Computing Smallest and Interior Eigenvalues in SLEPc

Jose E. Roman
Universidad Politécnica de Valencia, Spain

IWASEP 7
Outline

1. Overview of SLEPc
2. Krylov Eigensolvers
 - Review of Krylov-type Eigensolvers
 - Krylov-Schur Restart
3. Spectral Transformation
 - Shift-and-Invert
 - Cayley Transform
4. Harmonic Projection
 - Harmonic Ritz Values
 - Harmonic Krylov-Schur
 - Refined Harmonic Extraction
5. Conclusion
Overview of SLEPc
Eigenvalue Problems

Standard Eigenproblem

\[Ax = \lambda x \]

Generalized Eigenproblem

\[Ax = \lambda Bx \]

where

- \(\lambda \) is a (complex) scalar: *eigenvalue*
- \(x \) is a (complex) vector: *eigenvector*
- Matrices \(A \) and \(B \) are large and sparse
- Matrices \(A \) and \(B \) can be real or complex
- Matrices \(A \) and \(B \) can be symmetric (Hermitian) or not
Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

\[
\lambda_0, \lambda_1, \ldots, \lambda_{nev-1} \in \mathbb{C} \\
x_0, x_1, \ldots, x_{nev-1} \in \mathbb{C}^n
\]
Solution of the Eigenvalue Problem

There are \(n \) eigenvalues (counted with their multiplicities)

Partial eigensolution: \(nev \) solutions

\[
\lambda_0, \lambda_1, \ldots, \lambda_{nev-1} \in \mathbb{C} \\
x_0, x_1, \ldots, x_{nev-1} \in \mathbb{C}^n
\]

Different requirements:

- Compute a few \(\lambda_i \)'s with largest or smallest magnitude
- Compute a few rightmost or leftmost \(\lambda_i \)'s
- Compute \(\lambda_i \)'s closest to a given point in the complex plane
- Compute all \(\lambda_i \)'s in a given interval
Spectral Transformation

A general technique that can be used in many methods

\[Ax = \lambda x \quad \implies \quad Tx = \theta x \]
Spectral Transformation

A general technique that can be used in many methods

\[Ax = \lambda x \quad \implies \quad Tx = \theta x \]

In the transformed problem
- The eigenvectors are not altered
- The eigenvalues are mapped to a different position
- Convergence is usually improved (better separation)

\[T = A + \sigma I \]

\[T^{-1} = (A - \sigma I)^{-1} \]

\[T = (A - \sigma I)^{-1}(A - \tau I) \]
Spectral Transformation

A general technique that can be used in many methods

\[Ax = \lambda x \quad \implies \quad Tx = \theta x \]

In the transformed problem

- The eigenvectors are not altered
- The eigenvalues are mapped to a different position
- Convergence is usually improved (better separation)

Shift of Origin

\[T_S = A + \sigma I \]

Shift-and-invert

\[T_{SI} = (A - \sigma I)^{-1} \]

Cayley

\[T_C = (A - \sigma I)^{-1}(A - \tau I) \]

Drawback: \(T \) not computed explicitly, linear solves instead
Singular Value Decomposition (SVD)

\[A = U \Sigma V^* \]

where

- \(A \) is an \(m \times n \) rectangular matrix
- \(U = [u_1, u_2, \ldots, u_m] \) is a \(m \times m \) unitary matrix
- \(V = [v_1, v_2, \ldots, v_n] \) is a \(n \times n \) unitary matrix
- \(\Sigma \) is a \(m \times n \) diagonal matrix with entries \(\Sigma_{ii} = \sigma_i \)
- \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0 \)
- If \(A \) is real, \(U \) and \(V \) are real and orthogonal
- Each \((\sigma_i, u_i, v_i) \) is called a singular triplet
In SLEPc we compute a *partial* SVD, that is, only a subset of the singular triplets.
What Users Need

- Abstraction of mathematical objects: vectors and matrices
- Efficient linear solvers (direct or iterative), preconditioners
- Easy programming interface
- Run-time flexibility, full control over the solution process
- Parallel computing, mostly transparent to the user

- State-of-the-art eigensolvers and SVD solvers
- Spectral transformations
What Users Need

Provided by PETSc

- Abstraction of mathematical objects: vectors and matrices
- Efficient linear solvers (direct or iterative), preconditioners
- Easy programming interface
- Run-time flexibility, full control over the solution process
- Parallel computing, mostly transparent to the user

Provided by SLEPc

- State-of-the-art eigensolvers and SVD solvers
- Spectral transformations
PETSc/SLEPc Numerical Components

PETSc

<table>
<thead>
<tr>
<th>Nonlinear Systems</th>
<th>Time Steppers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Search</td>
<td>Euler</td>
</tr>
<tr>
<td>Trust Region</td>
<td>Backward Euler</td>
</tr>
<tr>
<td>Other</td>
<td>Pseudo Time Step</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

Krylov Subspace Methods

<table>
<thead>
<tr>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMRES</td>
</tr>
<tr>
<td>CG</td>
</tr>
<tr>
<td>CGS</td>
</tr>
<tr>
<td>Bi-CGStab</td>
</tr>
<tr>
<td>TFQMR</td>
</tr>
<tr>
<td>Richardson</td>
</tr>
<tr>
<td>Chebychev</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Preconditioners

<table>
<thead>
<tr>
<th>Preconditioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive Schwarz</td>
</tr>
<tr>
<td>Block Jacobi</td>
</tr>
<tr>
<td>Jacobi</td>
</tr>
<tr>
<td>ILU</td>
</tr>
<tr>
<td>ICC</td>
</tr>
<tr>
<td>LU</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Matrices

<table>
<thead>
<tr>
<th>Matrix Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Sparse Row</td>
</tr>
<tr>
<td>Block Compressed Sparse Row</td>
</tr>
<tr>
<td>Block Diagonal</td>
</tr>
<tr>
<td>Dense</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Vectors

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indices</td>
</tr>
<tr>
<td>Block Indices</td>
</tr>
<tr>
<td>Stride</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
PETSc/SLEPc Numerical Components

PETSc

Nonlinear Systems
- Line Search
- Trust Region
- Other

Time Steppers
- Euler
- Backward Euler
- Pseudo Time Step
- Other

Krylov Subspace Methods
- GMRES
- CG
- CGS
- Bi-CGStab
- TFQMR
- Richardson
- Chebyshev
- Other

Preconditioners
- Additive Schwarz
- Block Jacobi
- Jacobi
- ILU
- ICC
- LU
- Other

Matrices
- Compressed Sparse Row
- Block Compressed Sparse Row
- Block Diagonal
- Dense
- Other

SLEPc

SVD Solvers
- Cross Product
- Cyclic Matrix
- Lanczos
- Thick Res. Lanczos

Eigensolvers
- Krylov-Schur
- Arnoldi
- Lanczos
- Other

Spectral Transform
- Shift
- Shift-and-invert
- Cayley
- Fold

Index Sets
- Indices
- Block Indices
- Stride
- Other
Summary

SLEPc: Scalable Library for Eigenvalue Problem Computations

A *general* library for solving large-scale sparse eigenproblems on parallel computers

- For standard and generalized eigenproblems
- For real and complex arithmetic
- For Hermitian or non-Hermitian problems

Current version: **2.3.3** (released June 2007)

http://www.grycap.upv.es/slepc
The SLEPc Project

Project started in 2001
8 releases since 2002
More than 2,000 downloads (average 60 downloads per month)
SLEPc Applications

Nuclear Engineering
Computing the Lambda Modes of a Nuclear Reactor with SLEPc and PETSc, V. Hernandez et al., Intl. Conference on Computational Methods for Mathematical Science and Engineering, 183-192, Alicante (Spain), September 2002.

Computational Electromagnetics

Plasma Physics

Computational Physics, Materials Science, Electronic Structure

Computational Chemistry

Other Applications
Simple Example

```c
EPS eps;  /* eigensolver context */
Mat A, B;  /* matrices of Ax=kBx */
Vec xr, xi;  /* eigenvector, x */
PetscScalar kr, ki;  /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
    EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);
}

EPSDestroy(eps);
```
Available Eigensolvers

Currently available eigensolvers:

- Power Iteration and RQI
- Subspace Iteration with Rayleigh-Ritz projection and locking
- Arnoldi method with explicit restart and deflation
- Lanczos method with explicit restart and deflation
 - Reorthogonalization: Local, Partial, Periodic, Selective, Full
- **Krylov-Schur** (default)

Also interfaces to external software: ARPACK, PRIMME, BLOPEX
Run-Time Examples

% program -eps_type krylovschur -epsnev 6 -epsncv 24
% program -eps_type krylovschur -eps_largest_real
% program -eps_type arnoldi -eps_tol 1e-8 -eps_max_it 2000
% program -eps_harmonic -eps_target 1.0
% program -eps_type arpack
% program -eps_type lapack
% program -eps_view -eps_monitor
Viewing Current Options

Sample output of -eps_view

EPS Object:
 problem type: symmetric eigenvalue problem
 method: lanczos
 reorthogonalization: selective
 selected portion of spectrum: largest eigenvalues in magnitude
 number of eigenvalues (nev): 1
 number of column vectors (ncv): 16
 maximum number of iterations: 100
 tolerance: 1e-07
 orthogonalization method: classical Gram-Schmidt
 orthogonalization refinement: if needed (eta: 0.500000)
 dimension of user-provided deflation space: 0

ST Object:
 type: shift
 shift: 0
Built-in Support Tools

- Plotting computed eigenvalues
 \% program -eps_plot_eigs

- Printing profiling information
 \% program -log_summary

- Debugging
 \% program -start_in_debugger
 \% program -malloc_dump
Built-in Support Tools

- Monitoring convergence (textually)
 `% program -eps_monitor`

- Monitoring convergence (graphically)
 `% program -draw_pause 1 -eps_monitor_draw`
Simple SVD Example

```c
SVD svd;       /* singular value solver context */
Mat A;         /* matrix */
Vec u, v;      /* singular vectors */
PetscReal sigma; /* singular value */

SVDCreate(PETSC_COMM_WORLD, &svd);
SVDSetOperators(svd, A);
SVDSSetFromOptions(svd);

SVDSolve(svd);

SVDDGetConverged(svd, &nconv);
for (i=0; i<nconv; i++) {
    SVDGetSingularTriplet(svd, i, &sigma, u, v);
}

SVDDestroy(svd);
```
SVD Solvers

1. Solvers based on EPS:

Cross product matrix

\[A^*Ax = \lambda x, \quad AA^*y = \lambda y \]

Eigenvalues are \(\lambda_i = \sigma_i^2 \) and eigenvectors \(x_i = v_i \) or \(y_i = u_i \)

Cyclic matrix

\[H(A)x = \lambda x, \quad H(A) = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix} \]

Eigenvalues are \(\pm \sigma_i \) and eigenvectors \(\frac{1}{\sqrt{2}} \begin{bmatrix} \pm u_i \\ v_i \end{bmatrix} \)
SVD Solvers

1. Solvers based on EPS:

 Cross product matrix
 \[
 A^*Ax = \lambda x, \quad AA^*y = \lambda y
 \]

 Eigenvalues are \(\lambda_i = \sigma_i^2 \) and eigenvectors \(x_i = v_i \) or \(y_i = u_i \)

 Cyclic matrix
 \[
 H(A)x = \lambda x, \quad H(A) = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}
 \]

 Eigenvalues are \(\pm \sigma_i \) and eigenvectors \(\frac{1}{\sqrt{2}} \begin{bmatrix} \pm u_i \\ v_i \end{bmatrix} \)

2. Specific solvers:
 - Explicit restart Lanczos bidiagonalization
 - Thick-restart Lanczos bidiagonalization
Run-Time Examples

% program -svd_type trlanczos -svd_nsv 4

% program -svd_type cross -svd_eps_type krylovschur
 -svd_ncv 30 -svd_smallest
 -svd_monitor_draw
Krylov Eigensolvers
Orthogonal Rayleigh-Ritz Procedure

1. Build orthogonal basis of a subspace, $V_m^* V_m = I$
2. Compute the projection onto the subspace, $H_m = V_m^* A V_m$
3. Compute eigenpairs of reduced problem, $H_m y_i = \tilde{\lambda}_i y_i$

Obtains $m \ll n$ Ritz pairs, $(\tilde{\lambda}_i, V_m y_i)$

In Krylov eigensolvers, V_m is a basis of the Krylov subspace $\mathcal{K}_m(A, v_1) \equiv \text{span}\{v_1, A v_1, \ldots, A^{m-1} v_1\}$

Best convergence for extreme and well separated eigenvalues
Arnoldi Method

initial vector v_1 of norm 1

for $j = 1, 2, \ldots, m$

\[w = Av_j \]

for $i = 1, 2, \ldots, j$

\[h_{i,j} = v_i^*w \]

\[w = w - h_{i,j}v_i \]

end

\[h_{j+1,j} = \|w\|_2 \]

\[v_{j+1} = w/h_{j+1,j} \]

end

Orthogonalization via CGS with selective refinement and estimated norm [Hernandez, R., Tomas, 2007]
Arnoldi Decomposition

\[AV_m = V_m H_m + f e_m^* \]
Arnoldi Decomposition

\[AV_m = V_m H_m + f e_m^* \]

\[AV_m = \begin{bmatrix} V_m & \nu_{m+1} \end{bmatrix} \begin{bmatrix} H_m \\ \beta e_m^* \end{bmatrix} \]
Arnoldi Decomposition

$$AV_m = V_m H_m + f e_m^*$$

$$AV_m = \begin{bmatrix} V_m & v_{m+1} \end{bmatrix} \begin{bmatrix} H_m \\ \beta e_m^* \end{bmatrix}$$
Restarted Arnoldi Methods

Cost grows with m - **Restarting** is required

1. Build an initial Arnoldi decomposition
2. Extract spectral information
3. Use information to build a new Arnoldi decomposition
4. If not satisfied go to step 2
Restarted Arnoldi Methods

Cost grows with m - **Restarting** is required

1. Build an initial Arnoldi decomposition
2. Extract spectral information
3. Use information to build a new Arnoldi decomposition
4. If not satisfied go to step 2

Alternatives:

Explicit restart: build new decomposition from a single vector

Implicit restart: compact the decomposition to dimension $m - p$, then extend it again (implemented in ARPACK)

The Krylov-Schur method [Stewart, 2001, 2002] is an alternative to the implicit restart implemented in ARPACK
Krylov Decomposition

Krylov decomposition

\[AU = UB + ub^* \]

Generalization of Arnoldi decomposition, \(B \) is not upper Hessenberg

Similarity transformation:

\[A(UW^{-1}) = (UW^{-1})(WBW^{-1}) + u(b^*W^{-1}) \]

Translation:

\[AU = U(B + gb^*) + (u - Ug)b^* \]
Krylov-Schur Decomposition

B can be reduced to upper quasi-triangular form by orthogonal similarity transformations

Krylov-Schur decomposition

$$AU = US + ub^*$$
Krylov-Schur Decomposition

B can be reduced to upper quasi-triangular form by orthogonal similarity transformations

$$
A U = U S + u b^*
$$

A Krylov-Schur decomposition can be truncated at any point

$$
A \begin{bmatrix}
U_1 & U_2
\end{bmatrix} = \begin{bmatrix}
U_1 & U_2
\end{bmatrix} \begin{bmatrix}
S_{11} & S_{12} \\
0 & S_{22}
\end{bmatrix} + u \begin{bmatrix}
b_1^* & b_2^*
\end{bmatrix}
$$

$$
A U_1 = U_1 S_{11} + u b_1^*
$$
Krylov-Schur Method

Input: Matrix A, initial vector x_1, and number of steps m
Output: $k \leq p$ Ritz pairs

1. Build an orthonormal Krylov decomposition of order m
2. Reduce to Krylov-Schur form by orthogonal similarity
3. Sort diagonal blocks of the Rayleigh quotient
4. Truncate to a Krylov-Schur decomposition of order p
5. Extend to a Krylov decomposition of order m
6. If not satisfied, go to step 2
Krylov-Schur Method

Input: Matrix A, initial vector x_1, and number of steps m
Output: $k \leq p$ Ritz pairs

1. Build an orthonormal Krylov decomposition of order m
2. Reduce to Krylov-Schur form by orthogonal similarity
3. Sort diagonal blocks of the Rayleigh quotient
4. Truncate to a Krylov-Schur decomposition of order p
5. Extend to a Krylov decomposition of order m
6. If not satisfied, go to step 2

Before step 5, lock converged eigenpairs according to residual norm

$$\|A\hat{U}y - \theta\hat{U}y\| = \|(\hat{U}\hat{S} + u\hat{b}^*)y - \theta\hat{U}y\| = \|u\hat{b}^*y\| = |\hat{b}^*y|$$
Build Krylov-Schur Decomposition

\[A \quad V_m \quad = \quad V_m \]

\[\text{with } T_m \quad \text{and } \quad b_{m+1}^* \]
Sort and Select p Wanted Eigenvalues

$$A \; \sim \; V_p \; = \; \tilde{V}_p$$

$$v_{m+1}$$

$$T_w$$

$$b_w^*$$
Truncate the Decomposition

\[\tilde{V}_{p+1} = \tilde{V}_p \]

\[\tilde{V}_p \]

\[A \]

\[\tilde{V}_p \]
Extend the Decomposition with Arnoldi Steps

\[A \begin{array} \tilde{V}_p \\ v_{m+1} \end{array} = \begin{array} \tilde{V}_p \\ Tw \\ bw^* \end{array} \]
Structure of Projected Eigenproblem

The projected eigenproblem has no longer Hessenberg form
Structure of Projected Eigenproblem

The projected eigenproblem has no longer Hessenberg form

In symmetric problems the projected matrix is also symmetric - Thick-restart Lanczos method
Spectral Transformation
Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

\[Ax = \lambda x \quad \Rightarrow \quad Tx = \theta x \]
Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

\[Ax = \lambda x \quad \implies \quad Tx = \theta x \]

- The user need not manage the ST object directly
- Internally, the eigensolver works with the operator \(T \)
- At the end, eigenvalues are transformed back automatically
Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

\[Ax = \lambda x \quad \implies \quad T x = \theta x \]

- The user need not manage the ST object directly
- Internally, the eigensolver works with the operator \(T \)
- At the end, eigenvalues are transformed back automatically

<table>
<thead>
<tr>
<th>ST</th>
<th>Standard problem</th>
<th>Generalized problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>shift</td>
<td>(A + \sigma I)</td>
<td>(B^{-1}A + \sigma I)</td>
</tr>
<tr>
<td>fold</td>
<td>((A + \sigma I)^2)</td>
<td>((B^{-1}A + \sigma I)^2)</td>
</tr>
<tr>
<td>sinvert</td>
<td>((A - \sigma I)^{-1})</td>
<td>((A - \sigma B)^{-1}B)</td>
</tr>
<tr>
<td>cayley</td>
<td>((A - \sigma I)^{-1}(A - \tau I))</td>
<td>((A - \sigma B)^{-1}(A - \tau B))</td>
</tr>
</tbody>
</table>
Illustration of Spectral Transformation

Spectrum folding

\[\theta = (\lambda - \sigma)^2 \]

Shift-and-invert

\[\theta = \frac{1}{\lambda - \sigma} \]
Shift-and-Invert

\[T_{SI} = (A - \sigma I)^{-1} \]

Enhance convergence of eigenvalues closest to \(\sigma \) [Ericsson, Ruhe, 1980], [Nour-Omid et al, 1987], [Grimes et al, 1994]
Shift-and-Invert

\[T_{SI} = (A - \sigma I)^{-1} \]

Enhance convergence of eigenvalues closest to \(\sigma \) \cite{EricssonRuhe1980,Nour-Omid1987,Grimes1994}.

Problem: convergence criterion operates on transformed problem

- Improve \(x \) \cite{EricssonRuhe1980,HetmaniukLehoucq2006}
- Compute explicit residuals of original problem
Shift-and-Invert

\[T_{SI} = (A - \sigma I)^{-1} \]

Enhance convergence of eigenvalues closest to \(\sigma \) [Ericsson, Ruhe, 1980], [Nour-Omid et al, 1987], [Grimes et al, 1994]

Problem: convergence criterion operates on transformed problem

- Improve \(x \) [Ericsson, Ruhe, 1980], [Hetmaniuk, Lehoucq, 2006]
- Compute explicit residuals of original problem

Linear systems must be solved in each Arnoldi iteration

- Direct solver recommended: exact shift-and-invert
- Iterative solver possible: inexact shift-and-invert

Far eigenvalues mapped to zero: possible bad convergence
Cayley Transform

\[T_C = (A - \sigma I)^{-1}(A - \tau I) \]

Mathematically equivalent to shift-and-invert, \(T_C = I + (\sigma - \tau)T_{SI} \)

Also enhance convergence of eigenvalues closest to \(\sigma \)

Linear solver also required

Far eigenvalues mapped to one: better for iterative solvers

Has been used for applications that compute rightmost eigenvalues

[Meerbergen, Roose, 1996, 1997], [Lehoucq, Salinger, 2001]
ST Run-Time Examples

% program -eps_type power -st_type shift -st_shift 1.5
% program -eps_type power -st_type sinvert -st_shift 1.5
% program -eps_type power -st_type sinvert -eps_power_shift_type rayleigh
% program -st_type sinvert -st_shift 1 -st_ksp_type bcgsl -st_ksp_rtol 1e-8 -st_pc_type sor -st_pc_sor_omega 1.3
% program -st_type cayley -st_shift 1 -st_antishift -1
Harmonic Projection
Application: Plasma Turbulence

Study of plasma turbulence inside a tokamak
 ▶ Nonlinear gyrokinetic equations
SLEPc is used to compute the rightmost eigenvalues of a complex, non-Hermitian matrix
Sizes ranging from a few millions to even a billion
Application: Plasma Turbulence

Study of plasma turbulence inside a tokamak
 ▶ Nonlinear gyrokinetic equations
SLEPc is used to compute the rightmost eigenvalues of a complex, non-Hermitian matrix
Sizes ranging from a few millions to even a billion
The matrix is not built explicitly
 ▶ Spectral transformation impractical (no preconditioner available)
Harmonic Krylov-Schur is about 5 times faster than inexact spectral transform
Harmonic Projection

Harmonic Ritz values [Morgan, 1991], [Paige, Parlett, van der Vorst, 1995] are the reciprocals of Ritz values of A^{-1} with respect to the subspace $AK_m(A, v_1)$

- The idea is to compute them without building A^{-1}
- Harmonic Ritz values are not shift-invariant $\rightarrow (A - \tau I)^{-1}$

Can also be defined in terms of Rayleigh quotients [Beattie, 1998]

Another interpretation possible in terms of an oblique projection

- The space of approximats is $K_m(A, v_1)$
- The residuals are orthogonal to $AK_m(A, v_1)$
Harmonic Projection - Practical Implementation

In a practical implementation, we want to

▶ Avoid building $(A - \tau I)^{-1}$
▶ Avoid building two bases, one for \mathcal{K}_m and the other for $A\mathcal{K}_m$

Main idea:

▶ Define $V := (A - \tau I)U$, where U is a (orthogonal) basis of \mathcal{K}_m
▶ Manipulate the relations, trying to cancel $(A - \tau I)^{-1}$
Harmonic Krylov-Schur - Naive Approach

Suppose we have built a Krylov decomposition $AU = UB + ub^*$

After shifting

$$(A - \tau I)U = U(B - \tau I) + ub^*$$

Since $V := (A - \tau I)U$, we have $V = U(B - \tau I) + ub^*$, or

$$U = V(B - \tau I)^{-1} - ug^*$$

$g := (B - \tau I)^{-*}b$
Harmonic Krylov-Schur - Naive Approach

Suppose we have built a Krylov decomposition \(AU = UB + ub^* \)

After shifting \((A - \tau I)U = U(B - \tau I) + ub^* \)

Since \(V := (A - \tau I)U \), we have \(V = U(B - \tau I) + ub^* \), or

\[
U = V(B - \tau I)^{-1} - ug^* \quad g := (B - \tau I)^{-*}b
\]

This is a Krylov decomposition of \((A - \tau I)^{-1}\), so if \(\theta \) is an eigenvalue of \((B - \tau I)^{-1}\) then \(\theta^{-1} + \tau \) is an harmonic Ritz value of \(A \)

Problem: this would require computing \(V \) and orthogonalizing
Harmonic Krylov-Schur - Galerkin View

Orthogonal projection for \((A - \tau I)^{-1}\) with respect to \(V\)

Galerkin condition

\[
V^* \left[(A - \tau I)^{-1}Vz - \tilde{\theta}Vz \right] = 0
\]

\[
V^*(A - \tau I)^{-1}Vz = \tilde{\theta}V^*Vz
\]
Harmonic Krylov-Schur - Galerkin View

Orthogonal projection for \((A - \tau I)^{-1}\) with respect to \(V\)

Galerkin condition

\[
V^\ast \left((A - \tau I)^{-1} V z - \tilde{\theta} V z \right) = 0
\]

\[
V^\ast (A - \tau I)^{-1} V z = \tilde{\theta} V^\ast V z
\]

In terms of \(U\):

\[
U^\ast (A - \tau I)^\ast U z = \tilde{\theta} U^\ast (A - \tau I)^\ast (A - \tau I) U z
\]

Using \((A - \tau I)U = U(B - \tau I) + ub^\ast\):

\[
(B - \tau I)^\ast z = \tilde{\theta} [U(B - \tau I) + ub^\ast]^\ast [U(B - \tau I) + ub^\ast] z
\]

\[
(B - \tau I)^\ast z = \tilde{\theta} [(B - \tau I)^\ast (B - \tau I) + bb^\ast] z
\]
Harmonic Krylov-Schur - Projected Problem

The projected problem

\[(B - \tau I)^*z = \tilde{\theta} [(B - \tau I)^*(B - \tau I) + bb^*]z\]

can be solved as a generalized eigenproblem or reduced to a standard eigenproblem:

1. Compute Cholesky factor of right matrix, as \(QR = \begin{bmatrix} B - \tau I \\ b^* \end{bmatrix}\)

2. Pre-multiply by \((B - \tau I)^{-*}\) (if well conditioned)

\[z = \tilde{\theta} [(B - \tau I) + gb^*]z\]

\[(B + gb^*)z = (\tilde{\theta}^{-1} + \tau)z\]

\[g := (B - \tau I)^{-*}b\]
Harmonic Krylov-Schur - Petrov-Galerkin View

Oblique projection for \((A - \tau I)\) onto \(\mathcal{K}_m\) orthogonal to \(A\mathcal{K}_m\)

Petrov-Galerkin condition

\[
V^* \left[(A - \tau I)U y - \tilde{\lambda}U y \right] = 0
\]
\[
V^*(A - \tau I)U y = \tilde{\lambda}V^*U y
\]
Harmonic Krylov-Schur - Petrov-Galerkin View

Oblique projection for \((A - \tau I)\) onto \(K_m\) orthogonal to \(AK_m\)

Petrov-Galerkin condition
\[
V^* \left[(A - \tau I)Uy - \tilde{\lambda}Uy \right] = 0
\]
\[
V^*(A - \tau I)Uy = \tilde{\lambda}V^*Uy
\]

Using the Krylov decomposition:
\[
V^* \left[U(B - \tau I) + ub^* \right] y = \tilde{\lambda}V^*Uy
\]
\[
[V^*U(B - \tau I) + V^*ub^*] y = \tilde{\lambda}V^*Uy
\]
\[
[B - \tau I + (V^*U)^{-1}V^*ub^*] y = \tilde{\lambda}y
\]
\[
V^*U = U^*(A - \tau I)^*U = (B - \tau I)^* \text{ and } V^*u = U^*(A - \tau I)^*u = b
\]

\[
[B + (B - \tau I)^{-*}bb^*] y = (\tilde{\lambda} + \tau)y
\]
Harmonic Krylov-Schur - Summary

1. Build a Krylov-Schur decomposition for A

\[AU = UB + ub^* \]

2. Solve projected eigenproblem

\[(B + gb^*)z = (\tilde{\theta}^{-1} + \tau)z \]

3. The eigenvalues are harmonic Ritz values

4. The harmonic Ritz vectors are Vz but Uz can be taken as well
Harmonic Krylov-Schur - Summary

1. Build a Krylov-Schur decomposition for A

$$AU = UB + ub^*$$

2. Solve projected eigenproblem

$$(B + gb^*)z = (\tilde{\theta}^{-1} + \tau)z$$

3. The eigenvalues are harmonic Ritz values

4. The harmonic Ritz vectors are Vz but Uz can be taken as well

Practical considerations: restart and convergence test
Implementation based on translations [Stewart, 2002]
Harmonic Krylov-Schur Method

1. Build an orthonormal Krylov decomposition of order m

2. Translate $AU = U \tilde{B} + \tilde{u}b^*$, $\tilde{B} = B + gb^*$, $\tilde{u} = u - Ug$

3. Reduce to Krylov-Schur form by orthogonal similarity

4. Sort diagonal blocks of the Rayleigh quotient

5. Truncate to a Krylov-Schur decomposition of order p

6. Recover orthonormality with another translation $\hat{B} = \hat{S} + \hat{g}b^*$, $\hat{u} = \tilde{u} - \hat{U}\hat{g}$, $\hat{g} = -Q^*l_g$

7. Extend to a Krylov decomposition of order m

8. If not satisfied, go to step 2
Harmonic Krylov-Schur Method

1. Build an orthonormal Krylov decomposition of order m
2. Translate
 \[AU = U \tilde{B} + \tilde{u} b^*, \quad \tilde{B} = B + gb^*, \quad \tilde{u} = u - U g \]
3. Reduce to Krylov-Schur form by orthogonal similarity
4. Sort diagonal blocks of the Rayleigh quotient
5. Truncate to a Krylov-Schur decomposition of order p
7. Extend to a Krylov decomposition of order m
8. If not satisfied, go to step 2
Harmonic Krylov-Schur Method

1. Build an orthonormal Krylov decomposition of order m
2. Translate
 \[AU = U \tilde{B} + \tilde{u} b^*, \quad \tilde{B} = B + gb^*, \quad \tilde{u} = u - Ug \]
3. Reduce to Krylov-Schur form by orthogonal similarity
4. Sort diagonal blocks of the Rayleigh quotient (largest θ
5. Truncate to a Krylov-Schur decomposition of order p

7. Extend to a Krylov decomposition of order m
8. If not satisfied, go to step 2
Harmonic Krylov-Schur Method

1. Build an orthonormal Krylov decomposition of order m
2. Translate

$$AU = U\tilde{B} + \tilde{u}b^*, \quad \tilde{B} = B + gb^*, \quad \tilde{u} = u - Ug$$

3. Reduce to Krylov-Schur form by orthogonal similarity
4. Sort diagonal blocks of the Rayleigh quotient (largest θ)
5. Truncate to a Krylov-Schur decomposition of order p
6. Recover orthonormality with another translation

$$\hat{B} = \hat{S} + \hat{g}b^*, \quad \gamma\hat{u} = \tilde{u} - \hat{U}g, \quad \hat{g} = -Q_{1:\ell}^*g$$

7. Extend to a Krylov decomposition of order m
8. If not satisfied, go to step 2
Harmonic Krylov-Schur Method - Practical Aspects

\(\tilde{u} \) is not really necessary, because

\[γ\hat{u} = (u - Ug) - \hat{U} \hat{g} = u - Ug + U Q_{1:ℓ} Q_{1:ℓ}^* g = u - U \tilde{g} \]

where \(\tilde{g} = (I - Q_{1:ℓ} Q_{1:ℓ}^*) g \)
Harmonic Krylov-Schur Method - Practical Aspects

\(\tilde{u} \) is not really necessary, because

\[
\gamma \hat{u} = (u - Ug) - \hat{U} \hat{g} = u - Ug + UQ_{1: \ell}Q_{1: \ell}^*g = u - U\tilde{g}
\]

where \(\tilde{g} = (I - Q_{1: \ell}Q_{1: \ell}^*)g \)

Its norm is required for the computation of the residual norm estimates,

\[
\| A\hat{U}y - \theta\hat{U}y \| = \|(\hat{U}\hat{S} + \tilde{u}\hat{b}^*)y - \theta\hat{U}y \| = \|\tilde{u}\hat{b}^*y\| = \|\tilde{u}\|\|\hat{b}^*y\|
\]

But since \(\tilde{u} = u - Ug \) with \(u \perp U \),

\[
\|\tilde{u}\| = \sqrt{1 + \|g\|^2}
\]
Harmonic Krylov-Schur Method - Compact Implementation

Input: \[AU = UB + ub^* \]
Output: \[A\hat{U} = \hat{U}\hat{B} + \hat{u}(\gamma\hat{b})^* \]

\[g = (B - \tau I)^{-*}b \]
\[\tilde{B} = B + gb^* \]
\[[Q, \tilde{S}] = \text{schur_sorted}(B, \tau) \]
\[\hat{b} = Q^*_{1:\ell}b \]
\[\hat{g} = -Q^*_{1:\ell}g \]
\[\|\tilde{u}\| = \sqrt{1 + \|g\|^2} \]

Test convergence, using \[\|\tilde{u}\| \] and \[\hat{b} \]
\[\hat{B} = \tilde{S}_{1:\ell,1:\ell} + \hat{g}\hat{b}^* \]
\[\tilde{g} = (I - Q_{1:\ell}Q^*_{1:\ell})g \]
\[\hat{u} = u - U\tilde{g} \]
\[\gamma = \sqrt{1 + \|\tilde{g}\|^2} \]
\[\hat{U} = UQ_{1:\ell} \]
Refined Harmonic Extraction

For the refined harmonic extraction, we change the way the harmonic Ritz vector and the residual estimate are computed:

\[\tilde{x}_i = U z_i, \]

\[\| (A - \tilde{\lambda}_i I) \tilde{x}_i \| = \sigma_{\min}(C), \]

where

\[C = \begin{bmatrix} B - \tau I \\ b^* \end{bmatrix}, \]

and \(z_i \) is the right singular vector of \(C \) associated with its smallest singular value.
Conclusion
SLEPc Highlights

- Growing number of eigensolvers
- Seamlessly integrated spectral transformation
- Easy programming with PETSc’s object-oriented style
- Data-structure neutral implementation
- Run-time flexibility, giving full control over the solution process
- Portability to a wide range of parallel platforms
- Usable from code written in C, C++ and Fortran
- Extensive documentation
Harmonic Krylov-Schur - Work in Progress

Usable prototype of harmonic Krylov-Schur

- Check if it is safe to invert \((B - \tau I)^*\)
- Keep projected eigenproblem in generalized form to preserve symmetry
- Discard harmonic Ritz value, keep vector

Extensions:

- Explicitly restarted solvers (Arnoldi and Lanczos)
- Lanczos bidiagonalization for the SVD \([\text{Baglama, Reichel, 2005}]\)
- Use in Cyclic SVD solver for small singular values
- Generalizations of harmonic Ritz values \([\text{Hochstenbach, 2005}]\)
Harmonic Krylov-Schur - Work in Progress

Usable prototype of harmonic Krylov-Schur

- Check if it is safe to invert \((B - \tau I)^*\)
- Keep projected eigenproblem in generalized form to preserve symmetry
- Discard harmonic Ritz value, keep vector

Extensions:

-Explicitly restarted solvers (Arnoldi and Lanczos)
- Lanczos bidiagonalization for the SVD [Baglama, Reichel, 2005]
- Use in Cyclic SVD solver for small singular values
- Generalizations of harmonic Ritz values [Hochstenbach, 2005]
More Work in Progress

Refined extraction – need to know:

- How locking is done in explicitly restarted Arnoldi
- How complex conjugate pairs can be handled
- How refined Ritz vectors fit in the Krylov-Schur scheme

Extend for harmonic projection
More Work in Progress

Refined extraction – need to know:

- How locking is done in explicitly restarted Arnoldi
- How complex conjugate pairs can be handled
- How refined Ritz vectors fit in the Krylov-Schur scheme

Extend for harmonic projection

Preconditioned eigensolvers

- First attempt: Davidson-type trace minimization (to be presented in Vecpar 08)
- Next goal: Generalized Davidson and various Jacobi-Davidson
Thanks!

http://www.grycap.upv.es/slepc
slepc-maint@grycap.upv.es