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Molecular Orbital Computation

Design of Anticancer Drugs

HHΨΨ = E = EΨΨ
Schrödinger Equation

EGFREGFR
(Epidermal Growth Factor Receptor)

Generalized Generalized Eigenvalue Eigenvalue ProblemsProblems

Hartree-Fock 
approximation

A A xx  ==  λλ  B B xx
((AA, , BB are real symmetric,  are real symmetric, BB is is  positive definite)positive definite)



Interior Eigenvalue Problems

Eigenpairs related to chemical activities: 

          HOMO
(Highest Occupied MO) 

           LUMO
(Lowest Unoccupied MO) 

Interior eigenvalue problems 

Energy state:



Target Matrix

• The size of matrix:
                      50,000 ～ 5,000,000

• The number of nonzero elements:
                       200,000,000 ～ 20,000,000,000(est.)

           - relatively large number of nonzero elements

Fock matrix of 
Lysozyme  + H2O+ H2O

Semi-sparse matrix 



A Parallel Eigenvalue Solver
using Contour Integral



Generalized Eigenvalue Problem

The generalized eigenvalue problem:

                 
where                    , symmetric, and B is positive definite.

We find eigenpairs in a given interval [γ − ρ, γ + ρ]. 

( λ j , x j ) : Eigenpair of the matrix pencil ( A, B ). 



Rayleigh-Ritz Procedure

Algorithm:

: Ritz value
: Ritz vector

: Projected pencil

Inner Loop

Outer Loop



Construction of Subspace

To avoid inner/outer loops, we use a contour integral
in construction of a subspace.

For a nonzero vector    , let

where           is a Jordan curve
that includes                .
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Construction of Subspace

Since

where                  , we have

If                   are simple, then



Construction of Subspace

Block variant is also obtained by using an n×L matrix

instead of a vector v.

If  the maximum multiplicity of
is less than or equal to L, then



Construction of Subspace

Let Γ be a circle with center γ and radius ρ.

Re

Im

Γ

λ1 λmλm+1
γ

ρ

                                                                    , 
then the integration 

is approximated by N-point trapezoidal rule:

where                             .



Construction of Subspace

When A and B are real, we only need N/2 points:

                                                           ,

where

                                  .
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Filter Function

Contour integral:

λ1 λmλm+1

λ1 λmλm+1

Trapezoidal rule:

λ1 λmλm+1

λ1 λmλm+1

xj
Tv Filter Filter

We set the size of the subspace by SVD of S={S0, S1, . . .}.
^ ^ ^



Algorithm
Construction of a subspace

Rayleigh-Ritz procedure



Flow of the method

Inner Loop

Outer Loop

Initial Vectors 

Construct Subspace 

  Update Approximate 
  Eigenvectors 

   Put Circles

Construct Subspace 

Extract Approximate 
Eigenpairs



Parallel Implementation

・・・・・



Parallel Implementation

・・・・・



Estimation of Eigenvalue Distribution

Rough estimation of eigenvalue distribution:

Put circles:

Results by Algebraic Sub-structuring method



Numerical Examples



Size of a subspace

 Test problem:
• n = 20
• D = diag([1 2 ... 20])

• Q = QR(C), C(i,j) = Rand(),
A = QT*D*Q, B = QT*Q

• γ = 4.8, ρ = 4.0

0   1   2   3   4   5   6   7   8   9   10

γ

ρ



Size of a subspace

m'=8
m'=9

m'=10

m'=11

m'=12

Number of quadrature points N
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m=8Maximum error of approximate eigenvalues 



Size of a subspace

m'=10m'=12

m'=14

m'=16
m'=18
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Number of quadrature points N

Maximum error of approximate eigenvalues 



Size of a subspace

Number of singular values of  

Number of quadrature points N



 Test Problems:
• EGFR (Epidermal Growth Factor Receptor) dimmer
• Basis function: 6-31G
• Size:  96,234 × 96,234
• nnz: 456,807,648

 Test Environment:
     AMD Opteron Processor Dual CPU x 128 nodes

• Solver: COCG method [van der Vorst and Melissen (1990)]
• Preconditioner: Complete Factorization for Approximate

                           Matrix [Okada, S and Teranishi (2007)]
• Sparse Direct Solver for Preconditioner: PARDISO

Numerical Example



Numerical Example

Sparsity Sparsity pattern ofpattern of  the matrixthe matrix

AA BB



Timing Results with 256CPUs

• 32 CPUs for one circle,  8 Circles, Total 256 CPUs.
One linear system was solved on each 
computing node. 

N = 32
L =   4

• 94 eigenpairs were
obtained.

• Maximum residual
was 3.4×10-10.



Time in one circle

 16 linear systems were solved for one circle.

Preconditioner
  - Factorization

Iteration
  - Forward/Backward 
     Substitution
 - Sparse Mat-Vec 
    Multiply



Summary

 We consider an parallel eigenvalue solver for
Molecular Orbital computations:
     - Interior eigenvalur problem
     - Semi-sparse matrix

 A subspace is constructed by a contour integral.
     - We can avoid inner/outer loops

 Systems of linear equations are solved for each
quadrature node simultaneously.
     - Parallel implementation

 Future work
      - Find appropriate parameters
      - Estimation of eigenvalue distribution


