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Abstract (1)

INPUT: Factors X and D of a decomposition A = XDXT of a
symmetric matrix, where X is well-conditioned and D is diagonal,
perhaps indefinite.
We run the standard Jacobi algorithm to compute eigenvalues and
eigenvectors but applying the rotations only on X.
BASIC STEP: Compute a plane Jacobi rotation R such that
(RTAR)ij = 0, for some i 6= j, then

XDXT −→ (RTX)D(RTX)T .

From a decomposition of A we obtain a decomposition of RTAR.
The matrix A is never formed.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 2 / 46



Abstract (1)

INPUT: Factors X and D of a decomposition A = XDXT of a
symmetric matrix, where X is well-conditioned and D is diagonal,
perhaps indefinite.
We run the standard Jacobi algorithm to compute eigenvalues and
eigenvectors but applying the rotations only on X.
BASIC STEP: Compute a plane Jacobi rotation R such that
(RTAR)ij = 0, for some i 6= j, then

XDXT −→ (RTX)D(RTX)T .

From a decomposition of A we obtain a decomposition of RTAR.
The matrix A is never formed.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 2 / 46



Abstract (1)

INPUT: Factors X and D of a decomposition A = XDXT of a
symmetric matrix, where X is well-conditioned and D is diagonal,
perhaps indefinite.
We run the standard Jacobi algorithm to compute eigenvalues and
eigenvectors but applying the rotations only on X.
BASIC STEP: Compute a plane Jacobi rotation R such that
(RTAR)ij = 0, for some i 6= j, then

XDXT −→ (RTX)D(RTX)T .

From a decomposition of A we obtain a decomposition of RTAR.
The matrix A is never formed.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 2 / 46



Abstract (1)

INPUT: Factors X and D of a decomposition A = XDXT of a
symmetric matrix, where X is well-conditioned and D is diagonal,
perhaps indefinite.
We run the standard Jacobi algorithm to compute eigenvalues and
eigenvectors but applying the rotations only on X.
BASIC STEP: Compute a plane Jacobi rotation R such that
(RTAR)ij = 0, for some i 6= j, then

XDXT −→ (RTX)D(RTX)T .

From a decomposition of A we obtain a decomposition of RTAR.
The matrix A is never formed.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 2 / 46



Abstract (2)

Algorithm stops when the off diagonal part of Af = XfDX
T
f is

small enough.
OUTPUT:

1 The eigenvalues of A are the computed diagonal entries of
XfDX

T
f .

2 Eigenvectors are the columns of R1R2 · · ·Rf

Let ε be the unit roundoff. The errors in computed eigenvalues
and eigenvectors are

|λ̂i − λi|
|λi|

≤ O(εκ(X)) and θ(vi, v̂i) ≤
O(εκ(X))

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i,

for any condition number of A, i.e., of D. (κ(X) = ‖X‖2‖X−1‖2)
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Abstract (3)

This implicit Jacobi algorithm is mathematically equivalent to the
standard one.

This is the first algorithm that
1 computes accurate eigenvalues an eigenvectors of symmetric

(indefinite) matrices,
2 respects and preserves the symmetry of the problem, and
3 uses only orthogonal transformations.
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Outline

1 Why is the Implicit Jacobi algorithm interesting?

2 Why does Implicit Jacobi compute accurate eigenvalues and
eigenvectors?

3 The rigorous roundoff error result

4 Singular matrices A = XDXT

5 Numerical Experiments

6 Conclusions
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Accurate eigencomputations for symmetric
matrices

In the last twenty years an intensive research effort has been
made to compute eigenvalues and eigenvectors of n× n
symmetric matrices to high relative accuracy (hra).
Given A = AT ∈ Rn×n, we will say that an algorithm computes all
its eigenvalues and eigenvectors to hra if the computed
eigenvalues and eigenvectors satisfy

|λ̂i − λi| = O(ε) |λi| and θ(vi, v̂i) ≤
O(ε)

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i

and, in addition,
1 the cost is O(n3) flops,
2 and extra precision is not used.

HRA is only possible for special types of matrices.
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HRA is not obtained from standard algorithms

EXAMPLE: Symmetric INDEFINITE 100× 100 Cauchy matrix A

aij =
1

xi + xj
, with

{
xi = i− 0.5 for i = 1 : 99
x100 = −99.5

κ(A) = 3.5 · 10147

Errors in accurate algorithm (Factorization + Imp. Jacobi)
compared to 200-decimal digits MATLAB’s eig command

max
i

|λ̂i − λi|
|λi|

= 1.2 · 10−13 and max
i
‖v̂i − vi‖2 = 5.7 · 10−14.

Errors in MATLAB’s eig function

max
i

|λ̂i − λi|
|λi|

= 1.84 · 10132 and max
i
‖v̂i − vi‖2 = 1.41.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 8 / 46



HRA is not obtained from standard algorithms

EXAMPLE: Symmetric INDEFINITE 100× 100 Cauchy matrix A

aij =
1

xi + xj
, with

{
xi = i− 0.5 for i = 1 : 99
x100 = −99.5

κ(A) = 3.5 · 10147

Errors in accurate algorithm (Factorization + Imp. Jacobi)
compared to 200-decimal digits MATLAB’s eig command

max
i

|λ̂i − λi|
|λi|

= 1.2 · 10−13 and max
i
‖v̂i − vi‖2 = 5.7 · 10−14.

Errors in MATLAB’s eig function

max
i

|λ̂i − λi|
|λi|

= 1.84 · 10132 and max
i
‖v̂i − vi‖2 = 1.41.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 8 / 46



HRA is not obtained from standard algorithms

EXAMPLE: Symmetric INDEFINITE 100× 100 Cauchy matrix A

aij =
1

xi + xj
, with

{
xi = i− 0.5 for i = 1 : 99
x100 = −99.5

κ(A) = 3.5 · 10147

Errors in accurate algorithm (Factorization + Imp. Jacobi)
compared to 200-decimal digits MATLAB’s eig command

max
i

|λ̂i − λi|
|λi|

= 1.2 · 10−13 and max
i
‖v̂i − vi‖2 = 5.7 · 10−14.

Errors in MATLAB’s eig function

max
i

|λ̂i − λi|
|λi|

= 1.84 · 10132 and max
i
‖v̂i − vi‖2 = 1.41.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 8 / 46



HRA is not obtained from standard algorithms

EXAMPLE: Symmetric INDEFINITE 100× 100 Cauchy matrix A

aij =
1

xi + xj
, with

{
xi = i− 0.5 for i = 1 : 99
x100 = −99.5

κ(A) = 3.5 · 10147

Errors in accurate algorithm (Factorization + Imp. Jacobi)
compared to 200-decimal digits MATLAB’s eig command

max
i

|λ̂i − λi|
|λi|

= 1.2 · 10−13 and max
i
‖v̂i − vi‖2 = 5.7 · 10−14.

Errors in MATLAB’s eig function

max
i

|λ̂i − λi|
|λi|

= 1.84 · 10132 and max
i
‖v̂i − vi‖2 = 1.41.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 8 / 46



Selected references for HRA algorithms for
symmetric eigenproblems (SVDs)

Demmel-Kahan (1990), Barlow-Demmel (1990), Demmel-Veselić
(1992), Demmel-Gragg (1993), Demmel (1999)
Veselić-Slapničar (1992, 93, 03)
Fernando-Parlett (1994)
Drmač (1998, 99), Drmač-Veselić (2008)
Demmel, Gu, Eisenstat, Slapničar, Veselić, Drmač (1999)
Demmel-Koev (2001, 04, 06), Koev (2005, 07)
D-Molera-Moro(03),D-Koev(06,07),Peláez-Moro(06),D-Molera(08)
Ye (2008)
It has motivated Spectral Relative Perturbation Theory (Eisenstat,
Ipsen, R.C. Li, Mathias,Truhar)
Improved Convergence analysis of Jacobi Algorithms (Drmač,
Hari, Matejas).
Application to MRRR O(n2)-algorithm by Dhillon and Parlett.
Analysis of block Jacobi methods (Hari, Drmač, Singer)...
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Veselić-Slapničar (1992, 93, 03)
Fernando-Parlett (1994)
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Key unifying idea: Rank Revealing
Decompositions (RRD) (Demmel et al. 1999)

We restrict to symmetric RRDs of A = AT ∈ Rn×n.

Compute first an accurate RRD

A = XDXT ,

X is well-conditioned and D is diagonal and nonsingular.

Remark: Accuracy is only possible for special types of matrices
through structured implementations of Gaussian elimination with
complete pivoting (GECP), or variations of GECP.

Compute eigenvalues and eigenvectors with hra from the factors
X and D with a Jacobi-type method.
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Classes of symmetric matrices with accurate
RRDs algorithms

1 Well Scaled Symmetric Positive Definite (Demmel and Veselić).
2 Scaled diagonally dominant (Barlow and Demmel)
3 Symmetric Cauchy and Scaled-Cauchy (D and Koev).
4 Symmetric Vandermonde (D and Koev).
5 Symmetric Totally nonnegative (D and Koev).
6 Symmetric Graded Matrices (D and Molera).
7 Symmetric DSTU and TSC (Peláez and Moro).
8 Symmetric diagonally dominant M-matrices (Demmel and Koev),

(Peña).
9 Symmetric diagonally dominant (Ye)....
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A symmetric RRD determines accurately its
eigenvalues and eigenvectors (I): multiplicative
perturbations

Theorem (D., Koev (2006))

Let A = AT ∈ Rn×n and A = XDXT be an RRD of A, where
X ∈ Rn×r, n ≥ r, and D = diag(d1, . . . , dr) ∈ Rr×r. Let X̂ and
D̂ = diag(d̂1, . . . , d̂r) be perturbations of X and D, respectively, that
satisfy

‖X̂ −X‖2
‖X‖2

≤ δ and
|d̂i − di|
|di|

≤ δ for i = 1, . . . , r,

where δ < 1. Then

X̂D̂X̂T = (I + F )A(I + F )T ,

with ‖F‖2 ≤ (2δ + δ2)κ(X).
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A symmetric RRD determines accurately its
eigenvalues and eigenvectors (II): multiplicative
perturbation theory

Theorem (Eisenstat, Ipsen (1995) and R. C. Li (2000))

Let A = AT ∈ Rn×n and Ã = (I + F )A(I + F )T ∈ Rn×n, where
‖F‖2 < 1. Let λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n be, respectively, the
eigenvalues of A and Ã. Then

|λ̃i − λi| ≤ (2 ‖F‖2 + ‖F‖22) |λi|, for i = 1, . . . ., n

For the corresponding eigenvectors, vi and ṽi,

1
2

sin 2θ(vi, ṽi) ≤
2

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ · 1 + ‖F‖2
1− ‖F‖2

(2 ‖F‖2 + ‖F‖22)
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A symmetric RRD determines accurately its
eigenvalues and eigenvectors (III): Final Result

Corollary (D., Koev (2006))

Let A = AT = XDXT be an RRD. Let X̂ and D̂ = diag(d̂1, . . . , d̂r) be
perturbations of X and D such that

‖X̂ −X‖2 ≤ δ ‖X‖2 and |d̂i − di| ≤ δ |di| for i = 1, . . . , r,

where δ < 1. Then, for all i, the e-values, λ̂i, and e-vectors, v̂i, of
X̂D̂X̂T satisfy∣∣∣∣∣λi − λ̂iλi

∣∣∣∣∣ ≤κ(X)
(

4δ + 2δ2 + κ(X)
(
2δ + δ2

)2) ≈ 4 δ κ(X) +O(δ2)

1
2

sin 2θ(vi, v̂i) ≤
8 δ κ(X) +O(δ2)

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣
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Accurate e-values and e-vectors from X and D (1):
Positive definite case

Algorithm (Demmel, Veselić (1992))

Given RRD A = XDXT positive definite:
1 Compute SVD of

X
√
D = UΣV T

with one-sided Jacobi on the left.
2 The spectral decomposition is

A = X
√
D(X

√
D)T = UΣ2UT .
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Accurate e-values and e-vectors from X and D (2)

Comments on Algorithm by Demmel and Veselić
Fully satisfactory algorithm because:

The symmetry is preserved.
Only orthogonal transformations are used.

Remarks

If the Jacobi rotations are applied on X
√
D from the right then the

algorithm is faster but it is not possible to prove that the error
bounds are small.
If the rotations are applied on X

√
D on the left then it is

mathematically equivalent to apply the standard Jacobi algorithm
to XDXT .
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Accurate e-values and e-vectors from X and D (3):
General case

Hyperbolic Algorithm (Veselić (1993), Slapničar (1992, 2003))

Given RRD A = XDXT possibly indefinite:
1 Write

A = X
√
|D| J

(
X
√
|D|
)T

,

with J = diag{±1}.
2 Compute Hyperbolic SVD of

X
√
|D| = UΣHT where UTU = I, HTJH = J

with hyperbolic one-sided Jacobi on the right.
3 The spectral decomposition is

A = U (Σ2 J)UT
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Accurate e-values and e-vectors from X and D (4)

Comments on Hyperbolic Algorithm
Not fully satisfactory algorithm because:

Hyperbolic rotations are used.
Symmetric matrices are diagonalizable by orthogonal similarity.
It is not possible to prove that the error bounds are small.
It works well in practice.
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Accurate e-values and e-vectors from X and D (5):
General case

SSVD Algorithm (D, Molera, Moro (2003), D, Molera (2008))

Given RRD A = XDXT possibly indefinite:
1 Compute SVD of A = UΣV T from RRD using a nonsymmetric

algorithm by Demmel et al. (1999) that uses one-sided Jacobi.
2 Compute eigenvalues and eigenvectors from SVD by using
A = AT .

Comments on SSVD Algorithm
Not fully satisfactory algorithm because:

The symmetry is not respected. (It allows us flexibility by using
nonsymmetric RRDs).
HRA error bounds are perfect for eigenvalues and eigenvectors,
but to get accurate e-vectors requires a delicate process.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 19 / 46



Accurate e-values and e-vectors from X and D (5):
General case

SSVD Algorithm (D, Molera, Moro (2003), D, Molera (2008))

Given RRD A = XDXT possibly indefinite:
1 Compute SVD of A = UΣV T from RRD using a nonsymmetric

algorithm by Demmel et al. (1999) that uses one-sided Jacobi.
2 Compute eigenvalues and eigenvectors from SVD by using
A = AT .

Comments on SSVD Algorithm
Not fully satisfactory algorithm because:

The symmetry is not respected. (It allows us flexibility by using
nonsymmetric RRDs).
HRA error bounds are perfect for eigenvalues and eigenvectors,
but to get accurate e-vectors requires a delicate process.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 19 / 46



Our Goal

To prove that the standard Jacobi algorithm implicitly applied on the
factor X of a given RRD

A = XDXT

possibly indefinite:

1 computes the eigenvalues and eigenvectors of A to high relative
accuracy.

2 Note that it preserves the symmetry of the problem, and
3 uses only orthogonal transformations.
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Outline

1 Why is the Implicit Jacobi algorithm interesting?

2 Why does Implicit Jacobi compute accurate eigenvalues and
eigenvectors?

3 The rigorous roundoff error result

4 Singular matrices A = XDXT

5 Numerical Experiments

6 Conclusions
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Notation for Jacobi rotation (c2 + s2 = 1)

i j

R(i, j, c, s) =
i

j



1
. . .

c −s
. . .

s c
. . .

1
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Implicit Jacobi for square factors

INPUT: X ∈ Rn×n nonsingular and D ∈ Rn×n diag. and nonsingular
OUTPUT: e-values, λi, and matrix of e-vectors, U , of A = XDXT

U = In
repeat

for i < j
compute aii, aij , ajj of A = XDXT and T =

[
c
s
−s
c

]
, such that

T T
[
aii aij
aij ajj

]
T =

[
µ1

µ2

]
X = R(i, j, c, s)T X
U = U R(i, j, c, s)

endfor
until convergence

(
|aij |√
|aiiajj |

≤ tol = O(ε) for all i > j

)
compute λk = akk for k = 1, 2, . . . , n.
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Jacobi rotations on X preserve accurate e-values
and e-vectors

Lemma (Small multiplicative backward errors of Jacobi rotations)

Let Ri be exact Jacobi rotations and R̂i their floating point
approximations. Then

1

X̂N ≡ fl(R̂TN · · · R̂T1X) = (I + F )RTN · · ·RT1X,

where ‖F‖2 = O(N εκ(X)), and
2

X̂NDX̂
T
N = (I + F )(R1 · · ·RN )TXDXT (R1 · · ·RN )(I + F )T
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Proof of Rounding Errors in Jacobi rotations

Proof.

Let UT = RTN · · ·RT1 .

fl(R̂TN · · · R̂T1X) = RTN · · ·RT1 (X + E) with ‖E‖2 = O(Nε‖X‖2).

fl(R̂TN · · · R̂T1X) = UT (I + EX−1)X = (I + UTEX−1U)UTX.
‖UTEX−1U‖2 = ‖EX−1‖2 = O(Nεκ(X)).

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 25 / 46



Proof of Rounding Errors in Jacobi rotations

Proof.

Let UT = RTN · · ·RT1 .

fl(R̂TN · · · R̂T1X) = RTN · · ·RT1 (X + E) with ‖E‖2 = O(Nε‖X‖2).

fl(R̂TN · · · R̂T1X) = UT (I + EX−1)X = (I + UTEX−1U)UTX.
‖UTEX−1U‖2 = ‖EX−1‖2 = O(Nεκ(X)).

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 25 / 46



Proof of Rounding Errors in Jacobi rotations

Proof.

Let UT = RTN · · ·RT1 .

fl(R̂TN · · · R̂T1X) = RTN · · ·RT1 (X + E) with ‖E‖2 = O(Nε‖X‖2).

fl(R̂TN · · · R̂T1X) = UT (I + EX−1)X = (I + UTEX−1U)UTX.
‖UTEX−1U‖2 = ‖EX−1‖2 = O(Nεκ(X)).

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 25 / 46



Implicit Jacobi for square factors

INPUT: X ∈ Rn×n nonsingular and D ∈ Rn×n diag. and nonsingular
OUTPUT: e-values, λi, and matrix of e-vectors, U , of A = XDXT

U = In
repeat

for i < j
compute aii, aij , ajj of A = XDXT and T =

[
c
s
−s
c

]
, such that

T T
[
aii aij
aij ajj

]
T =

[
µ1

µ2

]
X = R(i, j, c, s)T X
U = U R(i, j, c, s)

endfor
until convergence

(
|aij |√
|aiiajj |

≤ tol = O(ε) for all i > j

)
compute λk = akk for k = 1, 2, . . . , n. −→ IS THIS ACCURATE???

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 26 / 46



Implicit Jacobi for square factors

INPUT: X ∈ Rn×n nonsingular and D ∈ Rn×n diag. and nonsingular
OUTPUT: e-values, λi, and matrix of e-vectors, U , of A = XDXT

U = In
repeat

for i < j
compute aii, aij , ajj of A = XDXT and T =

[
c
s
−s
c

]
, such that

T T
[
aii aij
aij ajj

]
T =

[
µ1

µ2

]
X = R(i, j, c, s)T X
U = U R(i, j, c, s)

endfor
until convergence

(
|aij |√
|aiiajj |

≤ tol = O(ε) for all i > j

)
compute λk = akk for k = 1, 2, . . . , n. −→ IS THIS ACCURATE???

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 26 / 46



Errors on diagonal entries of almost diagonal
RRDs (I)

Given X ∈ Rn×n nonsingular and D = diag(d1, . . . , dn) ∈ Rn×n

diagonal and nonsingular:

Assume that A = XDXT satisfies |aij |√
|aiiajj |

= O(ε) for all i > j.

aii =
n∑
k=1

x2
ikdk

∣∣∣∣fl(aii)− aii
aii

∣∣∣∣ ≤ (n+ 1)ε
1− (n+ 1)ε

n∑
k=1

x2
ik|dk|∣∣∣∣∣

n∑
k=1

x2
ikdk

∣∣∣∣∣
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Errors on diagonal entries of almost diagonal
RRDs (II): EXAMPLE
INPUT: κ(X) = 7.21

XDXT =

 1 1 1
−1 −1 1

2 1 1

 1050

1
−1050

XT

RUNNING IMPLICIT JACOBI UNTIL CONVERGENCE

XfDXT
f =

 4.79 · 10−48 5.35 · 10−1 2.04 · 10−47

3.8 · 10−1 4.03 · 10−2 1.64
2.42 1.65 5.67 · 10−1

 1050

1
−1050

XT
f

=

 2.86 · 10−1 −3.16 · 103 2.39 · 10−3

−3.16 · 103 −2.53 · 1050 1.04 · 1034

2.39 · 10−3 2.08 · 1034 5.53 · 1050


THERE IS NO CANCELLATION

2.86 · 10−1 = (4.79 · 10−48)2 × 1050 + (5.35 · 10−1)2 × 1 + (2.04 · 10−47)2 × (−1050)

= 2.29 · 10−45 + 2.86 · 10−1 − 4.18 · 10−44
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Errors on diagonal entries of almost diagonal
RRDs (III): THE MAIN THEOREM

Theorem
Let X,D ∈ Rn×n be nonsingular and D = diag(d1, . . . , dn) be diagonal. If the
matrix A ≡ XDXT satisfies aii =

∑n
k=1 x

2
ikdk 6= 0 for all i, and

|aij |√
|aiiajj |

≤ δ, for all i 6= j, where δ ≤ 1
5n , then

n∑
k=1

x2
ik|dk|

|aii|
≤ κ(X)

1− 2nδ

(
1 +

2n5/2δ

1− nδ
+ n2

(
nδ

1− nδ

)2
)
, i = 1, . . . , n.

n∑
k=1

x2
ik|dk|

|aii|
≤ κ(X)

(
1 +O(n5/2δ)

)
, i = 1, . . . , n.
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Errors on diagonal entries of almost diagonal
RRDs (IV): Corollary

Corollary

If A = XDXT satisfies the stopping criterion then∣∣∣∣fl(aii)− aii
aii

∣∣∣∣ ≤ (n+ 1) ε κ(X) +O(κ(X) ε2)
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Key idea in the proof of THE MAIN THEOREM

Proof by contradiction

A = XDXT is close to diagonal, then its diagonal entries are
close to its eigenvalues.
Assume ∑n

k=1 x
2
ik|dk|

|aii|
=
∑n

k=1 x
2
ik|dk|

|
∑n

k=1 x
2
ikdk|

>> κ(X)

Then there are perturbations d̃k = dk(1 + δk), |δk| < β << 1 such
that (XD̃XT )ii =

∑n
k=1 x

2
ikd̃k, satisfy

|aii − (XD̃XT )ii|
|aii|

>> βκ(X).

This is in contradiction with an RRD determining accurately its
eigenvalues.
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Implicit Jacobi is multiplicative backward stable

Theorem
Let N be the number of rotations applied by implicit Jacobi on
A = XDXT until convergence, and Λ̂ and Û be the computed
matrices of eigenvalues and eigenvectors. Then there exists an exact
orthogonal matrix U ∈ Rn×n such that

U Λ̂UT = (I + E)XDXT (I + E)T ,

with
‖E‖F = O(εN κ(X)) and ‖Û − U‖F = O(N ε).

Corollary (Forward errors in e-values and e-vectors)

|λ̂i − λi|
|λi|

≤ O(εN κ(X)) and θ(vi, v̂i) ≤
O(εN κ(X))

min
j 6=i

∣∣∣λi−λj

λi

∣∣∣ for all i,
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Technical comments

To establish the backward error result, we need to prove that

The stopping criterion in finite arithmetic on A = XfDX
T
f gives

exact information, i.e.,

fl

(
|aij |√
|aiiajj |

)
≤ ε κ(X) =⇒ |aij |√

|aiiajj |
≤ n ε κ(X) +O(ε2)

for all i 6= j, which is the case if there is no cancellation in fl(aii).
The stopping criterion introduces small multiplicative backward
errors, i.e.,

diag(fl(a11), . . . , fl(ann)) = (I + F )XfDX
T
f (I + F )T ,

where ‖F‖F = O(n2 ε κ(X)).
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Rectangular RRDs

So far we have considered A = XDXT with square and
nonsingular X and D, which excludes singular matrices A.
If we insist on X being nonsingular, then A is singular if and only if
D is singular.
The zero eigenvalues of A are revealed by the zero diagonal
entries of D
Discarding these entries we get

A = XDXT ∈ Rn×n where X ∈ Rn×r D ∈ Rr×r,

with n > r, X with full rank, and D nonsingular.
Implicit Jacobi converges to an n× n diagonal matrix with zero
entries and cancellation is unavoidable.
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Algorithm for rectangular RRD A = XDXT

A = XDXT ∈ Rn×n with X ∈ Rn×r, D ∈ Rr×r,

1 Compute full QR factorization of X

Q

[
R
0

]
= X where Q ∈ Rn×n, R ∈ Rr×r

2 Note that

A = Q

[
RDRT 0

0 0

]
QT

3 Apply Implicit Jacobi on RDRT (with factors square and
nonsingular) to compute

1 Nonzero eigenvalues of A: λ1, . . . , λr.
2 Eigenvector matrix of RDRT : UR

4 [Q(:, 1 : r)UR | Q(:, r + 1 : n)] is the eigenvector matrix of A.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 37 / 46



Algorithm for rectangular RRD A = XDXT

A = XDXT ∈ Rn×n with X ∈ Rn×r, D ∈ Rr×r,

1 Compute full QR factorization of X

Q

[
R
0

]
= X where Q ∈ Rn×n, R ∈ Rr×r

2 Note that

A = Q

[
RDRT 0

0 0

]
QT

3 Apply Implicit Jacobi on RDRT (with factors square and
nonsingular) to compute

1 Nonzero eigenvalues of A: λ1, . . . , λr.
2 Eigenvector matrix of RDRT : UR

4 [Q(:, 1 : r)UR | Q(:, r + 1 : n)] is the eigenvector matrix of A.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 37 / 46



Algorithm for rectangular RRD A = XDXT

A = XDXT ∈ Rn×n with X ∈ Rn×r, D ∈ Rr×r,

1 Compute full QR factorization of X

Q

[
R
0

]
= X where Q ∈ Rn×n, R ∈ Rr×r

2 Note that

A = Q

[
RDRT 0

0 0

]
QT

3 Apply Implicit Jacobi on RDRT (with factors square and
nonsingular) to compute

1 Nonzero eigenvalues of A: λ1, . . . , λr.
2 Eigenvector matrix of RDRT : UR

4 [Q(:, 1 : r)UR | Q(:, r + 1 : n)] is the eigenvector matrix of A.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 37 / 46



Algorithm for rectangular RRD A = XDXT

A = XDXT ∈ Rn×n with X ∈ Rn×r, D ∈ Rr×r,

1 Compute full QR factorization of X

Q

[
R
0

]
= X where Q ∈ Rn×n, R ∈ Rr×r

2 Note that

A = Q

[
RDRT 0

0 0

]
QT

3 Apply Implicit Jacobi on RDRT (with factors square and
nonsingular) to compute

1 Nonzero eigenvalues of A: λ1, . . . , λr.
2 Eigenvector matrix of RDRT : UR

4 [Q(:, 1 : r)UR | Q(:, r + 1 : n)] is the eigenvector matrix of A.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 37 / 46



Algorithm for rectangular RRD A = XDXT

A = XDXT ∈ Rn×n with X ∈ Rn×r, D ∈ Rr×r,

1 Compute full QR factorization of X

Q

[
R
0

]
= X where Q ∈ Rn×n, R ∈ Rr×r

2 Note that

A = Q

[
RDRT 0

0 0

]
QT

3 Apply Implicit Jacobi on RDRT (with factors square and
nonsingular) to compute

1 Nonzero eigenvalues of A: λ1, . . . , λr.
2 Eigenvector matrix of RDRT : UR

4 [Q(:, 1 : r)UR | Q(:, r + 1 : n)] is the eigenvector matrix of A.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 37 / 46



Algorithm for rectangular RRD A = XDXT

A = XDXT ∈ Rn×n with X ∈ Rn×r, D ∈ Rr×r,

1 Compute full QR factorization of X

Q

[
R
0

]
= X where Q ∈ Rn×n, R ∈ Rr×r

2 Note that

A = Q

[
RDRT 0

0 0

]
QT

3 Apply Implicit Jacobi on RDRT (with factors square and
nonsingular) to compute

1 Nonzero eigenvalues of A: λ1, . . . , λr.
2 Eigenvector matrix of RDRT : UR

4 [Q(:, 1 : r)UR | Q(:, r + 1 : n)] is the eigenvector matrix of A.

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 37 / 46



Outline

1 Why is the Implicit Jacobi algorithm interesting?

2 Why does Implicit Jacobi compute accurate eigenvalues and
eigenvectors?

3 The rigorous roundoff error result

4 Singular matrices A = XDXT

5 Numerical Experiments

6 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 38 / 46



Numerical Experiments

Thousands of numerical experiments confirm the high relative
accuracy that we have rigorously proven.
Traditional Jacobi is slow, then Implicit Jacobi is slow.
Speed is not our main issue, but we have compared the number
of sweeps performed by Implicit Jacobi with respect other high
relative accuracy algorithms:

1 One sided Hyperbolic Jacobi (Slapničar-Veselić): not rigorous
bounds.

2 SSVD-l (D-Molera-Moro): not rigorous bounds.
3 SSVD-r (D-Molera-Moro): rigorous bounds.

We have used gallery('randsvd',...) by N. Higham in
MATLAB to generate random RRDs with X well-conditioned and
D indefinite and extremely ill-conditioned.
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Number of sweeps: Increasing κ(D) (I)

In all of these tests κ(X) = 30 and X,D are 100× 100.

D has one entry with magnitude 1 and the rest 1/κ(D)

κ(D) Imp. Jac. Hyp. Jac. SSVD-l SSVD-r

1010 10 10.8 10 13
1030 10 10.6 9.8 13.2
1050 10.8 10.8 10 14
1070 11 11 10.2 13.6
1090 10.8 10.6 10 13.8
10110 11 10.4 10 14.8
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Number of sweeps: Increasing κ(D) (II)

In all of these tests κ(X) = 30 and X,D are 100× 100.

D has entries with magnitudes geometrically distributed

κ(D) Imp. Jac. Hyp. Jac. SSVD-l SSVD-r

1010 16 9 6.2 27.2
1030 24.8 9 4.8 39.6
1050 32.4 9 4.4 47.2
1070 35.8 9.4 4.4 52.6
1090 40 9 4 57
10110 43.2 9 3 59.6

|di| = κ(D)
i−1
n−1 , i = 1, . . . , n
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Number of sweeps: Increasing the dimension of
the RRD (I)

In all of these tests κ(X) = 100, κ(D) = 1040, and X,D are n× n.

D has one entry with magnitude 1 and the rest 1/κ(D)

n Imp. Jac. Hyp. Jac. SSVD-l SSVD-r

100 11 11.4 10.2 15.8
500 13 13.4 14 18
1000 13 14 15 19
2000 14 15 16 20
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Number of sweeps: Increasing the dimension of
the RRD (II)

In all of these tests κ(X) = 100, κ(D) = 1040, and X,D are n× n.

D has entries with magnitudes geometrically distributed

n Imp. Jac. Hyp. Jac. SSVD-l SSVD-r

100 28.8 10 4.6 44.6
500 46 11 6 87
1000 58 11 7 > 100
2000 68 11 7 > 100
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Numerical Experiments: Conclusions

The comparison of the performance of the available high relative
accuracy algorithms for symmetric indefinite RRDs depends
heavily on the distribution of the eigenvalues
The new Implicit Jacobi is the fastest algorithm with guaranteed
errors bounds (the other one is SSVD-r).
The new Implicit Jacobi may be considerably slower than
Hyperbolic Jacobi and SSVD-l, both with errors not rigorously
bounded.
The fastest one is SSVD-l that can benefit from new fast and
accurate Jacobi SVD algorithm by Drmač and Veselić (2008).
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F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 44 / 46



Outline

1 Why is the Implicit Jacobi algorithm interesting?

2 Why does Implicit Jacobi compute accurate eigenvalues and
eigenvectors?

3 The rigorous roundoff error result

4 Singular matrices A = XDXT

5 Numerical Experiments

6 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Implicit Jacobi IWASEP 7 45 / 46



Conclusions

The implicit Jacobi algorithm on symmetric rank revealing
factorizations

A = XDXT

is the first algorithm that:
1 computes the eigenvalues and eigenvectors of A to high relative

accuracy,
2 preserves the symmetry, and
3 uses only orthogonal transformations.

In addition, the error bounds are rigorously proven, and are the
best possible ones from the sensitivity of the problem.
The implicit Jacobi algorithm is very simple and natural.
The implicit Jacobi algorithm is backward stable in a strong
multiplicative sense.
More research to speed up the algorithm is needed.
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