Modal Approximations to Damped Systems

Krešimir Veselić, Fernuniversität Hagen

June 7, 2008

Krešimir Veselić, Fernuniversität Hagen Modal Approximations to Damped Systems

A B K A B K

System:
$$M\ddot{x} + C\dot{x} + Kx = 0,$$
 (1)

M, C, K real symm. matrices with M, K positive definite and C positive semidefinite. The *phase space formulation* of (1):

$$\dot{y} = Ay,$$

$$A = \begin{bmatrix} 0 & L_1^T L_2^{-T} \\ -L_2^{-1} L_1 & -L_2^{-T} C L_2^{-1} \end{bmatrix},$$
$$y = \begin{bmatrix} L_1^T x \\ L_2^T \dot{x} \end{bmatrix}, \quad K = L_1 L_1^T, \ M = L_2 L_2^T.$$

伺下 イヨト イヨト

System:
$$M\ddot{x} + C\dot{x} + Kx = 0,$$
 (1)

M, C, K real symm. matrices with M, K positive definite and C positive semidefinite. The *phase space formulation* of (1):

$$\dot{y} = Ay,$$

$$A = \begin{bmatrix} 0 & L_1^T L_2^{-T} \\ -L_2^{-1} L_1 & -L_2^{-T} C L_2^{-1} \end{bmatrix},$$
$$y = \begin{bmatrix} L_1^T x \\ L_2^T \dot{x} \end{bmatrix}, \quad K = L_1 L_1^T, \ M = L_2 L_2^T.$$

The total energy identity

$$\|y\|^2 = \dot{x}^T M \dot{x} + x^T K x.$$

回 と く ヨ と く ヨ と

The quadratic eigenvalue problem

$$(\lambda^2 M + \lambda C + K)x = 0$$
⁽²⁾

A B K A B K

is equivalent to $Ay = \lambda y$.

Spectral decomposition of A, needed for e^{At} , may not exist at all, even for physically relevant systems.

 $C_{prop} = \alpha M + \beta K,$

now everything easy: M, C_{prop}, K are simultaneously diagonalized by a congruence.

伺い イヨト イヨト ニヨ

 $C_{prop} = \alpha M + \beta K,$

now everything easy: M, C_{prop}, K are simultaneously diagonalized by a congruence. In general this may go quite astray and give false predictions. Will assess such approximations (spectrum, matrix exponential).

伺い イヨト イヨト ニヨ

 $C_{prop} = \alpha M + \beta K,$

now everything easy: M, C_{prop}, K are simultaneously diagonalized by a congruence. In general this may go quite astray and give false predictions. Will assess such approximations (spectrum, matrix exponential). Go to 'modal coordinates':

$$\Phi^{\mathsf{T}} \mathsf{K} \Phi = \Omega^2 = diag(\omega_1^2, \dots, \omega_n^2), \quad \Phi^{\mathsf{T}} \mathsf{M} \Phi = \mathsf{I}$$

 $\omega_1 \leq \cdots \leq \omega_n$ are the undamped frequencies. Obtain

$$(\lambda^2 I + \lambda D + \Omega^2) x = 0, \quad D = \Phi^T C \Phi.$$

・吊り ・ヨン ・ヨン ・ヨ

 $C_{prop} = \alpha M + \beta K,$

now everything easy: M, C_{prop}, K are simultaneously diagonalized by a congruence. In general this may go quite astray and give false predictions. Will assess such approximations (spectrum, matrix exponential). Go to 'modal coordinates':

$$\Phi^{\mathsf{T}} \mathsf{K} \Phi = \Omega^2 = diag(\omega_1^2, \dots, \omega_n^2), \quad \Phi^{\mathsf{T}} \mathsf{M} \Phi = \mathsf{I}$$

 $\omega_1 \leq \cdots \leq \omega_n$ are the undamped frequencies. Obtain

$$(\lambda^2 I + \lambda D + \Omega^2) x = 0, \quad D = \Phi^T C \Phi.$$

Simultaneaus diagonalizability $\iff D$ commutes with Ω .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Instead of merely proportional damping we take any block-diagonal part D^0 of D that commutes with Ω (generically just the diagonal part of D) This is called a modal approximation. Its eigenvalues are

$$\lambda^j_\pm = rac{-d_{jj}\pm\sqrt{d^2_{jj}-4\omega^2_j}}{2}.$$

通 と く ヨ と く ヨ と

Instead of merely proportional damping we take any block-diagonal part D^0 of D that commutes with Ω (generically just the diagonal part of D) This is called a modal approximation. Its eigenvalues are

$$\lambda^j_\pm = rac{-d_{jj}\pm\sqrt{d^2_{jj}-4\omega^2_j}}{2}.$$

Start with perturbation bounds. They will comprise

- Undamped approximation (as a prelude)
- Modal approximations

Both are performed by

- Spectral norm bounds
- Gershgorin type bounds

伺下 イヨト イヨト

In the phase space we have $A = A_0 + B$:

$$A_0 = \left[egin{array}{cc} 0 & \Omega \ -\Omega & 0 \end{array}
ight], \quad B = \left[egin{array}{cc} 0 & 0 \ 0 & -D \end{array}
ight].$$

 A_0 is skew-symmetric, so by standard perturbation theory $\sigma(A)$ is contained in the union of disks of radius

$$\|D\| = \max \frac{x^T C x}{x^T M x}$$

centred at $\pm i\omega_j$.

In the phase space we have $A = A_0 + B$:

$$A_0 = \left[egin{array}{cc} 0 & \Omega \ -\Omega & 0 \end{array}
ight], \quad B = \left[egin{array}{cc} 0 & 0 \ 0 & -D \end{array}
ight].$$

 A_0 is skew-symmetric, so by standard perturbation theory $\sigma(A)$ is contained in the union of disks of radius

$$\|D\| = \max \frac{x^T C x}{x^T M x}$$

centred at $\pm i\omega_j$. Too crude an estimate — *B* has so many zeros.

通 とう きょう うちょう

Remedy: Turn back to the quadratic eigenvalue formulation. The inverse

$$(\lambda^2 I + \lambda D + \Omega^2)^{-1} =$$
$$(\lambda^2 I + \Omega^2)^{-1} (I + \lambda D (\lambda^2 I + \Omega^2)^{-1})^{-1}$$

exists, if

$$\|(\lambda^2 I + \Omega^2)^{-1}\|\|D\| = \max_j \frac{\|D\|}{|\lambda - i\omega_j||\lambda + i\omega_j|} < 1$$

Hence the bound:

回 と く ヨ と く ヨ と

$$\sigma(A) \subseteq \cup_j \mathbb{C}(i\omega_j, -i\omega_j, \|D\|).$$

Here

$$\mathfrak{C}(\lambda_+,\lambda_-,r) = \{\lambda: |\lambda-\lambda_+||\lambda-\lambda_-| \leq |\lambda|r\}$$

are stretched Cassini ovals with foci λ_{\pm} and extension r. May consist of one or two components; the latter when r is small with respect to $|\lambda_{+} - \lambda_{-}| = 2\omega_{j}$. Then

$$\mathcal{C}(\lambda_+,\lambda_-,r) \approx \left\{ \lambda : |\lambda \pm i\omega_j| \le \frac{\|D\|}{2} \right\}$$
 (3)

伺下 イヨト イヨト

disks, one half of the standard radius! Purely first order estimate. Requires no separation of the undamped eigenvalues.

$$\sigma(A) \subseteq \cup_j \mathbb{C}(i\omega_j, -i\omega_j, \|D\|).$$

Here

$$\mathfrak{C}(\lambda_+,\lambda_-,r)=\{\lambda:|\lambda-\lambda_+||\lambda-\lambda_-|\leq |\lambda|r\}$$

are stretched Cassini ovals with foci λ_{\pm} and extension r. May consist of one or two components; the latter when r is small with respect to $|\lambda_{+} - \lambda_{-}| = 2\omega_{i}$. Then

$$\mathcal{C}(\lambda_+,\lambda_-,r) \approx \left\{ \lambda : |\lambda \pm i\omega_j| \le \frac{\|D\|}{2} \right\}$$
 (3)

伺下 イヨト イヨト

disks, one half of the standard radius! Purely first order estimate. Requires no separation of the undamped eigenvalues. Gershgorin-type estimate immediate

$$\sigma(A) \subseteq \cup_j \mathfrak{C}(i\omega_j, -i\omega_j, R_j), \quad R_j = \sum_{k=1}^n |d_{jk}|.$$

Modal approximation.

The standard methods in the phase space get clumsy. The quadratic eigenvalue approach stays elegant: $D = D^0 + D'$, $D^0 = \text{diag}(\text{diag}(D))$ and

$$(\lambda^2 I + \lambda D + \Omega^2)^{-1}$$

exists, if

$$\frac{|\lambda|\|D'\|}{\min_{j}(|\lambda-\lambda_{+}^{j}||\lambda-\lambda_{-}^{j}|)} < 1$$

where λ_{\pm}^{j} are given by

$$(\lambda - \lambda_{+}^{j})(\lambda - \lambda_{-}^{j}) = \lambda^{2} + \lambda d_{jj} + \omega_{j}^{2}$$

Hence

$$\sigma(A) \subseteq \cup_{j} \mathcal{C}(\lambda_{+}^{j}, \lambda_{-}^{j}, \|D'\|), \tag{4}$$

伺下 イヨト イヨト

Did we obtain tighter bound than those with undamped approximation? Is $\|D'\|$ always smaller than $\|D\|$? Well, yes, and more.

Theorem. Let $D = D^*$ and D' any its block diagonal part. Then

 $\|D'\| \leq \operatorname{spread}(D)$

If, D is pos. semidefinite then

 $\|D'\| \le \|D\|$

(spectral norms).

A K K B K K B K K B

Did we obtain tighter bound than those with undamped approximation? Is $\|D'\|$ always smaller than $\|D\|$? Well, yes, and more.

Theorem. Let $D = D^*$ and D' any its block diagonal part. Then

 $\|D'\| \leq \operatorname{spread}(D)$

If, D is pos. semidefinite then

 $\|D'\| \le \|D\|$

(spectral norms).

Hence: the coarser block diagonal part is extracted, the smaller norm (and better eigenvalue bound) is obtained. This requires multiplicities among ω_j (tight clusterings would also do).

伺下 イヨト イヨト

Gershgorin bounds also immediate.

 $\sigma(A) \subseteq \cup_j \mathfrak{C}(\lambda^j_+, \lambda^j_-, r_j)$

with

$$r_j = \sum_{\substack{k=1\\k\neq j}}^p |d_{jk}|.$$

Gershgorin bounds also immediate.

$$\sigma(A) \subseteq \cup_j \mathfrak{C}(\lambda^j_+, \lambda^j_-, r_j)$$

with

$$r_j = \sum_{\substack{k=1\\k\neq j}}^p |d_{jk}|.$$

Long existing phase space Gershgorin disk bound (P. Lancaster)

$$\sigma(A) \subseteq \cup_j \{\lambda : |\lambda \mp i\omega_j + rac{d_{jj}}{2}| \leq r'_j \}$$

with

$$r_j'=r_j+\frac{|d_{jj}|}{2}$$

同 と く き と く き と … き

Gershgorin bounds also immediate.

$$\sigma(A) \subseteq \cup_j \mathfrak{C}(\lambda^j_+, \lambda^j_-, r_j)$$

with

$$r_j = \sum_{\substack{k=1\\k\neq j}}^p |d_{jk}|.$$

Long existing phase space Gershgorin disk bound (P. Lancaster)

$$\sigma(A) \subseteq \cup_j \{\lambda : |\lambda \mp i\omega_j + rac{d_{jj}}{2}| \leq r'_j \}$$

with

$$r_j'=r_j+\frac{|d_{jj}|}{2}$$

Relevant only for small d_{jj} , but then our ovals are about twice as narrow as the circles above. Need: tight bounds for the diameters of stretched ovals.

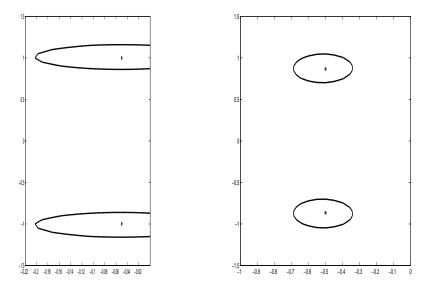
• • = • • = •

Coarser block estimates also possible, when allowed by multiple ω_j . Often, but not always, better bounds.

We plot some stretched ovals.

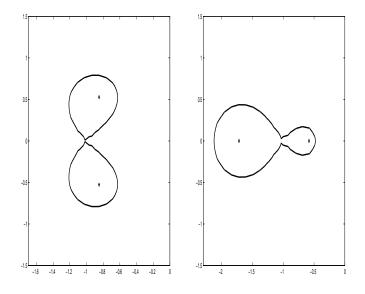
通 と く ヨ と く ヨ と

Ovals for $\omega = 1$; d = 0.1, 1; r = 0.3:



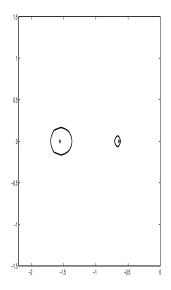
・ロト ・回ト ・ヨト ・ヨト

Ovals for $\omega = 1$; d = 1.7, 2.3, 2.2; r = 0.3, 0.3, 0.1:



< ∃⇒

A⊒ ▶ ∢ ∃



◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Brauer-like ovals can also be incorporated. The spectrum is contained in the union of *double ovals*

$$\mathcal{D}(\lambda_{+}^{p},\lambda_{-}^{p},\lambda_{+}^{q},\lambda_{-}^{q},r_{p}r_{q}) =$$

 $\{\lambda: |\lambda-\lambda_{+}^{p}||\lambda-\lambda_{-}^{p}||\lambda-\lambda_{+}^{q}||\lambda-\lambda_{-}^{q}| \leq r_{p}r_{q}|\lambda|^{2}\},\$

where the union is taken over all pairs $p \neq q$ and λ_{\pm}^{p} are the solutions of $\lambda^{2} + d_{pp}\lambda + \omega_{p}^{2} = 0$ and similarly for λ_{\pm}^{q} .

通 と く ヨ と く ヨ と

A bound for the matrix exponential

Recall: $D = D^0 + D'$. Then

 $|x^T D' y|^2 \le \epsilon^2 x^T D^0 x y^T D y,$

for any $\epsilon > 0$ (sic!) Then

$$\|e^{At}-e^{A^0t}\|\leq \frac{\varepsilon}{2}$$

where

$$egin{array}{lll} {\cal A}^0 = \oplus_j \left[egin{array}{cc} 0 & \omega_j \ -\omega_j & -d_{jj} \end{array}
ight] \end{array}$$

is the modal part of A.

伺い イヨン イヨン

A bound for the matrix exponential

Recall: $D = D^0 + D'$. Then

 $|x^T D' y|^2 \le \epsilon^2 x^T D^0 x y^T D y,$

for any $\epsilon > 0$ (sic!) Then

$$\|e^{At}-e^{A^0t}\|\leq rac{\varepsilon}{2}$$

where

$$egin{array}{lll} {\cal A}^0=\oplus_j \left[egin{array}{cc} 0 & \omega_j \ -\omega_j & -d_{jj} \end{array}
ight] \end{array}$$

is the modal part of A.

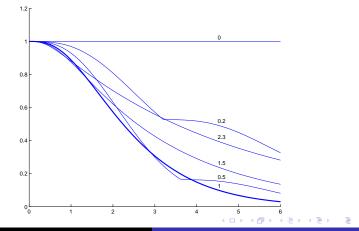
Allows to obtain bounds for the exponential decay of $||e^{At}||$.

通 と く ヨ と く ヨ と

The computation or simple estimation of 2×2 exponential is not quite trivial (ask Beresford). We plot the norm of

$$exp\left(\left[\begin{array}{cc} 0 & 1 \\ -1 & -2\theta \end{array}\right]\tau\right)$$

for various θ and the 'absolute time' $\tau \in [1, 6]$:



Krešimir Veselić, Fernuniversität Hagen

Modal Approximations to Damped Systems