementation

Bad: we are aessing data row-wiseBad: we are not using BLAS 3Bad: operation ount is too large (2n3 v.s. 4n3/3)

Solution: work on the transposed matrix � ompute

AT = RTQT

Solution: use tiling - REUSE DATA IN CACHESolution: use fast self-saling rotations (Anda and Park)- BUT NOT ON QUAD CORE

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 14/27

Implementation

Bad: we are aessing data row-wiseBad: we are not using BLAS 3Bad: operation ount is too large (2n3 v.s. 4n3/3)

Solution: work on the transposed matrix � ompute

AT = RTQT

Solution: use tiling - REUSE DATA IN CACHE

Solution: use fast self-saling rotations (Anda and Park)- BUT NOT ON QUAD CORE

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 14/27

Implementation

Bad: we are aessing data row-wiseBad: we are not using BLAS 3Bad: operation ount is too large (2n3 v.s. 4n3/3)

Solution: work on the transposed matrix � ompute

AT = RTQT

Solution: use tiling - REUSE DATA IN CACHESolution: use fast self-saling rotations (Anda and Park)- BUT NOT ON QUAD CORE

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 14/27

Fast rotations

Standard:

[

1 β

−α 1

] [

δ

δ

]

,

[

β 1

−1 α

] [

δ

δ

]

,

δs are aumulated in the vetor d.Self-saling: for example, for θ ≤ π/4 and di ≥ dj

[

1 0

−α 1

] [

1 β

0 1

] [

1/δ

δ

]

There exist three more variants. Operation ount is now

4n3/3 �op.
IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 15/27

Experiments Pentium

DL DG DGT DGTF DLP DGP SL SG SGT SGTF SLP SGP
0

1

2

3

4

5

6

7

8

9

10

tim
e

(s
)

QRTEST with ifort (Pentium) for n=1000

Q,R rand
Q,R tril
R rand
R tril

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 16/27

Experiments Pentium (mkl)

DL DG DGT DGTF DLP DGP SL SG SGT SGTP SLP SGP
0

1

2

3

4

5

6

7

8

9
QRTEST with ifort and mkl (Pentium) for n=1000

tim
e

(s
)

Q,R rand
Q,R tril
R rand
R tril

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 17/27

Experiments Xeon

DL DG DGT DGTF DLP DGP SL SG SGT SGTF SLP SGP
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tim
e

(s
)

QRTEST with ifort (Xeon) for n=1000

Q,R rand
Q,R tril
R rand
R tril

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 18/27

Experiments Xeon (mkl)

DL DG DGT DGTF DLP DGP SL SG SGT SGTF SLP SGP
0

0.5

1

1.5

2

2.5

3

3.5

4

tim
e

(s
)

QRTEST with ifort and mkl (Xeon) for n=1000

Q,R rand
Q,R tril
R rand
R tril

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 19/27

Experiments Xeon Quad Core (mkl)

Parallelism is needed!
DL DG DGT DGTF DGT+P SL SG SGT SGTF SGT+P

0

0.5

1

1.5

2

2.5

tim
e

(s
)

QRTEST, mkl, Quad Core, threads=4, schedule(runtime), n=1000u

Q,R, rand
Q, R, tril

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 20/27

Parallelism

× × × × × × × × ×

× × 0 × 0 × 0 × 0

× × 0 0 0 × 0 0 0

× × 0 0 0 0 0 0 0

× 0 0 0 0 0 0 0 0

Should be ideal, but it is not - there is not enoughontrol of memory aess in OpenMP implementation.

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 21/27

CONCLUSION

Results depend on arhiteture and ompiler.

Quad Core proessors are new issue. Nvidia - unknown!

Givens rotations are:omparable in speed with the Householder re�etors,simpler to implement.

Plane rotations with tilings and parallel strategy shouldbe ondsidered for other problems.

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 22/27

Eigenvalue computations

Ax = λx, A = AT → QTAQ = Λ, QTQ = IQR method:tridiagonalization with Householder re�etorsiterate { T = QR (fatorize), T = RQ (multiply) }Jaobi method (1845.): iterate
2

6

6

6

6

6

4

c −s 0 0

s c 0 0

0 0 1 0

0 0 0 1

3

7

7

7

7

7

5

2

6

6

6

6

6

4

a11 a12 × ×

a12 a22 × ×

× × × ×

× × × ×

3

7

7

7

7

7

5

2

6

6

6

6

6

4

c s 0 0

−s c 0 0

0 0 1 0

0 0 0 1

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

ā11 0 • •

0 ā22 • •

• • × ×

• • × ×

3

7

7

7

7

7

5

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 23/27

High relative accuracy

QR omputes:

|δλ| ≤ ε|λ|κ(A).For A positive de�nite, Jaobi omputes:
|δλ| ≤ ε λ κ(AS).

(κ(A) = ‖A‖ ‖A−1‖, AS = DAD, D = diag(A)−1/2.)Bad: Jaobi is several times slower than QR.Solution: two-step algorithm (Demmel & Veseli¢, 1989):Cholesky fatorization A = LLTone-sided Jaobi on L

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 24/27

One-sided Jacobi

Diagonalize LTL by applying only transformations on L,
Lk+1 = LkUk.Here

c and s are omputed from the 2× 2 submatrix of

(LUk)
T (LUk) (1 salar produt).

Lk onverges to a matrix with orthogonal olumns.Let U =
∏

Uk. Then UTLTUL = Λ.Let Q = LUΛ−1/2. Then QTAQ = Λ.

Bad: two-step algorithm is still slower than QR.

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 25/27

One-sided Jacobi

Diagonalize LTL by applying only transformations on L,
Lk+1 = LkUk.Here

c and s are omputed from the 2× 2 submatrix of

(LUk)
T (LUk) (1 salar produt).

Lk onverges to a matrix with orthogonal olumns.Let U =
∏

Uk. Then UTLTUL = Λ.Let Q = LUΛ−1/2. Then QTAQ = Λ.Bad: two-step algorithm is still slower than QR.

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 25/27

Implementation

Use Cholesky with pivoting - this has a diagonalizinge�et and makes Jaobi part faster (Demmel &Veseli¢).We use blok & pivoting version by Luas (2004) -very fast!One-sided Jaobi aesses data olumn-wise.We add tiling (Drma£ & Veseli¢) and fast rotations.

c and s are omputed in double preision - this helpsspeed and auray.
IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 26/27

Experiments

Pentium Pentium mkl Xeon Xeon mkl Quad Core mkl
0

2

4

6

8

10

12

14

16

18

tim
e(

s)
EVD with ifort and mkl for n=1000

Dble Lapack
Sngl Lapack
Two step I
Two step II

Two-step II: 1-4 threads � 2.00s, 1.84s, 1.73s, 1.62s,respetively � there is plae for improvement!

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 27/27

	Motivation
	Tiling
	Ideas
	Memory hierarchy
	BLAS
	It matters
	It matters a lot
	QR factorization
	Implementation with Householder reflectors
	Block algorithm
	Givens rotation
	QR with Givens rotations
	Implementation
	Implementation
	Implementation
	Implementation

	Fast rotations
	Experiments Pentium
	Experiments Pentium (mkl)
	Experiments Xeon
	Experiments Xeon (mkl)
	Experiments Xeon Quad Core (mkl)
	Parallelism
	CONCLUSION
	Eigenvalue computations
	High relative accuracy
	One-sided Jacobi
	One-sided Jacobi

	Implementation
	Experiments

