An Inner/Outer Loop Free
 Parallel Method for Interior Eigenvalue Problems

Tetsuya Sakurai and Hiroto Tadano (University of Tsukuba)

Contents

- Motivation
- Background
- Target problem \& matrix
- A Parallel Eigenvalue Solver
- An algorithm using contour integration
- Numerical properties
- Parallel implementation
- Numerical Examples
- Conclusions

Molecular Orbital Computation

Design of Anticancer Drugs

$$
\begin{aligned}
& \text { Schrödinger Equation } \\
& \qquad H \Psi=E \Psi \\
& \square \quad \begin{array}{l}
\text { Hartree-Fock } \\
\text { approximation }
\end{array}
\end{aligned}
$$

Generalized Eigenvalue Problems

$$
A \boldsymbol{x}=\lambda B \boldsymbol{x}
$$

(A, B are real symmetric, B is positive definite)

EGFR

(Epidermal Growth Factor Receptor)

Interior Eigenvalue Problems

Energy state:

Eigenpairs related to chemical activities:
\longrightarrow Interior eigenvalue problems

Target Matrix

- The size of matrix:

$$
50,000 \sim 5,000,000
$$

- The number of nonzero elements:
200,000,000 ~ 20,000,000,000(est.)
- relatively large number of nonzero elements

Fock matrix of Lysozyme + H2O

A Parallel Eigenvalue Solver using Contour Integral

Generalized Eigenvalue Problem

The generalized eigenvalue problem:

$$
A \boldsymbol{x}=\lambda B \boldsymbol{x},
$$

where $A, B \in \mathbb{R}^{n \times n}$ symmetric, and B is positive definite.
$\left(\lambda_{j}, \boldsymbol{x}_{j}\right)$: Eigenpair of the matrix pencil (A, B).

We find eigenpairs in a given interval $[\gamma-\rho, \gamma+\rho]$.

Rayleigh-Ritz Procedure

$\left(A_{Q}, B_{Q}\right)$: Projected pencil
θ_{j} : Ritz value
\boldsymbol{p}_{j} : Ritz vector

Construction of Subspace

To avoid inner/outer loops, we use a contour integral in construction of a subspace.

For a nonzero vector \boldsymbol{v}, let

$$
\boldsymbol{s}_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} z^{k}(z B-A)^{-1} B \boldsymbol{v} \mathrm{~d} z
$$

where $\Gamma \in \mathbb{C}$ is a Jordan curve that includes $\lambda_{1}, \ldots, \lambda_{m}$.

Construction of Subspace

Since

$$
(z B-A)^{-1} B \boldsymbol{v}=\sum_{j=1}^{n} \frac{\alpha_{j} \boldsymbol{x}_{j}}{z-\lambda_{j}},
$$

where $\alpha_{j}=\boldsymbol{x}_{j}^{T} \boldsymbol{v}$, we have

$$
\boldsymbol{s}_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} z^{k}(z B-A)^{-1} B \boldsymbol{v} \mathrm{~d} z=\sum_{j=1}^{m} \alpha_{j} \lambda_{j}^{k} \boldsymbol{x}_{j}
$$

If $\lambda_{1}, \ldots, \lambda_{m}$ are simple, then

$$
\operatorname{span}\left\{\boldsymbol{s}_{0}, \ldots, \boldsymbol{s}_{m-1}\right\}=\operatorname{span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}
$$

Construction of Subspace

Block variant is also obtained by using an $n \times L$ matrix

$$
V=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{L}\right]
$$

instead of a vector \boldsymbol{v}.

$$
\begin{aligned}
& \boldsymbol{s}_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} z^{k}(z B-A)^{-1} B \boldsymbol{v} \mathrm{~d} z \\
& \longrightarrow S_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} z^{k}(z B-A)^{-1} B V \mathrm{~d} z
\end{aligned}
$$

If the maximum multiplicity of $\lambda_{1}, \ldots, \lambda_{m}$ is less than or equal to L, then

$$
\operatorname{span}\left\{S_{0}, \ldots, S_{\tilde{m}-1}\right\}=\operatorname{span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}
$$

Construction of Subspace

Let Γ be a circle with center γ and radius ρ, then the integration

$$
S_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} z^{k}(z B-A)^{-1} B V \mathrm{~d} z
$$

is approximated by N-point trapezoidal rule:

$$
\hat{S}_{k}=\frac{1}{N} \sum_{j=0}^{N-1}\left(\frac{\omega_{j}-\gamma}{\rho}\right)^{k+1}\left(\omega_{j} B-A\right)^{-1} B V
$$

where $\omega_{j}=\gamma+\rho e^{\frac{2 \pi}{N}\left(j+\frac{1}{2}\right)}$.

Construction of Subspace

When A and B are real, we only need $N / 2$ points:

$$
\hat{S}_{k}=\frac{2}{N} \sum_{j=0}^{N / 2-1} \operatorname{Re}\left(\left(\frac{\omega_{j}-\gamma}{\rho}\right)^{k+1} Y_{j}\right)
$$

where

$$
\left(\omega_{j} B-A\right) Y_{j}=B V
$$

Filter Function

Contour integral:
$\boldsymbol{s}_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} z^{k}(z B-A)^{-1} B \boldsymbol{v} \mathrm{~d} z$

Filter

Trapezoidal rule:
$\hat{\boldsymbol{s}}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} z^{k+1}\left(\omega_{j} B-A\right)^{-1} B \boldsymbol{v}$

We set the size of the subspace by SVD of $\hat{S}=\left\{\hat{S}_{0}, \hat{S}_{1}, \ldots\right\}$.

Algorithm

Construction of a subspace

1. Solve $\left(\omega_{j} B-A\right) Y_{j}=B V$ for $Y_{j}, j=0, \ldots, N / 2-1$
2. Compute $\hat{S}_{k}=\frac{2}{N} \sum_{j=0}^{N / 2-1} \operatorname{Re}\left(\left(\frac{\omega_{j}-\gamma}{\rho}\right)^{k+1} Y_{j}\right)$, $k=0,1, \ldots, K-1$
3. Set \tilde{K} using the singular value decomposition of $\hat{S}=\left[\hat{S}_{0}, \ldots, \hat{S}_{K-1}\right]$

Rayleigh-Ritz procedure
4. Construct an orthonormal basis Q from $\hat{S}(:, 1: K)$
5. Form $A_{Q}=Q^{\mathrm{T}} A Q$ and $B_{Q}=Q^{\mathrm{T}} B Q$
6. Compute the Ritz pairs $\left(\hat{\lambda}_{j}, \hat{\boldsymbol{x}}_{j}\right), 1 \leq j \leq \tilde{K}$ with the projected pencil $\left(A_{Q}, B_{Q}\right)$

Flow of the method

Parallel Implementation

Parallel Implementation

Estimation of Eigenvalue Distribution

Rough estimation of eigenvalue distribution:

Results by Algebraic Sub-structuring method
Put circles:

Numerical Examples

Size of a subspace

- Test problem:
- $n=20$
- $D=\operatorname{diag}([12$... 20])
- $Q=Q R(C), C(i, j)=\operatorname{Rand}()$, $A=Q^{\top *} D^{*} Q, B=Q^{\top *} Q$
- $\gamma=4.8, \rho=4.0$

Size of a subspace

Maximum error of approximate eigenvalues $m=8$

Size of a subspace

Maximum error of approximate eigenvalues

Size of a subspace

Number of singular values of \hat{S}.s.t. $\sigma_{k} \geq 10^{-12} \times \max \left|a_{i j}\right|$

Numerical Example

- Test Problems:
- EGFR (Epidermal Growth Factor Receptor) dimmer
- Basis function: 6-31G
- Size: 96,234 × 96,234
- nnz: 456,807,648
- Test Environment:

AMD Opteron Processor Dual CPU x 128 nodes

- Solver: COCG method [van der Vorst and Melissen (1990)]
- Preconditioner: Complete Factorization for Approximate Matrix [Okada, S and Teranishi (2007)]
- Sparse Direct Solver for Preconditioner: PARDISO

Numerical Example

Sparsity pattern of the matrix

Timing Results with 256CPUs

- 32 CPUs for one circle, 8 Circles, Total 256 CPUs.

One linear system was solved on each computing node.
$N=32$
$L=4$

- 94 eigenpairs were obtained.
- Maximum residual was 3.4×10^{-10}.

Broadcasting
Solving linear systems
Rayleigh-Ritz procedure

Time in one circle

- 16 linear systems were solved for one circle.

Preconditioner

- Factorization

Iteration

- Forward/Backward Substitution
- Sparse Mat-Vec Multiply

Summary

- We consider an parallel eigenvalue solver for Molecular Orbital computations:
- Interior eigenvalur problem
- Semi-sparse matrix
- A subspace is constructed by a contour integral.
- We can avoid inner/outer loops
- Systems of linear equations are solved for each quadrature node simultaneously.
- Parallel implementation
- Future work
- Find appropriate parameters
- Estimation of eigenvalue distribution

