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System: Mẍ + Cẋ + Kx = 0, (1)

M,C ,K real symm. matrices with M,K positive definite and C

positive semidefinite. The phase space formulation of (1):

ẏ = Ay ,

A =

[
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1 L−T

2
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,
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, K = L1L
T
1 , M = L2L

T
2 .
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The total energy identity

‖y‖2 = ẋTMẋ + xT Kx .
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The quadratic eigenvalue problem

(λ2M + λC + K )x = 0 (2)

is equivalent to Ay = λy .
Spectral decomposition of A, needed for eAt , may not exist at all,
even for physically relevant systems.
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A cheap ’remedy’, common with engineers: replace the true
damping C by proportional damping

Cprop = αM + βK ,

now everything easy: M,Cprop ,K are simultaneously diagonalized
by a congruence.
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A cheap ’remedy’, common with engineers: replace the true
damping C by proportional damping

Cprop = αM + βK ,

now everything easy: M,Cprop ,K are simultaneously diagonalized
by a congruence. In general this may go quite astray and give
false predictions. Will assess such approximations (spectrum,
matrix exponential).
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A cheap ’remedy’, common with engineers: replace the true
damping C by proportional damping

Cprop = αM + βK ,

now everything easy: M,Cprop ,K are simultaneously diagonalized
by a congruence. In general this may go quite astray and give
false predictions. Will assess such approximations (spectrum,
matrix exponential). Go to ’modal coordinates’:

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n), ΦTMΦ = I

ω1 ≤ · · · ≤ ωn are the undamped frequencies. Obtain

(λ2I + λD + Ω2)x = 0, D = ΦTCΦ.
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A cheap ’remedy’, common with engineers: replace the true
damping C by proportional damping

Cprop = αM + βK ,

now everything easy: M,Cprop ,K are simultaneously diagonalized
by a congruence. In general this may go quite astray and give
false predictions. Will assess such approximations (spectrum,
matrix exponential). Go to ’modal coordinates’:

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n), ΦTMΦ = I

ω1 ≤ · · · ≤ ωn are the undamped frequencies. Obtain

(λ2I + λD + Ω2)x = 0, D = ΦTCΦ.

Simultaneaus diagonalizability ⇐⇒ D commutes with Ω.
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Instead of merely proportional damping we take any block-diagonal
part D0 of D that commutes with Ω (generically just the diagonal
part of D) This is called a modal approximation. Its eigenvalues are

λ
j
±

=
−djj ±

√

d2
jj − 4ω2

j

2
.
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Instead of merely proportional damping we take any block-diagonal
part D0 of D that commutes with Ω (generically just the diagonal
part of D) This is called a modal approximation. Its eigenvalues are

λ
j
±

=
−djj ±

√

d2
jj − 4ω2

j

2
.

Start with perturbation bounds. They will comprise

◮ Undamped approximation (as a prelude)

◮ Modal approximations

Both are performed by

◮ Spectral norm bounds

◮ Gershgorin type bounds
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Undamped approximation.

In the phase space we have A = A0 + B :

A0 =

[

0 Ω
−Ω 0

]

, B =

[

0 0
0 −D

]

.

A0 is skew-symmetric, so by standard perturbation theory σ(A) is
contained in the union of disks of radius

‖D‖ = max
xTCx

xTMx

centred at ±iωj .
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Undamped approximation.

In the phase space we have A = A0 + B :

A0 =

[

0 Ω
−Ω 0

]

, B =

[

0 0
0 −D

]

.

A0 is skew-symmetric, so by standard perturbation theory σ(A) is
contained in the union of disks of radius

‖D‖ = max
xTCx

xTMx

centred at ±iωj . Too crude an estimate — B has so many zeros.
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Remedy: Turn back to the quadratic eigenvalue formulation. The
inverse

(λ2I + λD + Ω2)−1 =

(λ2I + Ω2)−1(I + λD(λ2I + Ω2)−1)−1

exists, if

‖(λ2I + Ω2)−1‖‖D‖ = max
j

‖D‖

|λ − iωj ||λ + iωj |
< 1

Hence the bound:
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σ(A) ⊆ ∪jC(iωj ,−iωj , ‖D‖).

Here
C(λ+, λ−, r) = {λ : |λ − λ+||λ − λ−| ≤ |λ|r}

are stretched Cassini ovals with foci λ± and extension r . May
consist of one or two components; the latter when r is small with
respect to |λ+ − λ−| = 2ωj . Then

C(λ+, λ−, r) ≈

{

λ : |λ ± iωj | ≤
‖D‖

2

}

(3)

disks, one half of the standard radius! Purely first order estimate.
Requires no separation of the undamped eigenvalues.
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σ(A) ⊆ ∪jC(iωj ,−iωj , ‖D‖).

Here
C(λ+, λ−, r) = {λ : |λ − λ+||λ − λ−| ≤ |λ|r}

are stretched Cassini ovals with foci λ± and extension r . May
consist of one or two components; the latter when r is small with
respect to |λ+ − λ−| = 2ωj . Then

C(λ+, λ−, r) ≈

{

λ : |λ ± iωj | ≤
‖D‖

2

}

(3)

disks, one half of the standard radius! Purely first order estimate.
Requires no separation of the undamped eigenvalues.
Gershgorin-type estimate immediate

σ(A) ⊆ ∪jC(iωj ,−iωj ,Rj ), Rj =

n
∑

k=1

|djk |.
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Modal approximation.

The standard methods in the phase space get clumsy. The
quadratic eigenvalue approach stays elegant: D = D0 + D ′,
D0 = diag(diag(D)) and

(λ2I + λD + Ω2)−1

exists, if
|λ|‖D ′‖

minj(|λ − λ
j
+||λ − λ

j
−|)

< 1

where λ
j
± are given by

(λ − λ
j
+)(λ − λ

j
−) = λ2 + λdjj + ω2

j

Hence
σ(A) ⊆ ∪jC(λj

+, λ
j
−, ‖D ′‖), (4)
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Did we obtain tighter bound than those with undamped
approximation? Is ‖D ′‖ always smaller than ‖D‖? Well, yes, and
more.
Theorem. Let D = D∗ and D ′ any its block diagonal part. Then

‖D ′‖ ≤ spread(D)

If, D is pos. semidefinite then

‖D ′‖ ≤ ‖D‖

(spectral norms).
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Did we obtain tighter bound than those with undamped
approximation? Is ‖D ′‖ always smaller than ‖D‖? Well, yes, and
more.
Theorem. Let D = D∗ and D ′ any its block diagonal part. Then

‖D ′‖ ≤ spread(D)

If, D is pos. semidefinite then

‖D ′‖ ≤ ‖D‖

(spectral norms).
Hence: the coarser block diagonal part is extracted, the smaller
norm (and better eigenvalue bound) is obtained. This requires
multiplicities among ωj (tight clusterings would also do).
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Gershgorin bounds also immediate.

σ(A) ⊆ ∪jC(λj
+, λ

j
−, rj)

with

rj =

p
∑

k=1

k 6=j

|djk |.
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Gershgorin bounds also immediate.

σ(A) ⊆ ∪jC(λj
+, λ

j
−, rj)

with

rj =

p
∑

k=1

k 6=j

|djk |.

Long existing phase space Gershgorin disk bound (P. Lancaster)

σ(A) ⊆ ∪j{λ : |λ ∓ iωj +
djj

2
| ≤ r ′j }

with

r ′j = rj +
|djj |

2
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Gershgorin bounds also immediate.

σ(A) ⊆ ∪jC(λj
+, λ

j
−, rj)

with

rj =

p
∑

k=1

k 6=j

|djk |.

Long existing phase space Gershgorin disk bound (P. Lancaster)

σ(A) ⊆ ∪j{λ : |λ ∓ iωj +
djj

2
| ≤ r ′j }

with

r ′j = rj +
|djj |

2

Relevant only for small djj , but then our ovals are about twice as
narrow as the circles above. Need: tight bounds for the diameters
of stretched ovals.
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Coarser block estimates also possible, when allowed by multiple ωj .
Often, but not always, better bounds.

We plot some stretched ovals.
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Ovals for ω = 1; d = 0.1, 1; r = 0.3:
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Ovals for ω = 1; d = 1.7, 2.3, 2.2; r = 0.3, 0.3, 0.1:

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0
−1.5

−1

−0.5

0

0.5

1

1.5
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Brauer-like ovals can also be incorporated. The spectrum is
contained in the union of double ovals

D(λp
+, λ

p
−, λ

q
+, λ

q
−, rprq) =

{λ : |λ − λ
p
+||λ − λ

p
−
||λ − λ

q
+||λ − λ

q
−
| ≤ rprq|λ|

2},

where the union is taken over all pairs p 6= q and λ
p
± are the

solutions of λ2 + dppλ + ω2
p = 0 and similarly for λ

q
±.
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A bound for the matrix exponential

Recall: D = D0 + D ′. Then

|xT D ′y |2 ≤ ǫ2xTD0xyTDy ,

for any ǫ > 0 (sic!) Then

‖eAt − eA0t‖ ≤
ε

2
.

where

A0 = ⊕j

[

0 ωj

−ωj −djj

]

is the modal part of A.
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A bound for the matrix exponential

Recall: D = D0 + D ′. Then

|xT D ′y |2 ≤ ǫ2xTD0xyTDy ,

for any ǫ > 0 (sic!) Then

‖eAt − eA0t‖ ≤
ε

2
.

where

A0 = ⊕j

[

0 ωj

−ωj −djj

]

is the modal part of A.
Allows to obtain bounds for the exponential decay of ‖eAt‖.
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The computation or simple estimation of 2 × 2 exponential is not
quite trivial (ask Beresford). We plot the norm of

exp

([

0 1
−1 −2θ

]

τ

)

for various θ and the ’absolute time’ τ ∈ [1, 6]:
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