Fast computation of QR factorization and eigenvalue decomposition via one-sided plane rotations

Ivan Slapničar

University of Split, Croatia

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

Joint work with Krešimir Veselić^a, Fernuniversität Hagen, and

Zlatko Drmač, University of Zagreb

^{*a*}I. Slapničar and K. Veselić acknowledge the grant from the Croatian Science Foundation

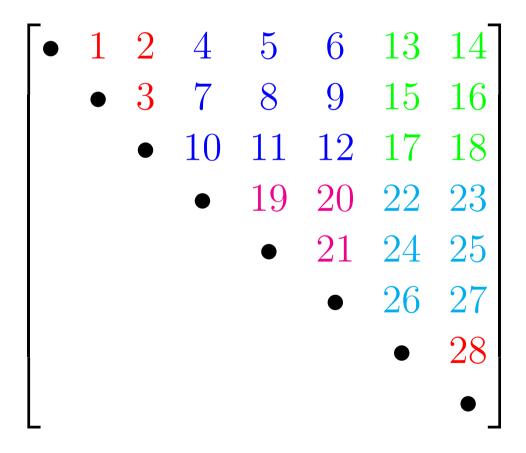
Drmač and Veselić (2006, see LAWN #169, 170) derived an SVD routine which is:

- as fast or faster than the QR method from (D,S)GESVD and
- highly accurate.

Key ingredients of the algorithm are:

- QR factorization with pivoting,
- QR factorization,
- one-sided Jacobi method with tiling-based pivoting.

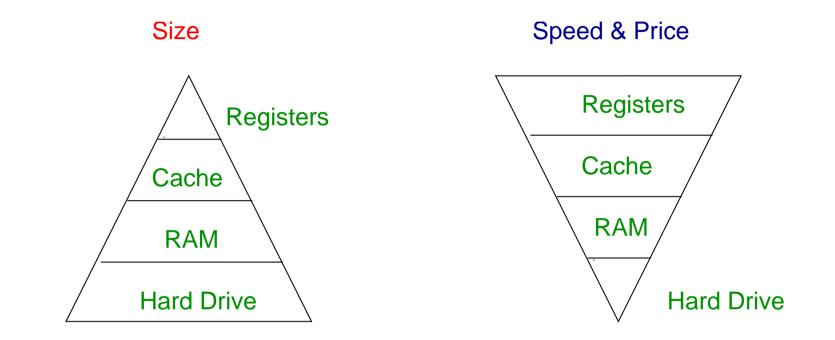
Example: choice of pivoting positions for n = 8 and block-size nb = 3:



Ideas

- 1. Compare Givens QR factorisation with tiling and the standard BLAS 3 Householder implementation,
- Improve the Demmel-Veselić implementation of the highly accurate algorithm for positive definite eigenvalue problem (make it faster) – fast Cholesky with pivoting + one sided Jacobi with tiling.

Memory hierarchy



Data traffic between RAM and Cache in done by moving consecutive blocks of memory (pages).

Conclusion: use data in cache as much as posible

Basic Linear Algebra Subroutines

level	operands	example	data	flop
BLAS 1	vector, vector	ddot, daxpy	O(n)	O(n)
BLAS 2	matrix, vector	$\alpha Ax + \beta y$	$O(n^2)$	$O(n^2)$
BLAS 3	matrix, matrix	$\alpha AB + \beta C$	$O(n^2)$	$O(n^3)$

ddot:
$$d = x^T y = \sum_i x_i y_i$$

daxpy: $y \leftarrow \alpha x + y$ $(y_i \leftarrow \alpha x_i + y_i)$

Conclusion: use matrix operations as much as possible (or achieve similar effect with tiling)

It matters

Intel Xeon (em64t) has \sim 5,000 Mflops peak with Intel Math Kernel Library (mkl). For ddot and daxpy we obtain

	$a(:,i) \cdot a(:,i+1)$	$a(:,i) \cdot a(i,:)$	$a(i,:) \cdot a(i+1,:)$
-04	502	166	173
mkl	573	165	173
		I	

	daxpy_1	daxpy_1n
-04	312	136
mkl	312	135

Conclusion: approach data column-wise

It matters a lot

m	n	Mflops (-04)	Mflops (mkl)
4	4	71	125
32	16	636	1612
32	32	540	2856
64	32	781	3571
64	64	729	4347
128	4	442	1190
128	64	854	4542
128	128	818	4340

Matrix multiplication $A_{mn} \cdot B_{nn}$ with DGEMM

$$A = QR = \begin{bmatrix} R_0 \\ 0 \end{bmatrix}, \qquad Q \text{ orthogonal}, \qquad R \text{ upper triangular}$$

Example for m = 5 and n = 3:

Implementation with Householder reflectors

$$Hx = \left(I - 2\frac{vv^T}{v^Tv}\right) x = x - v\frac{2(v^Tx)}{v^Tv}.$$

This requires O(6n) flop. Similarly,

$$\beta = -\frac{2}{v^T v}, \quad w = \beta A^T v \quad HA = A + v w^T,$$

which requires $O(n^2)$ flop. Operation count for R is

$$\sum_{i=1}^{n} 4 \, i^2 \approx \frac{4}{3} \, n^3.$$

The same holds for Q if we compute (otherwise it is $O(2n^3)$)

$$Q_n, \quad Q_{n-1} \cdot Q_n, \quad Q_{n-2} \cdot (Q_{n-1} \cdot Q_n), \cdots$$

Good: we are accessing data column-wise Bad: we are not using BLAS 3.

Solution: use block transformations:

- Dietrich (1976): $H_k = I 2 V_k (V_k^T V_k)^{-1} V_k^T$.
- Bischof and Van Loan (1986): WY representation:

$$H_k = I + W_k Y_k^T, \qquad A \leftarrow Q_k^T A = A + Y_k (W_k^T A)$$

The operation count increases by factor (1 + k/n). DGEQRF takes 0.4 seconds \rightarrow

$$((4/3) \cdot 1000^3)/0.4 = 3,333$$
 Mflops

Givens rotation

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}$$
$$r = \operatorname{sign}(y) \sqrt{x^2 + y^2}, \quad c = \frac{x}{r}, \quad s = \frac{y}{r}$$

Computation of c, s and r is implemented in srotg and drotg.

Rotation is implemented in srot and drot.

QR with Givens rotations

Operation count for R is

$$\sum_{i=1}^{n} 6i(i-1) \approx 2n^{3} \text{ flop}$$

Solution: work on the transposed matrix – compute

$$A^T = R^T Q^T$$

Solution: work on the transposed matrix – compute

$$A^T = R^T Q^T$$

Solution: use tiling - REUSE DATA IN CACHE

Solution: work on the transposed matrix – compute

$$A^T = R^T Q^T$$

Solution: use tiling - REUSE DATA IN CACHE

Solution: use fast self-scaling rotations (Anda and Park) - BUT NOT ON QUAD CORE

Fast rotations

Standard:

$$\begin{bmatrix} 1 & \beta \\ -\alpha & 1 \end{bmatrix} \begin{bmatrix} \delta \\ \delta \end{bmatrix}, \begin{bmatrix} \beta & 1 \\ -1 & \alpha \end{bmatrix} \begin{bmatrix} \delta \\ \delta \end{bmatrix},$$

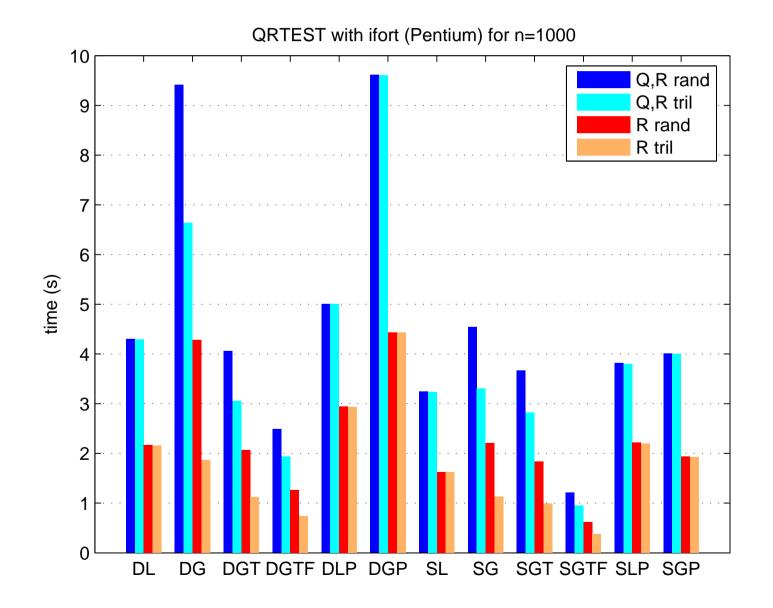
 δs are accumulated in the vector d.

Self-scaling: for example, for $\theta \leq \pi/4$ and $d_i \geq d_j$

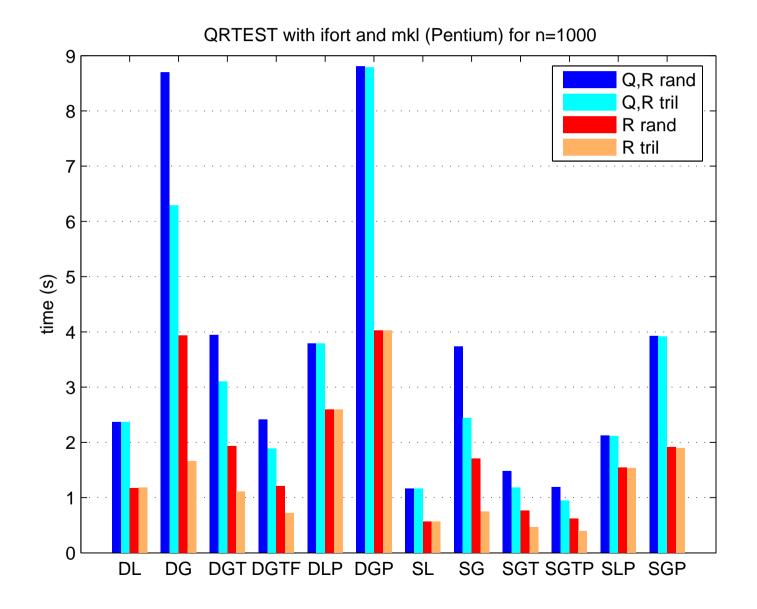
$$\begin{bmatrix} 1 & 0 \\ -\alpha & 1 \end{bmatrix} \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/\delta \\ & \delta \end{bmatrix}$$

There exist three more variants. Operation count is now $4n^3/3$ flop.

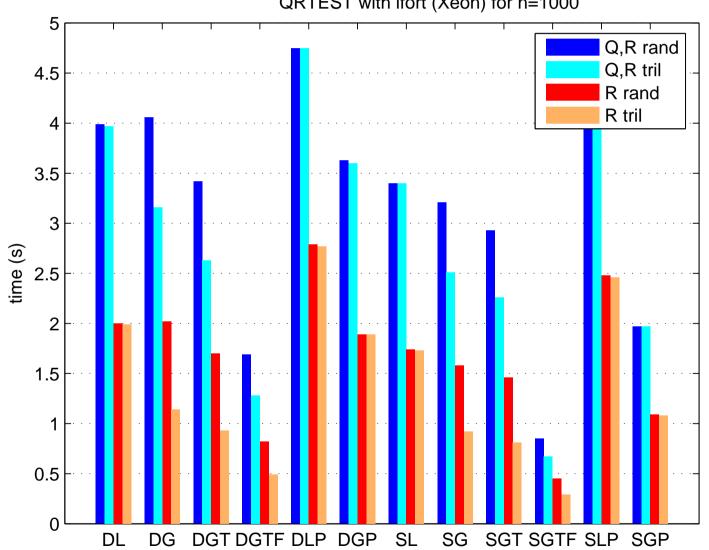
Experiments Pentium



Experiments Pentium (mkl)

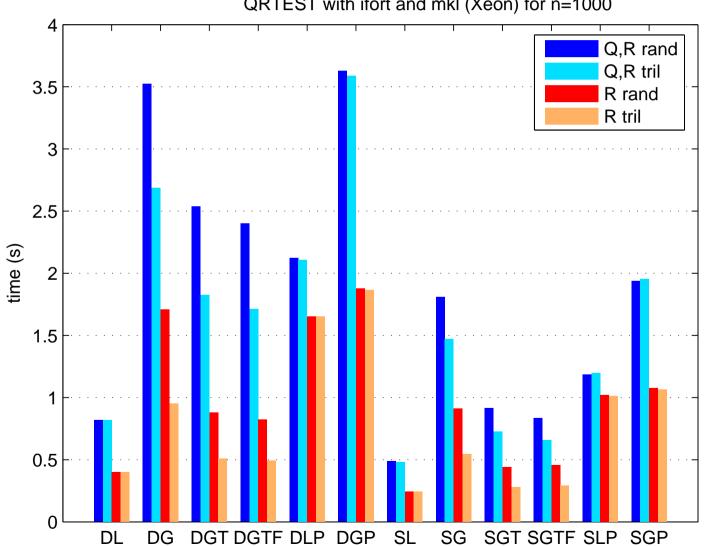


Experiments Xeon



QRTEST with ifort (Xeon) for n=1000

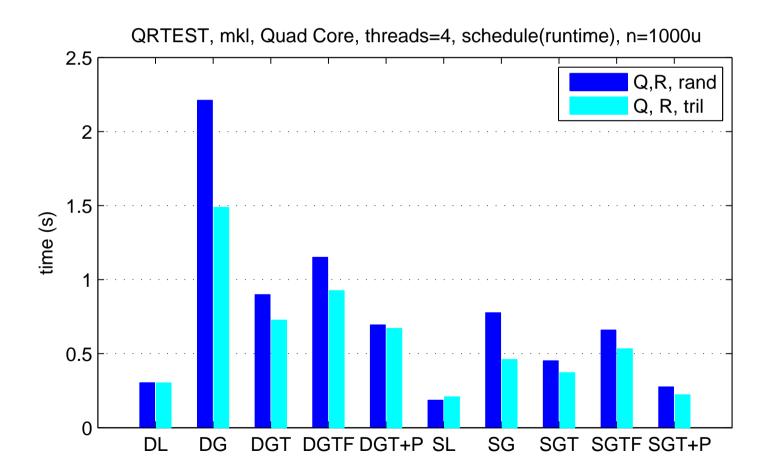
Experiments Xeon (mkl)



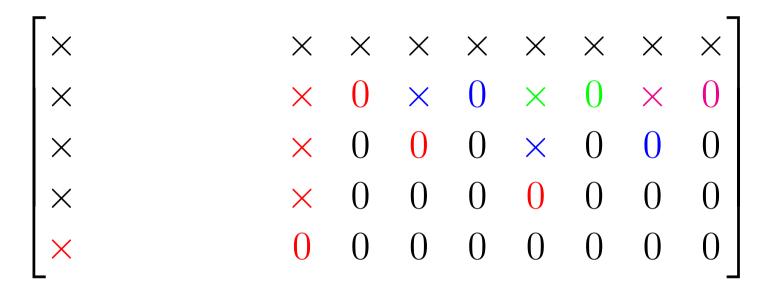
QRTEST with ifort and mkl (Xeon) for n=1000

Experiments Xeon Quad Core (mkl)

Parallelism is needed!



Parallelism



Should be ideal, but it is not - there is not enough control of memory access in OpenMP implementation.

Results depend on architecture and compiler.

Quad Core processors are new issue. Nvidia - unknown!

Givens rotations are:

- comparable in speed with the Householder reflectors,
- simpler to implement.

Plane rotations with tilings and parallel strategy should be condsidered for other problems.

$$A \mathbf{x} = \lambda \mathbf{x}, \quad A = A^T \rightarrow Q^T A Q = \Lambda, \ Q^T Q = I$$

QR method:

tridiagonalization with Householder reflectors

iterate { T = QR (factorize), T = RQ (multiply) } Jacobi method (1845.): iterate

High relative accuracy

QR computes:

$$\delta \lambda | \le \varepsilon |\lambda| \kappa(A).$$

For A positive definite, Jacobi computes:

 $|\delta\lambda| \le \varepsilon \,\lambda \,\kappa(A_S).$

 $(\kappa(A) = ||A|| ||A^{-1}||, A_S = DAD, D = \operatorname{diag}(A)^{-1/2})$

Bad: Jacobi is several times slower than QR.

Solution: two-step algorithm (Demmel & Veselić, 1989):

- Cholesky factorization $A = LL^T$
- \blacksquare one-sided Jacobi on L

Diagonalize $L^T L$ by applying only transformations on L,

$$L_{k+1} = L_k U_k.$$

Here

- c and s are computed from the 2×2 submatrix of $(LU_k)^T (LU_k)$ (1 scalar product).
- \blacksquare L_k converges to a matrix with orthogonal columns.
- Let $U = \prod U_k$. Then $U^T L^T U L = \Lambda$.
- Let $Q = LU\Lambda^{-1/2}$. Then $Q^TAQ = \Lambda$.

Diagonalize $L^T L$ by applying only transformations on L,

$$L_{k+1} = L_k U_k.$$

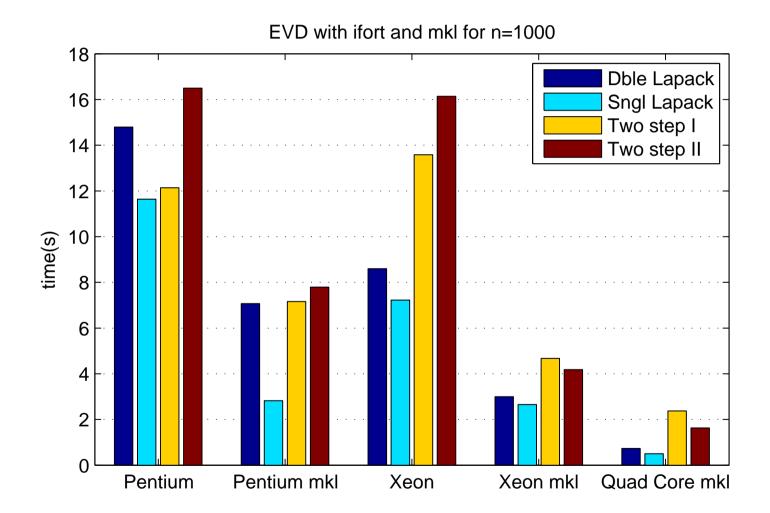
Here

- c and s are computed from the 2×2 submatrix of $(LU_k)^T (LU_k)$ (1 scalar product).
- \blacksquare L_k converges to a matrix with orthogonal columns.
- Let $U = \prod U_k$. Then $U^T L^T U L = \Lambda$.
- Let $Q = LU\Lambda^{-1/2}$. Then $Q^TAQ = \Lambda$.

Bad: two-step algorithm is still slower than QR.

- Use Cholesky with pivoting this has a diagonalizing effect and makes Jacobi part faster (Demmel & Veselić).
 - We use **block** & **pivoting** version by Lucas (2004) very fast!
- One-sided Jacobi accesses data column-wise.
 We add tiling (Drmač & Veselić) and fast rotations.
- c and s are computed in double precision this helps speed and accuracy.

Experiments



Two-step II: 1-4 threads – 2.00s, 1.84s, 1.73s, 1.62s, respectively – there is place for improvement!

IWASEP 7 - Dubrovnik, June 9-12, 2008 – p. 27/27