Fast computation of QR factorization and eigenvalue decomposition via one-sided plane rotations
 Ivan Slapničar

University of Split, Croatia
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture
Joint work with Krešimir Veselić ${ }^{a}$, Fernuniversität Hagen, and
Zlatko Drmač, University of Zagreb
${ }^{a}$ I. Slapničar and K. Veselić acknowledge the grant from the Croatian Science Foundation

Motivation

Drmač and Veselić (2006, see LAWN \#169, 170) derived an SVD routine which is:

- as fast or faster than the QR method from (D,S)GESVD and
- highly accurate.

Key ingredients of the algorithm are:

- QR factorization with pivoting,
- QR factorization,
- one-sided Jacobi method with tiling-based pivoting.

Tiling

Example: choice of pivoting positions for $n=8$ and block-size $n b=3$:

$$
\left[\begin{array}{ccccccc}
\bullet & 2 & 4 & 5 & 6 & 13 & 14 \\
\bullet & 3 & 7 & 8 & 9 & 15 & 16 \\
& \bullet & 10 & 11 & 12 & 17 & 18 \\
& & \bullet & 19 & 20 & 22 & 23 \\
& & & \bullet & 21 & 24 & 25 \\
& & & & & \bullet & 26 \\
& & & & & & \bullet \\
& & & & & & \\
& & & & & \bullet
\end{array}\right]
$$

Ideas

1. Compare Givens QR factorisation with tiling and the standard BLAS 3 Householder implementation,
2. Improve the Demmel-Veselić implementation of the highly accurate algorithm for positive definite eigenvalue problem (make it faster) fast Cholesky with pivoting + one sided Jacobi with tiling.

Memory hierarchy

Speed \& Price

Data traffic between RAM and Cache in done by moving consecutive blocks of memory (pages).

Conclusion: use data in cache as much as posible

Basic Linear Algebra Subroutines

level	operands	example	data	flop
BLAS 1	vector, vector	ddot, daxpy	$O(n)$	$O(n)$
BLAS 2	matrix, vector	$\alpha A x+\beta y$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
BLAS 3	matrix, matrix	$\alpha A B+\beta C$	$O\left(n^{2}\right)$	$O\left(n^{3}\right)$

ddot: $d=x^{T} y=\sum_{i} x_{i} y_{i}$
daxpy: $y \leftarrow \alpha x+y \quad\left(y_{i} \leftarrow \alpha x_{i}+y_{i}\right)$
Conclusion: use matrix operations as much as possible (or achieve similar effect with tiling)

It matters

Intel Xeon (em64t) has $\sim 5,000$ Mflops peak with Intel Math Kernel Library (mkl). For ddot and daxpy we obtain

	$a(:, i) \cdot a(:, i+1)$	$a(:, i) \cdot a(i,:)$	$a(i,:) \cdot a(i+1,:)$
- O4	502	166	173
mkl	573	165	173

	daxpy_1	daxpy_1n
-04	312	136
mkl	312	135

Conclusion: approach data column-wise

It matters a lot

m	n	Mflops (-O4)	Mflops (mkl)
4	4	71	125
32	16	636	1612
32	32	540	2856
64	32	781	3571
64	64	729	4347
128	4	442	1190
128	64	854	4542
128	128	818	4340

Matrix multiplication $A_{m n} \cdot B_{n n}$ with DGEMM

QR factorization

$A=Q R=\left[\begin{array}{c}R_{0} \\ 0\end{array}\right]$,
Q orthogonal, $\quad R$ upper triangular
Example for $m=5$ and $n=3$:

$$
\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times
\end{array}\right]=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Implementation with Householder reflectors

$$
H x=\left(I-2 \frac{v v^{T}}{v^{T} v}\right) x=x-v \frac{2\left(v^{T} x\right)}{v^{T} v}
$$

This requires $O(6 n)$ flop. Similarly,

$$
\beta=-\frac{2}{v^{T} v}, \quad w=\beta A^{T} v \quad H A=A+v w^{T},
$$

which requires $O\left(n^{2}\right)$ flop. Operation count for R is

$$
\sum_{i=1}^{n} 4 i^{2} \approx \frac{4}{3} n^{3}
$$

The same holds for Q if we compute (otherwise it is $O\left(2 n^{3}\right)$)

$$
Q_{n}, \quad Q_{n-1} \cdot Q_{n}, \quad Q_{n-2} \cdot\left(Q_{n-1} \cdot Q_{n}\right), \cdots
$$

Block algorithm

Good: we are accessing data column-wise
Bad: we are not using BLAS 3.
Solution: use block transformations:

- Dietrich (1976): $H_{k}=I-2 V_{k}\left(V_{k}^{T} V_{k}\right)^{-1} V_{k}^{T}$.
- Bischof and Van Loan (1986): WY representation:

$$
H_{k}=I+W_{k} Y_{k}^{T}, \quad A \leftarrow Q_{k}^{T} A=A+Y_{k}\left(W_{k}^{T} A\right)
$$

The operation count increases by factor $(1+k / n)$. DGEQRF takes 0.4 seconds \rightarrow

$$
\left((4 / 3) \cdot 1000^{3}\right) / 0.4=3,333 \text { Mflops }
$$

Givens rotation

$$
\begin{gathered}
{\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]} \\
r=\operatorname{sign}(y) \sqrt{x^{2}+y^{2}}, \quad c=\frac{x}{r}, \quad s=\frac{y}{r}
\end{gathered}
$$

Computation of c, s and r is implemented in srotg and drotg.

Rotation is implemented in srot and drot.

QR with Givens rotations

$$
\rightarrow\left[\begin{array}{ccc}
\bullet & \bullet & \bullet \\
0 & \bullet & \bullet \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right], \rightarrow\left[\begin{array}{ccc}
\oplus & \oplus & \oplus \\
0 & \times & \times \\
0 & \oplus & \oplus \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right], \rightarrow\left[\begin{array}{ccc}
\odot & \odot & \odot \\
0 & \times & \times \\
0 & \times & \times \\
0 & \odot & \odot \\
\times & \times & \times
\end{array}\right], \cdots
$$

Operation count for R is

$$
\sum_{i=1}^{n} 6 i(i-1) \approx 2 n^{3} \text { flop }
$$

Implementation

Bad: we are accessing data row-wise Bad: we are not using BLAS 3
Bad: operation count is too large ($2 n^{3}$ v.s. $4 n^{3} / 3$)

Implementation

Bad: we are accessing data row-wise Bad: we are not using BLAS 3
Bad: operation count is too large ($2 n^{3}$ v.s. $4 n^{3} / 3$)
Solution: work on the transposed matrix - compute

$$
A^{T}=R^{T} Q^{T}
$$

Implementation

Bad: we are accessing data row-wise Bad: we are not using BLAS 3
Bad: operation count is too large $\left(2 n^{3}\right.$ v.s. $\left.4 n^{3} / 3\right)$
Solution: work on the transposed matrix - compute

$$
A^{T}=R^{T} Q^{T}
$$

Solution: use tiling - REUSE DATA IN CACHE

Implementation

Bad: we are accessing data row-wise
Bad: we are not using BLAS 3
Bad: operation count is too large ($2 n^{3}$ v.s. $4 n^{3} / 3$)
Solution: work on the transposed matrix - compute

$$
A^{T}=R^{T} Q^{T}
$$

Solution: use tiling - REUSE DATA IN CACHE
Solution: use fast self-scaling rotations (Anda and Park)

- BUT NOT ON QUAD CORE

Fast rotations

Standard:

$$
\left[\begin{array}{cc}
1 & \beta \\
-\alpha & 1
\end{array}\right]\left[\begin{array}{ll}
\delta & \\
& \delta
\end{array}\right], \quad\left[\begin{array}{cc}
\beta & 1 \\
-1 & \alpha
\end{array}\right]\left[\begin{array}{ll}
\delta & \\
& \delta
\end{array}\right],
$$

$\delta \mathrm{s}$ are accumulated in the vector \mathbf{d}.
Self-scaling: for example, for $\theta \leq \pi / 4$ and $d_{i} \geq d_{j}$

$$
\left[\begin{array}{cc}
1 & 0 \\
-\alpha & 1
\end{array}\right]\left[\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / \delta & \\
& \delta
\end{array}\right]
$$

There exist three more variants. Operation count is now $4 n^{3} / 3$ flop.

Experiments Pentium

Experiments Pentium (mkl)

Experiments Xeon

Experiments Xeon (mkl)

Experiments Xeon Quad Core (mkl)

Parallelism is needed!

Parallelism

$$
\left[\begin{array}{ccccccccc}
\times & \times \\
\times & \times & 0 & \times & 0 & \times & 0 & \times & 0 \\
\times & \times & 0 & 0 & 0 & \times & 0 & 0 & 0 \\
\times & \times & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\times & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Should be ideal, but it is not - there is not enough control of memory access in OpenMP implementation.

CONCLUSION

Results depend on architecture and compiler.
Quad Core processors are new issue. Nvidia - unknown!
Givens rotations are:

- comparable in speed with the Householder reflectors,
- simpler to implement.

Plane rotations with tilings and parallel strategy should be condsidered for other problems.

Eigenvalue computations

$$
A \mathbf{x}=\lambda \mathbf{x}, \quad A=A^{T} \rightarrow Q^{T} A Q=\Lambda, Q^{T} Q=I
$$

QR method:

- tridiagonalization with Householder reflectors
- iterate $\{T=Q R$ (factorize), $T=R Q$ (multiply) $\}$ Jacobi method (1845.): iterate

$$
\left[\begin{array}{cccc}
c & -s & 0 & 0 \\
s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \times & \times \\
a_{12} & a_{22} & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{cccc}
c & s & 0 & 0 \\
-s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
\bar{a}_{11} & 0 & \bullet & \bullet \\
0 & \bar{a}_{22} & \bullet & \bullet \\
\bullet & \bullet & \times & \times \\
\bullet & \bullet & \times & \times
\end{array}\right]
$$

High relative accuracy

QR computes:

$$
|\delta \lambda| \leq \varepsilon|\lambda| \kappa(A) .
$$

For A positive definite, Jacobi computes:

$$
|\delta \lambda| \leq \varepsilon \lambda \kappa\left(A_{S}\right) .
$$

$\left(\kappa(A)=\|A\|\left\|A^{-1}\right\|, A_{S}=D A D, D=\operatorname{diag}(A)^{-1 / 2}.\right)$
Bad: Jacobi is several times slower than QR.
Solution: two-step algorithm (Demmel \& Veselić, 1989):

- Cholesky factorization $A=L L^{T}$
- one-sided Jacobi on L

One-sided Jacobi

Diagonalize $L^{T} L$ by applying only transformations on L,

$$
L_{k+1}=L_{k} U_{k} .
$$

Here

- c and s are computed from the 2×2 submatrix of $\left(L U_{k}\right)^{T}\left(L U_{k}\right)$ (1 scalar product).
- L_{k} converges to a matrix with orthogonal columns.
- Let $U=\prod U_{k}$. Then $U^{T} L^{T} U L=\Lambda$.
- Let $Q=L U \Lambda^{-1 / 2}$. Then $Q^{T} A Q=\Lambda$.

One-sided Jacobi

Diagonalize $L^{T} L$ by applying only transformations on L,

$$
L_{k+1}=L_{k} U_{k} .
$$

Here

- c and s are computed from the 2×2 submatrix of $\left(L U_{k}\right)^{T}\left(L U_{k}\right)$ (1 scalar product).
- L_{k} converges to a matrix with orthogonal columns.
- Let $U=\prod U_{k}$. Then $U^{T} L^{T} U L=\Lambda$.
- Let $Q=L U \Lambda^{-1 / 2}$. Then $Q^{T} A Q=\Lambda$.

Bad: two-step algorithm is still slower than QR .

Implementation

- Use Cholesky with pivoting - this has a diagonalizing effect and makes Jacobi part faster (Demmel \& Veselić).
We use block \& pivoting version by Lucas (2004) very fast!
- One-sided Jacobi accesses data column-wise. We add tiling (Drmač \& Veselić) and fast rotations.
$-c$ and s are computed in double precision - this helps speed and accuracy.

Experiments

Two-step II: $1-4$ threads $-2.00 \mathrm{~s}, 1.84 \mathrm{~s}, 1.73 \mathrm{~s}, 1.62 \mathrm{~s}$, respectively - there is place for improvement!

