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Monge-Ampère Equations

Applications and Research Reference:

BIRS Workshop (2003) on Monge-Ampère Equation
http://www.birs.ca/workshops/2003/03w5067/report03w5067.pdf

Monge-Ampère Equations arise in

Riemannian Geometry

Conformal Geometry

CR Geometry

Example : Problem of prescribed Gauss curvature

A real-valued function K is specified on a domain Ω in Rn

Prescribed Gauss curvature seeks to identify a hypersurface of
Rn+1 as a graph z = u(x) over x ∈ Ω so that
the Gauss curvature is given by K (x) at every x .



Monge-Ampère Problem

Fully-Nonlinear 3D BVP (of Dirichlet type);

Find ψ such that

λ1λ2 + λ2λ3 + λ3λ1 = f in Ω, ψ = g on ∂Ω,

where

I Function ψ unknown; Ω is a bounded domain of R3

I {λ1, λ2, λ3} is the spectrum of

Hessian D2ψ =
(

∂2ψ
∂xi ,∂xj

)
1≤i ,j≤3

I f and g are two given functions with f > 0.



Dirichlet Problem for σ2-Operator

Rewrite as

|∇2ψ|2 −D2ψ : D2ψ = 2f in Ω,

where

A : B =
∑

1≤i ,j≤d

aijbij = traceATB (Frobenius)

Fully nonlinear PDE becomes

[trace{D2ψ}]2 − trace{(D2ψ)2} = 2f .



Solving when σ2-Operator is Elliptic

Least Squares Approach:
σ2-operator linearized in neighborhood of elliptic ψ gives:

φ→ 2[∇2ψ∇2φ−D2ψ : D2φ].

Coefficient Matrix

2[∇2ψI−D2ψ],

The σ2-operator elliptic in nbhd of ψ ⇐⇒ if Matrix is s.p.d. (or
n.p.d) , i.,e.,

(λ1 + λ2)(λ2 + λ3) > 0, (λ1 + λ3)(λ1 + λ2) > 0.

λ1 + λ2 > 0, λ2 + λ3 > 0, λ1 + λ3 > 0.



PDE Least Squares Problem

Find (ψ,P) ∈ Vg ×Qf such that
J(ψ,P) ≤ J(φ,G), ∀(φ,G) ∈ Vg ×Qf ,
where

J(φ,G) =
1

2

∫
Ω
(D2φ− G) : (D2φ− G)dx ,

with dx = dx1dx2dx3.



Block Relaxation Algorithm

Given ψ0 ∈ Vg ;
for k = 0, 1, 2, . . .

I Pk+1 = argminG∈Qf
J(ψk ,G) ;

I ψk+1/2 = argminφ∈Vg J(φ,Pk+1) ;

I ψk+1 = ψk + ω(ψk+1/2 − ψk);

Relaxation Parameter: 0 < ω < 2
Initialization

∇2ψ0 =
√

3f in Ω, ψ0on ∂Ω.

Note that ψ0 has the H2(Ω)-regularity if ∂Ω is ‘sufficiently’
smooth and/or Ω is convex.



Multiple Minimizations Needed

Must solve following at the vertices of a finite element mesh:

Find Pk+1(x) ∈ E(x), jk(Pk+1(x); x) ≤ jk(A; x), ∀A ∈ E(x),

where E(x) = {A|A ∈ R3×3, A = AT ,
λ1λ2 + λ2λ3 + λ3λ1 = f (x),
λ1 + λ3 > 0, λ2 + λ3 > 0, λ3 + λ1 > 0}

and

jk(A; x) =
1

2
A : A−D2ψk(x) : A,

with {λ1, λ2, λ3} being the spectrum of A.



Multiple Minimizations Needed

Must solve following at the vertices of a finite element mesh: Can
normalize using division by f (x).

min
A∈E1

trace[AT (A− 2B)] = min
A∈E1

trace[A2 − 2AB)]

where
E1 = {A|A ∈ R3×3,A = AT ,

λ1λ2 + λ2λ3 + λ3λ1 = 1 ,
λ1 + λ3 > 0, λ2 + λ3 > 0, λ3 + λ1 > 0}

(with {λ1, λ2, λ3} being the spectrum of A)



Minimization Problem - Matrix Form

Problem Qmin

min trace{AA− 2BA}
s.t.
`TM` = 2

M` ≥ 0

where
M = eeT − I, with eT = (1, 1, . . . , 1),

and

B = BT is specified,
A = AT = QΛQT ,

Λ = diag(`).



Diagonalized Problem

Note that Problem Qmin is equivalent to

min trace{ΛΛ− 2B̂Λ} = min `T `− 2bT `

s.t.
`TM` = 2

M` ≥ 0

where
B̂ = QTBQ and b = diag(B̂).



Constraints for n = 3

Constraints:

`TM` = 2

M` ≥ 0

M =

 0 1 1
1 0 1
1 1 0


`TM` = 2 ⇒ λ1λ2 + λ2λ3 + λ3λ1 = 1

M` ≥ 0 ⇒
λ2 + λ3 ≥ 0
λ1 + λ3 ≥ 0
λ1 + λ2 ≥ 0



No Active Equality Consraint

Lemma
If the vector ` ∈ Rn is finite and feasible, then none of the
inequality constraints can be active. In other words,

`TM` = 2 ⇒ eT
j M` > 0, for j = 1, 2, . . . , n.



Proof Outline

Proof Outline:
If λ2 + λ3 + · · ·+ λn = 0,

Equality constraint `TM` = 2 provides

λ1(λ2 + λ3 + · · ·+ λn) = 2 − λ2(λ3 + λ4 + . . . λn)

− λ3(λ2 + λ4 + λ5 + . . . λn)

. . .

− λn(λ2 + λ3 + · · ·+ λn−1).

It follows that

0 = λ1(λ2 + λ3 + · · ·+ λn) = 2 + λ2
2 + λ2

3 · · ·+ λ2
n ≥ 2

which is a contradiction.



Lagrangian for Equality Constraint:

Lagrangian:

L(`, µ) = `T `− 2bT `+ µ(`TM`− 2).

Setting the grad of Lagrangian to zero gives:

(I + µM)` = b.

If 1/µ is not an eigenvalue of −M then the equality constraint
becomes

bT (I + µM)−1M(I + µM)−1b = 2



Eigensystem of M

Helps to know eigensystem of M = eeT − I :

Eigenvalues

ω1 = n − 1 and ω2 = −1, multiplicity n − 1

Eigenvector for ω1 is e

Eigenvector Matrix

U ≡ (I− 2wwT ), with w = (e +
√

ne1)/‖e +
√

ne1‖,

Easily checked:

UTMU = UMUT = UeeTUT − I = ne1e
T
1 − I.



The Secular Equation

β2
1ω1

(1 + µω1)2
= 2 +

β2
2

(1− µ)2

where (β1,bT
2 ) = bTU and β2

2 = bT
2 b2.

Note:
β1 = etb/

√
n is invariant: eTb = trace{B}



Reciprocal Square Root Equation

Better Equivalent Form

±(1 + µω1) =
(1− µ)|β1|

√
ω1√

2(1− µ)2 + β2
2

.

Algorithm: Newton’s Method

converges in 3 steps



Graphs of Secular Equations
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Figure: The Secular Equation for Multiplier µ (left) and the Reciprocal

Square Root Secular Equation (right)



Choice of Root

Corresponding to Root µ, the vector ` is:

` = Uc with cT = (
β1

(1 + µω1)
,

1

1− µ
bT

2 ).

Pick Solution with Positive Components:

0 < M` = (eeT − I)` = e(eT `)− `



Suggested Alternating Min Algorithm

I b = diag(B); Q = I;

I while (’not converged’),

I min` `
T `− 2bT ` s.t. constraints ;

I minA=Wdiag(`)WT trace{AA− 2BA} s.t. constraints;

I b = diag(WTBW);

ALWAYS CONVERGED IN 2 STEPS !



Surprise Result

Suppose B = Qdiag(b)QT

If µ and corresponding ` = (I + µM)−1b solve

min `T `− 2bT ` s.t.constraints

We have

Lemma
Let Λ = diag(`). Then AQ = QΛQT solves

min trace{AA− 2BA} s.t.constraints

over all A = WΛWT with WTW = I.



Proof Outline

If b̂ = QTBQ then WTBW = Q̂T B̂Q̂.
Let b̂ = diag(Q̂T B̂Q̂).

β̂j ≡ b̂(j) = qT
j B̂qj =

n∑
i=1

βiγ
2
ij ,

where βj = b(j) , Q̂ = (γij), qj = Q̂ej

Hence,

b̂ = GTb, where the i , j − th entry of G is γ2
ij .

We show
`T `− 2bT ` ≤ `T `− 2b̂T `.

Since ` is fixed, sufficient to show

`T b̂− `Tb = `T (b̂− b) ≤ 0.



Proof Outline Contd.

Ge = GTe = e implies

b̂− b = (1− µ)(GT − I)`,

Therefore,

`T (b̂− b) = (1− µ)
1

2
(`T (GT − I)`+ `T (G− I)`)

It follows that

`T (b̂− b) = −(1− µ)
∑
i 6=j

γ2
ij(λj − λi )

2 ≤ 0,

since (1− µ) > 0.



Converse

Lemma
Suppose A = WΛWT solves Problem Qmin. Then there is an
orthogonal Q̂ such that Q = WQ̂ diagonalizes B and A = QΛQT .
In other words, if A solves Problem Qmin, then A = QΛQT with
QTBQ diagonal.



Final Algorithm

I [Q,L] = eig(B); b = diag(L)

I min` `
T `− 2bT ` subject to constraints

I A = Qdiag(`)QT ;

Works for ANY n
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Figure: Contour (left) and surface (right) plots of the surface `T `− 2bt`

subject to the constraints `TM` = 2, M` ≤ 0.



Summary

I Monge-Ampère important to Diff Geometry

I Glowinski - Dean algorithm requires MANY eigenvalue
constrained min problems

I We provided a very simple and efficient method with some
surprising properties.

Report:
A Quadratically Constrained Minimization Problem Arising
from PDE of Monge-Ampère Type

CAAM TR08-02, DCS and R. Glowinski
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