$$
\begin{gathered}
\text { RICE A Quadratically Constrained } \\
\text { Eigenvalue Minimization Problem } \\
\text { Arising from PDE of Monge-Ampère } \\
\text { Type }
\end{gathered}
$$

D.C. Sorensen

- Collaborator: R. Glowinski
- Support: NSF and AFOSR


# Fooling Around and Having Fun 

with
Numerical Linear Algebra

## Outline

- Motivation - Monge-Ampère Equations
- FEM Discretization $\rightarrow$ Quadratic Min Problem
- Formulation of General Eigenvalue Constrained

Quadratic Min Problem

- The General Secular Equation and Its Solution
- A Surprising Result - Finite $\mathcal{O}\left(n^{3}\right)$ Complexity
- Some Numerical Results


## Monge-Ampère Equations

Applications and Research Reference:
BIRS Workshop (2003) on Monge-Ampère Equation http://www.birs.ca/workshops/2003/03w5067/report03w5067.pdf

Monge-Ampère Equations arise in
Riemannian Geometry
Conformal Geometry
CR Geometry

Example: Problem of prescribed Gauss curvature
A real-valued function $K$ is specified on a domain $\Omega$ in $\mathbb{R}^{n}$
Prescribed Gauss curvature seeks to identify a hypersurface of $\mathbb{R}^{n+1}$ as a graph $z=u(x)$ over $x \in \Omega$ so that the Gauss curvature is given by $K(x)$ at every $x$.

## Monge-Ampère Problem

Fully-Nonlinear 3D BVP (of Dirichlet type);
Find $\psi$ such that

$$
\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}=f \text { in } \Omega, \psi=g \text { on } \partial \Omega,
$$

where

- Function $\psi$ unknown; $\Omega$ is a bounded domain of $\mathbb{R}^{3}$
- $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ is the spectrum of

$$
\text { Hessian } \mathbf{D}^{2} \psi=\left(\frac{\partial^{2} \psi}{\partial x_{i}, \partial x_{j}}\right)_{1 \leq i, j \leq 3}
$$

- $f$ and $g$ are two given functions with $f>0$.


## Dirichlet Problem for $\sigma_{2}$-Operator

Rewrite as

$$
\left|\nabla^{2} \psi\right|^{2}-\mathbf{D}^{2} \psi: \mathbf{D}^{2} \psi=2 f \text { in } \Omega
$$

where

$$
\mathbf{A}: \mathbf{B}=\sum_{1 \leq i, j \leq d} a_{i j} b_{i j}=\operatorname{trace} \mathbf{A}^{T} \mathbf{B} \quad \text { (Frobenius) }
$$

Fully nonlinear PDE becomes

$$
\left[\operatorname{trace}\left\{\mathbf{D}^{2} \psi\right\}\right]^{2}-\operatorname{trace}\left\{\left(\mathbf{D}^{2} \psi\right)^{2}\right\}=2 f
$$

## Solving when $\sigma_{2}$-Operator is Elliptic

Least Squares Approach:
$\sigma_{2}$-operator linearized in neighborhood of elliptic $\psi$ gives:

$$
\phi \rightarrow 2\left[\nabla^{2} \psi \nabla^{2} \phi-\mathbf{D}^{2} \psi: \mathbf{D}^{2} \phi\right] .
$$

Coefficient Matrix

$$
2\left[\nabla^{2} \psi \mathbf{I}-\mathbf{D}^{2} \psi\right],
$$

The $\sigma_{2}$-operator elliptic in nbhd of $\psi \Longleftrightarrow$ if Matrix is s.p.d. (or n.p.d) , i.,e.,

$$
\begin{gathered}
\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{2}+\lambda_{3}\right)>0,\left(\lambda_{1}+\lambda_{3}\right)\left(\lambda_{1}+\lambda_{2}\right)>0 \\
\lambda_{1}+\lambda_{2}>0, \quad \lambda_{2}+\lambda_{3}>0, \quad \lambda_{1}+\lambda_{3}>0
\end{gathered}
$$

## PDE Least Squares Problem

Find $(\psi, \mathbf{P}) \in \mathcal{V}_{g} \times \mathbf{Q}_{f}$ such that $J(\psi, \mathbf{P}) \leq J(\phi, \mathbf{G}), \quad \forall(\phi, \mathbf{G}) \in \mathcal{V}_{g} \times \mathbf{Q}_{f}$, where

$$
J(\phi, \mathbf{G})=\frac{1}{2} \int_{\Omega}\left(\mathbf{D}^{2} \phi-\mathbf{G}\right):\left(\mathbf{D}^{2} \phi-\mathbf{G}\right) \mathrm{d} x
$$

with $\mathrm{d} x=\mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}$.

## Block Relaxation Algorithm

Given $\psi^{0} \in \mathcal{V}_{g}$; for $k=0,1,2, \ldots$

- $\mathbf{P}^{k+1}=\operatorname{argmin}_{\mathbf{G} \in \mathbf{Q}_{f}} J\left(\psi^{k}, \mathbf{G}\right) ;$
- $\psi^{k+1 / 2}=\operatorname{argmin}_{\phi \in \mathcal{V}_{g}} J\left(\phi, \mathbf{P}^{k+1}\right)$;
- $\psi^{k+1}=\psi^{k}+\omega\left(\psi^{k+1 / 2}-\psi^{k}\right)$;

Relaxation Parameter: $0<\omega<2$
Initialization

$$
\nabla^{2} \psi^{0}=\sqrt{3 f} \text { in } \Omega, \quad \psi^{0} \text { on } \partial \Omega
$$

Note that $\psi^{0}$ has the $\mathcal{H}^{2}(\Omega)$-regularity if $\partial \Omega$ is 'sufficiently' smooth and/or $\Omega$ is convex.

## Multiple Minimizations Needed

Must solve following at the vertices of a finite element mesh:
Find $\mathbf{P}^{k+1}(x) \in \mathbf{E}(x), \quad \mathbf{j}_{k}\left(\mathbf{P}^{k+1}(x) ; x\right) \leq \mathbf{j}_{k}(\mathbf{A} ; x), \quad \forall \mathbf{A} \in \mathbf{E}(x)$,
where

$$
\begin{aligned}
& \mathbf{E}(x)=\left\{\mathbf{A} \mid \mathbf{A} \in \mathbb{R}^{3 \times 3}, \quad \mathbf{A}=\mathbf{A}^{T},\right. \\
& \lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}=f(x), \\
& \left.\lambda_{1}+\lambda_{3}>0, \lambda_{2}+\lambda_{3}>0, \lambda_{3}+\lambda_{1}>0\right\}
\end{aligned}
$$

and

$$
\mathbf{j}_{k}(\mathbf{A} ; x)=\frac{1}{2} \mathbf{A}: \mathbf{A}-\mathbf{D}^{2} \psi^{k}(x): \mathbf{A}
$$

with $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ being the spectrum of $\mathbf{A}$.

## Multiple Minimizations Needed

Must solve following at the vertices of a finite element mesh: Can normalize using division by $f(x)$.

$$
\left.\min _{\mathbf{A} \in \mathbf{E}_{1}} \operatorname{trace}\left[\mathbf{A}^{T}(\mathbf{A}-2 \mathbf{B})\right]=\min _{\mathbf{A} \in \mathbf{E}_{1}} \operatorname{trace}\left[\mathbf{A}^{2}-2 \mathbf{A B}\right)\right]
$$

where

$$
\begin{aligned}
\mathbf{E}_{1}=\{\mathbf{A} \mid \mathbf{A} & \in \mathbb{R}^{3 \times 3}, \mathbf{A}=\mathbf{A}^{T}, \\
& \lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}=1, \\
& \left.\lambda_{1}+\lambda_{3}>0, \lambda_{2}+\lambda_{3}>0, \lambda_{3}+\lambda_{1}>0\right\}
\end{aligned}
$$

(with $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ being the spectrum of $\mathbf{A}$ )

## Problem Qmin

$$
\begin{aligned}
& \min \operatorname{trace}\{\mathbf{A} \mathbf{A}-2 \mathbf{B A}\} \\
& \text { s.t. } \\
& \ell^{T} \mathbf{M} \ell=2 \\
& \mathbf{M} \ell \geq \mathbf{0}
\end{aligned}
$$

where

$$
\mathbf{M}=\mathbf{e e}^{T}-\mathbf{I}, \quad \text { with } \mathbf{e}^{T}=(1,1, \ldots, 1)
$$

and

$$
\begin{aligned}
\mathbf{B} & =\mathbf{B}^{T} \text { is specified } \\
\mathbf{A} & =\mathbf{A}^{T}=\mathbf{Q} \wedge \mathbf{Q}^{T} \\
\Lambda & =\operatorname{diag}(\ell)
\end{aligned}
$$

## Diagonalized Problem

Note that Problem Qmin is equivalent to

$$
\begin{aligned}
& \min \operatorname{trace}\{\Lambda \Lambda-2 \hat{\mathbf{B}} \Lambda\}=\min \ell^{T} \ell-2 \mathbf{b}^{T} \ell \\
& \text { s.t. } \\
& \ell^{T} \mathbf{M} \ell=2 \\
& \mathbf{M} \ell \geq \mathbf{0}
\end{aligned}
$$

where

$$
\hat{\mathbf{B}}=\mathbf{Q}^{\top} \mathbf{B Q} \text { and } \mathbf{b}=\operatorname{diag}(\hat{\mathbf{B}}) .
$$

## Constraints for $n=3$

Constraints:

$$
\begin{gathered}
\ell^{T} \mathbf{M} \ell=2 \\
\mathbf{M} \ell \geq \mathbf{0} \\
\mathbf{M}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \quad \\
\ell^{T} \mathbf{M} \ell=2 \quad \Rightarrow \quad \lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}=1 \\
\mathbf{M} \ell \geq \mathbf{0} \quad \Rightarrow \quad \begin{array}{l}
\lambda_{2}+\lambda_{3} \geq 0 \\
\lambda_{1}+\lambda_{3} \geq 0 \\
\lambda_{1}+\lambda_{2} \geq 0
\end{array}
\end{gathered}
$$

## No Active Equality Consraint

## Lemma

If the vector $\ell \in \mathbb{R}^{n}$ is finite and feasible, then none of the inequality constraints can be active. In other words,

$$
\ell^{T} \mathbf{M} \ell=2 \Rightarrow \mathbf{e}_{j}^{T} \mathbf{M} \ell>0, \text { for } j=1,2, \ldots, n
$$

## Proof Outline

Proof Outline:
If $\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n}=0$,
Equality constraint $\ell^{T} \mathbf{M} \ell=2$ provides

$$
\begin{aligned}
\lambda_{1}\left(\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n}\right)=2 & -\lambda_{2}\left(\lambda_{3}+\lambda_{4}+\ldots \lambda_{n}\right) \\
& -\lambda_{3}\left(\lambda_{2}+\lambda_{4}+\lambda_{5}+\ldots \lambda_{n}\right) \\
& \cdots \\
& -\lambda_{n}\left(\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n-1}\right) .
\end{aligned}
$$

It follows that

$$
0=\lambda_{1}\left(\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n}\right)=2+\lambda_{2}^{2}+\lambda_{3}^{2} \cdots+\lambda_{n}^{2} \geq 2
$$

which is a contradiction.

## Lagrangian for Equality Constraint:

Lagrangian:

$$
\mathcal{L}(\ell, \mu)=\ell^{T} \ell-2 \mathbf{b}^{T} \ell+\mu\left(\ell^{T} \mathbf{M} \ell-2\right) .
$$

Setting the grad of Lagrangian to zero gives:

$$
(\mathbf{I}+\mu \mathbf{M}) \ell=\mathbf{b}
$$

If $1 / \mu$ is not an eigenvalue of $-\mathbf{M}$ then the equality constraint becomes

$$
\mathbf{b}^{T}(\mathbf{I}+\mu \mathbf{M})^{-1} \mathbf{M}(\mathbf{I}+\mu \mathbf{M})^{-1} \mathbf{b}=2
$$

## Eigensystem of $\mathbf{M}$

Helps to know eigensystem of $\mathbf{M}=\mathbf{e e}^{T}-\mathbf{I}$ :
Eigenvalues

$$
\omega_{1}=n-1 \text { and } \omega_{2}=-1, \text { multiplicity } n-1
$$

Eigenvector for $\omega_{1}$ is $\mathbf{e}$
Eigenvector Matrix

$$
\mathbf{U} \equiv\left(\mathbf{I}-2 \mathbf{w} \mathbf{w}^{T}\right), \quad \text { with } \mathbf{w}=\left(\mathbf{e}+\sqrt{n} \mathbf{e}_{1}\right) /\left\|\mathbf{e}+\sqrt{n} \mathbf{e}_{1}\right\|,
$$

Easily checked:

$$
\mathbf{U}^{T} \mathbf{M} \mathbf{U}=\mathbf{U M} \mathbf{U}^{T}=\mathbf{U} \mathbf{e e}^{T} \mathbf{U}^{T}-\mathbf{I}=n \mathbf{e}_{1} \mathbf{e}_{1}^{T}-\mathbf{I} .
$$

## The Secular Equation

$$
\frac{\beta_{1}^{2} \omega_{1}}{\left(1+\mu \omega_{1}\right)^{2}}=2+\frac{\beta_{2}^{2}}{(1-\mu)^{2}}
$$

where $\left(\beta_{1}, \mathbf{b}_{2}^{T}\right)=\mathbf{b}^{T} \mathbf{U}$ and $\beta_{2}^{2}=\mathbf{b}_{2}^{T} \mathbf{b}_{2}$.
Note:

$$
\beta_{1}=\mathbf{e}^{t} \mathbf{b} / \sqrt{n} \text { is invariant: } \quad \mathbf{e}^{T} \mathbf{b}=\operatorname{trace}\{\mathbf{B}\}
$$

## Reciprocal Square Root Equation

Better Equivalent Form

$$
\pm\left(1+\mu \omega_{1}\right)=\frac{(1-\mu)\left|\beta_{1}\right| \sqrt{\omega_{1}}}{\sqrt{2(1-\mu)^{2}+\beta_{2}^{2}}}
$$

Algorithm: Newton's Method converges in 3 steps

## Graphs of Secular Equations




Figure: The Secular Equation for Multiplier $\mu$ (left) and the Reciprocal Square Root Secular Equation (right)

## Choice of Root

Corresponding to Root $\mu$, the vector $\ell$ is:

$$
\ell=\mathbf{U c} \text { with } \mathbf{c}^{T}=\left(\frac{\beta_{1}}{\left(1+\mu \omega_{1}\right)}, \frac{1}{1-\mu} \mathbf{b}_{2}^{T}\right)
$$

Pick Solution with Positive Components:

$$
0<\mathbf{M} \ell=\left(\mathbf{e} \mathbf{e}^{T}-\mathbf{I}\right) \ell=\mathbf{e}\left(\mathbf{e}^{T} \ell\right)-\ell
$$

## Suggested Alternating Min Algorithm

- $\mathbf{b}=\operatorname{diag}(\mathbf{B}) ; \quad \mathbf{Q}=\mathbf{I}$;
- while ('not converged'),
- $\min _{\ell} \ell^{T} \ell-2 \mathbf{b}^{T} \ell$ s.t. constraints;
- $\min _{\mathbf{A}=\mathbf{W}}{\operatorname{diag}(\ell) \mathbf{W}^{T}}$ trace $\{\mathbf{A A}-2 \mathbf{B A}\}$ s.t. constraints;
- $\mathbf{b}=\operatorname{diag}\left(\mathbf{W}^{\top} \mathbf{B W}\right)$;


## ALWAYS CONVERGED IN 2 STEPS!

## Surprise Result

Suppose $\mathbf{B}=\mathbf{Q} \operatorname{diag}(\mathbf{b}) \mathbf{Q}^{T}$
If $\mu$ and corresponding $\ell=(\mathbf{I}+\mu \mathbf{M})^{-1} \mathbf{b}$ solve

$$
\min \ell^{T} \ell-2 \mathbf{b}^{T} \ell \text { s.t.constraints }
$$

We have
Lemma
Let $\Lambda=\operatorname{diag}(\ell)$. Then $\mathbf{A}_{\mathbf{Q}}=\mathbf{Q} \wedge \mathbf{Q}^{T}$ solves

$$
\min \operatorname{trace}\{\mathbf{A} \mathbf{A}-2 \mathbf{B A}\} \text { s.t.constraints }
$$

over all $\mathbf{A}=\mathbf{W} \wedge \mathbf{W}^{\top}$ with $\mathbf{W}^{\top} \mathbf{W}=\mathbf{I}$.

## Proof Outline

If $\hat{\mathbf{b}}=\mathbf{Q}^{\top} \mathbf{B Q}$ then $\mathbf{W}^{\top} \mathbf{B W}=\hat{\mathbf{Q}}^{T} \hat{\mathbf{B}} \hat{\mathbf{Q}}$.
Let $\hat{\mathbf{b}}=\operatorname{diag}\left(\hat{\mathbf{Q}}^{T} \hat{\mathbf{B}} \hat{\mathbf{Q}}\right)$.

$$
\hat{\beta}_{j} \equiv \hat{\mathbf{b}}(j)=\mathbf{q}_{j}^{T} \hat{\mathbf{B}} \mathbf{q}_{j}=\sum_{i=1}^{n} \beta_{i} \gamma_{i j}^{2}
$$

where $\beta_{j}=\mathbf{b}(j), \quad \hat{\mathbf{Q}}=\left(\gamma_{i j}\right), \quad \mathbf{q}_{j}=\hat{\mathbf{Q}} \mathbf{e}_{j}$
Hence,

$$
\hat{\mathbf{b}}=\mathbf{G}^{T} \mathbf{b}, \quad \text { where the } i, j-\text { th entry of } \mathbf{G} \text { is } \gamma_{i j}^{2} .
$$

We show

$$
\ell^{T} \ell-2 \mathbf{b}^{T} \ell \leq \ell^{T} \ell-2 \hat{\mathbf{b}}^{T} \ell .
$$

Since $\ell$ is fixed, sufficient to show

$$
\ell^{T} \hat{\mathbf{b}}-\ell^{T} \mathbf{b}=\ell^{T}(\hat{\mathbf{b}}-\mathbf{b}) \leq 0
$$

## Proof Outline Contd.

$\mathbf{G e}=\mathbf{G}^{\top} \mathbf{e}=\mathbf{e}$ implies

$$
\hat{\mathbf{b}}-\mathbf{b}=(1-\mu)\left(\mathbf{G}^{T}-\mathbf{I}\right) \ell
$$

Therefore,

$$
\ell^{T}(\hat{\mathbf{b}}-\mathbf{b})=(1-\mu) \frac{1}{2}\left(\ell^{T}\left(\mathbf{G}^{T}-\mathbf{I}\right) \ell+\ell^{T}(\mathbf{G}-\mathbf{I}) \ell\right)
$$

It follows that

$$
\ell^{T}(\hat{\mathbf{b}}-\mathbf{b})=-(1-\mu) \sum_{i \neq j} \gamma_{i j}^{2}\left(\lambda_{j}-\lambda_{i}\right)^{2} \leq 0
$$

since $(1-\mu)>0$.

## Converse

Lemma
Suppose $\mathbf{A}=\mathbf{W} \wedge \mathbf{W}^{T}$ solves Problem Qmin. Then there is an orthogonal $\hat{\mathbf{Q}}$ such that $\mathbf{Q}=\mathbf{W} \hat{\mathbf{Q}}$ diagonalizes $\mathbf{B}$ and $\mathbf{A}=\mathbf{Q} \wedge \mathbf{Q}^{T}$. In other words, if $\mathbf{A}$ solves Problem $Q \min$, then $\mathbf{A}=\mathbf{Q} \wedge \mathbf{Q}^{T}$ with $\mathbf{Q}^{\top} \mathbf{B Q}$ diagonal.

## Final Algorithm

- $[\mathbf{Q}, \mathbf{L}]=\operatorname{eig}(\mathbf{B}) ; \quad \mathbf{b}=\operatorname{diag}(\mathbf{L})$
- $\min _{\ell} \ell^{T} \ell-2 \mathbf{b}^{T} \ell \quad$ subject to constraints
- $\mathbf{A}=\mathbf{Q} \operatorname{diag}(\ell) \mathbf{Q}^{T}$;

Works for ANY n



Semi-Log Surface Parameterized by $\lambda_{1}, \lambda_{2}$



## Summary

- Monge-Ampère important to Diff Geometry
- Glowinski - Dean algorithm requires MANY eigenvalue constrained min problems
- We provided a very simple and efficient method with some surprising properties.

Report:
A Quadratically Constrained Minimization Problem Arising from PDE of Monge-Ampère Type
CAAM TR08-02, DCS and R. Glowinski

## References

- E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional Monge-Ampère equation with Dirichlet boundary conditions: a least-squares approach, C. R. Acad. Sci. Paris, Ser. I, 339(12), 887-892, (2004).
- E.J. Dean and R. Glowinski, On the numerical solution of a two-dimensional Pucci's equation with Dirichlet boundary conditions: a least-squares approach, C. R. Acad. Sci. Paris, Serie I, 341, 375-380, (2005).
- R. Glowinski, E.J. Dean, G. Guidoboni, L.H. Juarez and T.W. Pan, Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two- dimensional Monge-Ampère equation, Jap. J. Industr. Appl. Math., 25, 163, (2008).


## References

- D.B.Fairlie and A.N. Leznov, General solutions of the Monge-Ampère equation in n-dimensional space, Journal of Geometry and Physics, 16, 385-390, (1995).
- D.B.Fairlie and A.N. Leznov, The General Solution of the Complex Monge-Ampère Equation in two dimensional space, preprint August (1999), http://arxiv.org/abs/solv-int/9909014/ (accessed 27 May 08).
- BIRS Workshop (2003) on Monge-Ampère Equation http://www.birs.ca/workshops/2003/03w5067/report03w5067.pdf

