# An Inner/Outer Loop Free Parallel Method for Interior Eigenvalue Problems

Tetsuya Sakurai and Hiroto Tadano (University of Tsukuba)

# Contents

- Motivation
  - Background
  - Target problem & matrix
- A Parallel Eigenvalue Solver
  - An algorithm using contour integration
  - Numerical properties
  - Parallel implementation
- Numerical Examples
- Conclusions

## **Molecular Orbital Computation**

**Design of Anticancer Drugs** 



Schrödinger Equation $H\Psi = E\Psi$ Image: Hartree-Fock approximation

**Generalized Eigenvalue Problems** 

 $A x = \lambda B x$ 

(A, B are real symmetric, B is positive definite)

EGFR (Epidermal Growth Factor Receptor)

#### **Interior Eigenvalue Problems**

#### Energy state:



Eigenpairs related to chemical activities:

Interior eigenvalue problems

## **Target Matrix**

- The size of matrix: 50,000 ∼ 5,000,000
- The number of nonzero elements: 200,000,000 ~ 20,000,000,000(est.)
  - relatively large number of nonzero elements

Fock matrix of

Lysozyme + H2





## A Parallel Eigenvalue Solver using Contour Integral

#### **Generalized Eigenvalue Problem**

The generalized eigenvalue problem:

 $A\boldsymbol{x} = \lambda B\boldsymbol{x},$ 

where  $A, B \in \mathbb{R}^{n \times n}$  symmetric, and B is positive definite.

 $(\lambda_j, x_j)$ : Eigenpair of the matrix pencil (A, B).

We find eigenpairs in a given interval  $[\gamma - \rho, \gamma + \rho]$ .

#### **Rayleigh-Ritz Procedure**



 $(A_Q, B_Q)$ : Projected pencil  $heta_j$ : Ritz value  $p_j$ : Ritz vector

To **avoid inner/outer loops**, we use a contour integral in construction of a subspace.

For a nonzero vector  $\boldsymbol{v}$ , let

$$oldsymbol{s}_k = rac{1}{2\pi\mathrm{i}}\int_{\Gamma} z^k (zB-A)^{-1}Boldsymbol{v}\,\mathrm{d}z,$$

where  $\Gamma \in \mathbb{C}$  is a Jordan curve that includes  $\lambda_1, \ldots, \lambda_m$ .



Since

$$(zB-A)^{-1}Boldsymbol{v}=\sum_{j=1}^nrac{lpha_joldsymbol{x}_j}{z-\lambda_j},$$

where  $\boldsymbol{\alpha}_{j} = \boldsymbol{x}_{j}^{T} \boldsymbol{v}$  , we have

$$oldsymbol{s}_k = rac{1}{2\pi\mathrm{i}}\int_{\Gamma} z^k (zB-A)^{-1}Boldsymbol{v}\,\mathrm{d}z = \sum_{j=1}^m lpha_j \lambda_j^k oldsymbol{x}_j$$

If  $\lambda_1, \ldots, \lambda_m$  are simple, then span  $\{s_0, \ldots, s_{m-1}\} = \text{span} \{x_1, \ldots, x_m\}$ 

Block variant is also obtained by using an  $n \times L$  matrix

$$V = [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_L]$$

instead of a vector v.

$$oldsymbol{s}_k = rac{1}{2\pi\mathrm{i}}\int_{\Gamma} z^k (zB-A)^{-1}Boldsymbol{v}\,\mathrm{d}z$$
 $oldsymbol{s}_k = rac{1}{2\pi\mathrm{i}}\int_{\Gamma} z^k (zB-A)^{-1}BV\,\mathrm{d}z$ 

If the maximum multiplicity of  $\lambda_1, \ldots, \lambda_m$ is less than or equal to *L*, then  $\operatorname{span} \{S_0, \ldots, S_{\tilde{m}-1}\} = \operatorname{span} \{x_1, \ldots, x_m\}$ 

Let  $\Gamma$  be a circle with center  $\gamma$  and radius  $\rho$ , then the integration

$$S_k = rac{1}{2\pi\mathrm{i}}\int_{\Gamma} z^k (zB-A)^{-1}BV\,\mathrm{d}z$$

is approximated by N-point trapezoidal rule:



When A and B are real, we only need N/2 points:

$$\hat{S}_k = rac{2}{N} \sum_{j=0}^{N/2-1} \operatorname{Re}\left(\left(rac{\omega_j - \gamma}{
ho}
ight)^{k+1} Y_j
ight),$$

where

$$(\omega_j B - A)Y_j = BV$$
.



## **Filter Function**

Contour integral:

$$oldsymbol{s}_k = rac{1}{2\pi\mathrm{i}}\int_{\Gamma} z^k (zB-A)^{-1}Boldsymbol{v}\mathrm{d}z$$

Trapezoidal rule:

$$\hat{m{s}}_k = rac{1}{N}\sum_{j=0}^{N-1} z^{k+1} (\omega_j B - A)^{-1} B m{v}$$



# **Algorithm**

Construction of a subspace 1. Solve  $(\omega_j B - A)Y_j = BV$  for  $Y_j, j = 0, ..., N/2 - 1$ 2. Compute  $\hat{S}_k = \frac{2}{N} \sum_{j=0}^{N/2-1} \operatorname{Re}\left(\left(\frac{\omega_j - \gamma}{\rho}\right)^{k+1} Y_j\right), k = 0, 1, ..., K - 1$ 3. Set  $\tilde{K}$  using the singular value decomposition of  $\hat{S} = [\hat{S}_0, \dots, \hat{S}_{K-1}]$ Rayleigh-Ritz procedure 4. Construct an orthonormal basis Q from  $\hat{S}(:, 1:\tilde{K})$ 5. Form  $A_Q = Q^T A Q$  and  $B_Q = Q^T B Q$ 6. Compute the Ritz pairs  $(\hat{\lambda}_j, \hat{x}_j), 1 \leq j \leq \tilde{K}$  with the projected pencil  $(A_Q, B_Q)$ 

## Flow of the method



# **Parallel Implementation**

$$Y_{j} = (\omega_{j}B - A)^{-1}BV$$

$$\omega_{0}$$

$$\omega_{1}$$

$$\omega_{2}$$

$$A, B$$

$$A, B$$

$$A, B$$

$$A, B$$

#### **Parallel Implementation**



## **Estimation of Eigenvalue Distribution**

Rough estimation of eigenvalue distribution:



Put circles:



#### **Numerical Examples**

#### • Test problem:

• *D* = diag([1 2 ... 20])



Maximum error of approximate eigenvalues m=8



Maximum error of approximate eigenvalues



Number of singular values of  $\hat{S}$  .s.t.  $\sigma_k \ge 10^{-12} \times \max |a_{ij}|$ 



## **Numerical Example**

#### Test Problems:

- EGFR (Epidermal Growth Factor Receptor) dimmer
- Basis function: 6-31G
- Size: 96,234 × 96,234
- nnz: 456,807,648



• Test Environment:

AMD Opteron Processor Dual CPU x 128 nodes

- Solver: COCG method [van der Vorst and Melissen (1990)]
- Preconditioner: Complete Factorization for Approximate Matrix [Okada, S and Teranishi (2007)]
- Sparse Direct Solver for Preconditioner: PARDISO

## **Numerical Example**

#### Sparsity pattern of the matrix





Α

В

## **Timing Results with 256CPUs**

32 CPUs for one circle, 8 Circles, Total 256 CPUs.
 One linear system was solved on each computing node.

Broadcasting Solving linear systems Rayleigh-Ritz procedure



## Time in one circle

• 16 linear systems were solved for one circle.

Preconditioner - Factorization

Iteration

- Forward/Backward Substitution
- Sparse Mat-Vec Multiply



# Summary

- We consider an parallel eigenvalue solver for Molecular Orbital computations:
  - Interior eigenvalur problem
  - Semi-sparse matrix
- A subspace is constructed by a contour integral.
   We can avoid inner/outer loops
- Systems of linear equations are solved for each quadrature node simultaneously.
  - Parallel implementation
- Future work
  - Find appropriate parameters
  - Estimation of eigenvalue distribution