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Hankel and Hurwitz matrices

Let R(z) be a rational function expanded in its Laurent series at
∞

R(z) = s−1 +
s0

z
+

s1

z2 +
s2

z3 + · · · .

Introduce the infinite Hankel matrix S :=[si+j ]
∞
i,j=0 and consider

the leading principal minors of S:

Dj(S) := det


s0 s1 s2 . . . sj−1

s1 s2 s3 . . . sj
...

...
...

. . .
...

sj−1 sj sj+1 . . . s2j−2

 , j = 1, 2, 3, . . . .

These are Hankel minors or Hankel determinants.
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Hurwitz determinants

Let R(z) =
q(z)

p(z)
, p(z) = a0zn + · · ·+ an, a0 6= 0,

q(z) = b0zn + · · ·+ bn,

For each j = 1, 2, . . ., denote

∇2j(p, q) := det



a0 a1 a2 . . . aj−1 aj . . . a2j−1

b0 b1 b2 . . . bj−1 bj . . . b2j−1

0 a0 a1 . . . aj−2 aj−1 . . . a2j−2

0 b0 b1 . . . bj−2 bj−1 . . . b2j−2
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . a0 a1 . . . aj

0 0 0 . . . b0 b1 . . . bj


.

These are the Hurwitz minors or Hurwitz determinants.
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Hankel ↔ Hurwitz

Theorem [Hurwitz].

Let R(z) = q(z)/p(z) with notation as above. Then

∇2j(p, q) = a2j
0 Dj(R), j = 1, 2, . . . .

Corollary.

Let T (z) = −1/R(z) with notation as above. Then

Dj(S) = s2j
−1Dj(T ), j = 1, 2, . . . .
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Resultant

Let p and q be as above and let b0 6= 0. The resultant of p and
q is defined as

R(p, q) := det



a0 a1 . . . an−1 an . . . a2n−1

0 a0 . . . an−2 an−1 . . . a2n−2
...

...
. . .

...
...

. . .
...

0 0 . . . a0 a1 . . . an

b0 b1 . . . bn−1 an . . . b2n−1

0 b0 . . . bn−2 bn−1 . . . b2n−2
...

...
. . .

...
...

. . .
...

0 0 . . . b0 b1 . . . bn


.
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Resultant formulæ

Theorem.

Given polynomials p and q, let λi (i = 1, . . . , n) be the zeros of
p, and let µj (j = 1, . . . , n) be the zeros of q (b0 6= 0). Then

R(p, q) = (−1)
n(n−1)

2 ∇2n(p, q) = an
0

n∏
i=1

q(λi)

= an
0bn

0

n∏
i,j=1

(λi − µj) = (−1)nbn
0

n∏
j=1

p(µj).
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Resultant → discriminant

Definition.

Let a polynomial p have roots λi (i = 1, . . . , n). The
discriminant of p is defined by

D(p) = a2n−2
0

n∏
j<i

(λi − λj)
2.

Theorem.

For a polynomial p of degree n,

R(p, p′) = (−1)
n(n−1)

2 a0D(p).
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Orlando’s formula

Theorem [generalized Orlando].

The resultant polynomials p and q can be computed by the
formula

R(p, q) = (−1)
n(n+1)

2 c
∏
i<k

(zi + zk ),

where zi are the zeros of the polynomial h(z) := p(z2) + zq(z2),
and

c :=

{
am+n

0 if deg q = m ≤ n − 1,

b2n
0 if deg q = n.
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Euclidean algorithm and continued fractions

Starting from f0 := p, f1 := q − (b0/a0)p, form the Euclidean
algorithm sequence

fj−1 = qj fj + fj+1, j = 1, . . . , k , fk+1 = 0.

Then fk is the greatest common divisor of p and q. This gives a
continued fraction representation

R(z) =
f1(z)

f0(z)
=

1

q1(z) +
1

q2(z) +
1

q3(z) +
1

. . . +
1

qk (z)

.
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Generalized Jacobi matrices

J (z) :=



qk (z) −1 0 . . . 0 0
1 qk−1(z) −1 . . . 0 0
0 1 qk−2(z) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . q2(z) −1
0 0 0 . . . 1 q1(z)


.

Remark 1. hj(z) is the leading principal minor of J (z) of order
k − j . In particular, h0(z) = detJ (z).
Remark 2. Eigenvalues of the generalized eigenvalue problem

J (z)u = 0

are closely related to the properties of R(z).
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Formulæ for Hankel minors

Theorem.

If R(z) =
f1(z)

f0(z)
=

1

q1(z) +
1

q2(z) +
1

q3(z) +
1

. . . +
1

qk (z)

,

with nj := deg qj , we have, for all j = 1, 2, . . . , k ,

Dn1+n2+...+nj (R) =

j∏
i=1

(−1)
ni (ni−1)

2 ·(−1)
∑j−1

i=0 ini+1 ·
j∏

i=1

1

α
ni+2

∑j
ρ=i+1 nρ

i

.
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Jacobi continued fractions

In the regular case,

qj(z) = αjz + βj , αj , βj ∈ C, αj 6= 0.

The polynomials fj satisfy the three-term recurrence relation
fj−1(z) = (αjz + βj)fj(z) + fj+1(z), j = 1, . . . , r .

R(z) =
f1(z)

f0(z)
=

1

α1z + β1 +
1

α2z + β2 +
1

α3z + β3 +
1

. . . +
1

αr z + βr

.
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Stieltjes continued fractions

In the doubly regular case,

q2j(z) = c2j , j = 1, . . .

⌊
k
2

⌋
,

q2j−1(z) = c2j−1z, j = 1, . . . , r .

R(z) =
f1(z)

f0(z)
=

1

c1z +
1

c2 +
1

c3z +
1

. . . +
1
T

, where

T :=

{
c2r if |R(0)| < ∞,
c2r−1z if R(0) = ∞.

Olga Holtz Matrix methods in stability theory



Complex rational functions
Real rational functions

Hankel and Hurwitz matrices
Resultants and their applications
Euclidean algorithm

Stieltjes continued fractions

In the doubly regular case,

q2j(z) = c2j , j = 1, . . .

⌊
k
2

⌋
,

q2j−1(z) = c2j−1z, j = 1, . . . , r .

R(z) =
f1(z)

f0(z)
=

1

c1z +
1

c2 +
1

c3z +
1

. . . +
1
T

, where

T :=

{
c2r if |R(0)| < ∞,
c2r−1z if R(0) = ∞.

Olga Holtz Matrix methods in stability theory



Complex rational functions
Real rational functions

Hankel and Hurwitz matrices
Resultants and their applications
Euclidean algorithm

Related eigenvalue problem

The associated generalized eigenvalue problem:

(Az + B)u = 0,

A =


αr 0 . . . 0 0
0 αr−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . α2 0
0 0 . . . 0 α1

 , B =


βr −1 . . . 0 0
1 βr−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . β2 −1
0 0 . . . 1 β1

 .
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Connections to infinite Hurwitz matrices

H(p, q) :=


a0 a1 a2 a3 a4 a5 . . .
0 b1 b2 b3 b4 b5 . . .
0 a0 a1 a2 a3 a4 . . .
0 0 b1 b2 b3 b4 . . .
...

...
...

...
...

...
. . .

 (deg q < deg p).

H(p, q) =


b0 b1 b2 b3 b4 b5 . . .
0 a0 a1 a2 a3 a4 . . .
0 b0 b1 b2 b3 b4 . . .
0 0 a0 a1 a2 a3 . . .
...

...
...

...
...

...
. . .

 (deg q = deg p).
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Factorization of infinite Hurwitz matrices

Theorem.

If g(z) = g0z l + g1z l−1 + . . . + gl , then

H(p · g, q · g) = H(p, q)T (g), where

T (g) :=



g0 g1 g2 g3 g4 . . .
0 g0 g1 g2 g3 . . .
0 0 g0 g1 g2 . . .
0 0 0 g0 g1 . . .
0 0 0 0 g0 . . .
...

...
...

...
...

. . .


.

Here we set gi = 0 for all i > l .
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Another factorization

Theorem.

If the Euclidean algorithm for the pair p, q is doubly regular,
then H(p, q) factors as

H(p, q) = J(c1) · · · J(ck )H(0, 1)T (g),

J(c) :=



c 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 c 1 0 . . .
0 0 0 0 1 . . .
0 0 0 0 c . . .
...

...
...

...
...

. . .


H(0, 1) =



1 0 0 0 . . .
0 0 0 0 . . .
0 0 1 0 . . .
0 0 0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .
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Sturm algorithm

Sturm’s algorithm is a variation of the Euclidean algorithm

fj−1(z) = qj(z)fj(z)− fj+1(z), j = 0, 1, . . . , k ,

where fk+1(z) = 0. The polynomial fk is the greatest common
divisor of p and q.
The Sturm algorithm is regular if the polynomials qj are linear.

The Sturm algorithm was originally proposed to count zeros on
a real interval.
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Cauchy indices

Definition.

Indω(F ) :=

{
+1, if F (ω − 0) < 0 < F (ω + 0),

−1, if F (ω − 0) > 0 > F (ω + 0),

is the index of the function F at its real pole ω of odd order.

Theorem [Gantmakher].

If a rational function R with exactly r poles is represented by a
series

R(z) = s−1 +
s0

z
+

s1

z2 + · · · , then

Ind+∞
−∞ = r − 2S(D0(R), D1(R), D2(R), . . . , Dr (R)).
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Stability

Definition.

A polynomial is stable if all its zeros lie in the left half-plane.

Theorem.

A polynomial f = p(z2) + zq(z2) is stable if and only if its infinite
Hurwitz matrix H(p, q) is totally nonnegative.
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Hyperbolicity

Definition.

A polynomial is hyperbolic if all its zeros are real.

Theorem.

A polynomial p is hyperbolic if and only if the infinite Hurwitz
matrix H(p, p′) is totally nonnegative.
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