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One dimensional Schrödinger operators

Consider the Hamiltonian H defined pointwise by

(Hψ)(n) = ψ(n + 1) + ψ(n − 1) + V (n)ψ(n)

for doubly-infinite square-summable sequences ψ ∈ `2(Z).

I Here the potential {V (n)} is a bounded, real-valued sequence.

I Thus H is a bounded, self-adjoint operator with matrix representation

H =

26666664

. . .
. . .

. . .

1 V (−1) 1
1 V (0) 1

1 V (1) 1
. . .

. . .
. . .

37777775 .

I We wish to understand how the potential V affects the solution ψ(t)
of the Schrödinger equation

ψt(t) = −iHψ(t).

I Such an understanding requires knowledge of the spectrum σ(H).



Overview

I A ‘rough guide’ to one-dimensional Schrödinger operators
— periodic, random, and quasi-periodic potentials

I Properties of the Fibonacci Hamiltonian
— spectral estimates

I Computation of the fractal dimension of the spectrum



Three classes of potential

We shall encounter three classes of potential functions,
each of which give rise to Schrödinger operators
with distinct spectral characteristics.

I Periodic potentials.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . (period 1)

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . (period 2)

I Random potentials.
0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, . . . (Bernoulli)

I Deterministic potentials that are not periodic.
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, . . . (Fibonacci)

We wish to characterize the spectrum in terms of the potential function.



Spectral Theorem

If H is a self-adjoint, N-dimensional matrix, we can always write

H =
NX

k=1

λjPj ,

where Pj = uju
∗
j is an orthogonal projection onto the span of the unit

eigenvector uj . For any function f analytic on the spectrum of H, we have

〈x , f (H)x〉 =
NX

k=1

f (λj)〈x ,Pjx〉.

Similarly, if H is a bounded, self-adjoint operator on `2(Z), then for all
ψ ∈ `2(Z) there exists a unique spectral measure µψ such that

〈ψ, f (H)ψ〉 =

Z
σ(A)

f (E) dµψ(E)

for all f analytic on σ(H).

The measure can be decomposed into its absolutely continuous,
singular continuous, and pure point components.

See, e.g., [Reed & Simon 1978; Teschl 1999; Damanik].



Periodic potentials

Let the potential V be periodic with period p.

Let H± denote rank-2 updates of the p × p section:

H± =

26664
V (1) 1

1 V (2)
. . .

. . .
. . . 1
1 V (p)

37775± e1e
∗
n ± ene

∗
1

with eigenvalues

σ(H+) = {E+
1 , . . . ,E

+
p }, σ(H−) = {E−1 , . . . ,E

−
p }.

Collect the union of these eigenvalues and sort them in increasing order:

E1 < E2 ≤ E3 < E4 ≤ · · · ≤ E2p−1 < E2p.

The spectrum of the Hamiltonian is purely absolutely continuous and

σ(H) =

p[
j=1

[E2j−1,E2j ].

[Teschl 1999, Ch. 7]



Example of a periodic potential

Spectrum of a 500× 500 section: periodic potential with V (n) = (−1)n.
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Example of a periodic potential

Spectrum of a 500× 500 section: periodic potential with V (n) = (−1)n.
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Example of a periodic potential

Spectrum of a 500× 500 section: periodic potential with V (n) = (−1)n.
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Example of a periodic potential

Spectrum of a 500× 500 section: periodic potential with V (n) = (−1)n.
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Random potentials

We restrict attention to Anderson models, where every entry of the potential is
an independent, identically distributed (iid) random variable.

For example, V (n) = ±1, or V (n) ∈ [−2, 2], with uniform probability.

There are exceptional ways to sample such distributions (e.g., giving periodic
samples), so we can only hope for “almost sure” statements (those that hold
with probability 1).

Summary of results [Teschl 1999, Ch. 5; Damanik] for potentials V drawn from a
compact, nontrivial interval of R.

I There exists some bounded set Σ ⊂ R such that

σ(H) = Σ, a.s.

I The spectrum is almost surely pure point.

I The eigenfunctions are almost surely localized (exponentially decaying).

The non-self-adjoint case is also interesting [Hatano and Nelson 1996, . . . ].
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Example of a random potential

Spectrum of a 500× 500 section: random potential with V (n) ∈ [−2, 2] (iid).
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Spectrum of a 500× 500 section: random potential with V (n) ∈ [−2, 2] (iid).
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Example of a random potential

Spectrum of a 500× 500 section: random potential with V (n) ∈ [−2, 2] (iid).
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Deterministic, non-periodic potentials

The periodic and stochastic models are separated by a gulf of deterministic,
non-periodic potentials that are of particular interest as models, e.g., of
quasicrystals.

Do these more closely resemble the periodic or stochastic case?

To answer to this question, one analyzes details of each particular potential.
Three examples, all with λ > 0:

I Almost Mathieu potential. Let |ω| = 1 and α irrational:

V (n) = λ cos(2π(ω + αn))

I Period doubling potential. Let α be irrational:

V (n) = λ cos(2πα2n)

I Fibonacci potential. Let φ denote the golden ratio, φ ≡ 1
2
(
√

5 + 1);

V (n) =


λ, (n/φ mod 1) ≥ 1− 1/φ;
0, otherwise.



Example of a deterministic, non-periodic potential

Spectrum of a 500× 500 section: Fibonacci potential with λ = 4.1.
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Example of a deterministic, non-periodic potential

Spectrum of a 500× 500 section: Fibonacci potential with λ = 4.1.
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Example of a deterministic, non-periodic potential

Spectrum of a 500× 500 section: Fibonacci potential with λ = 4.1.
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Closer examination of the Fibonacci spectrum

5000× 5000 section with Fibonacci potential, λ = 4.1.

We zoom-in near the left end of the spectrum. . .
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We would like to rigorously explain this phenomenon.



Closer examination of the Fibonacci spectrum

5000× 5000 section with Fibonacci potential, λ = 4.1.

We zoom-in near the left end of the spectrum. . .
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Closer examination of the Fibonacci spectrum

5000× 5000 section with Fibonacci potential, λ = 4.1.

We zoom-in near the left end of the spectrum. . .
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Closer examination of the Fibonacci spectrum

5000× 5000 section with Fibonacci potential, λ = 4.1.

We zoom-in near the left end of the spectrum. . .
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5000× 5000 section with Fibonacci potential, λ = 4.1.

We zoom-in near the left end of the spectrum. . .
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Fibonacci potential

Let Σλ denote the spectrum of the Hamilonian with Fibonacci potential

V (n) =


λ, (n/φ mod 1) ≥ 1− 1/φ;
0, otherwise.

[Kohmoto, Kadanoff, Tang 1983; Ostlund et al. 1983]

Fibonacci potential V (n) for n = 1, . . . 75 with λ = 1:
101101011011010110101101101011011010110101101101011010110110101101101011010

75 random Bernoulli samples:
101111100100001100101100010000001101001101011111001001110001011000001001001

Some known facts [Sütő 1989]:

I Σλ is a Cantor set, Leb(Σλ) = 0;

I The spectral measures associated with Σλ are purely singular continuous.
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I Σλ is a Cantor set, Leb(Σλ) = 0;

I The spectral measures associated with Σλ are purely singular continuous.



Box counting dimension

We wish to measure the fractal dimension of the spectrum Σλ.
One characterization is the box counting dimension.

For fixed ε > 0, count the number of ε-intervals that cover S ⊂ R:

NS(ε) = #{j ∈ Z : [jε, (j + 1)ε) ∩ S 6= ∅}.

We can then define the lower and upper box counting dimension as

dim−B (S) = lim inf
ε→0

log NS(ε)

log(1/ε)
, dim+

B (S) = lim sup
ε→0

log NS(ε)

log(1/ε)
.

When these two values agree, the result is the box counting dimension:

dimB(S) = dim−B (S) = dim+
B (S).



Box counting dimension

Examples:

I If S = [a, b] with b > a, then NS(ε) ≈ (b − a)/ε and so

dimB(S) = lim
ε→0

log(b − a) + log(1/ε)

log(1/ε)
= 1.

I For the Cantor middle-thirds set,

dimB(S) =
log(2)

log(3)
= 0.6309 . . . .

I For the Fibonacci spectrum Σλ, we expect dimB(Σλ) ∈ (0, 1).

Bounds derived from [Liu and Wen 2004] and [Raymond 1997]:

0.23104 . . . =
log 2

3
≤ lim
λ→∞

dimB(Σλ) log λ ≤ 2 log φ = 0.96242 . . . .
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Wave packet spreading

Why care about the fractal dimension of the spectrum?

We wish to measure how fast a localized initial state ψ(0) spreads out under
the evolution of the Schrödinger equation

ψ′(t) = −iHtψ(t).

Let δn ∈ `2(Z) be zero everywhere except for 1 in the n th entry.

We will take ψ(0) = δ1.

How much energy is contained in the tails of the solution?

At time T , define

P(N,T ) =
2

T

X
|n|>N

e−2t/T |〈e−iHtδ1, δn〉|2 dt.
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Decay of wave packet tails

P(N,T ) =
2

T

X
|n|>N

e−2t/T |〈e−iHtδ1, δn〉|2 dt

How fast are the tails of the wave packet decaying?

With

S−(α) = − lim inf
T→∞

log P(Tα − 2,T )

log T
, S+(α) = − lim sup

T→∞

log P(Tα − 2,T )

log T
,

we have the critical exponent:

α± = sup{α ≥ 0 : S±(α) <∞}.

Theorem [DEGT 2008]: For the Fibonacci potential with λ > 0,

α± ≥ dimB(Σλ).



Wave packet spreading: illustration

Consider the following discrete simulation with the same periodic, random, and
Fibonacci potentials whose spectra were illustrated earlier.
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Simulation with N = 1000 and ψn(0) = δ500.



Sütő’s periodic potentials

Sütő [1987] showed that if we replace φ in the Fibonacci potential with the
ratio of successive Fibonacci numbers, φk = Fk/Fk−1, we obtain

Vk(n) =


λ, (n/φk mod 1) ≥ 1− 1/φk ;
0, otherwise.

The potential Vk is periodic, as seen in the following table with λ = 1.

k Fk periodic potential values for level-k approximation

1 1 11111111111111111111111111111111111111111111111111111111111111111111

2 2 10101010101010101010101010101010101010101010101010101010101010101010

3 3 11011011011011011011011011011011011011011011011011011011011011011011

4 5 10110101101011010110101101011010110101101011010110101101011010110101

5 8 10110110101101101011011010110110101101101011011010110110101101101011

6 13 10110101101101011010110110101101011011010110101101101011010110110101

7 21 10110101101101011011010110101101101011011010110101101101011011010110

8 34 10110101101101011010110110101101101011010110110101101011011010110110

∞ ∞ 10110101101101011010110110101101101011010110110101101011011010110110. . .



Sütő’s periodic potentials: polynomials

Furthermore, Sütő [1987] showed that the spectrum of the associated
Hamiltonian

(Hkψ)(n) = ψ(n + 1) + ψ(n − 1) + Vk(n)ψ(n)

can be determined from the polynomials

p−1(E) = 2

p0(E) = E

p1(E) = E − λ
...

pk+1(E) = pk(E)pk−1(E)− pk−2(E)

The spectrum of Hk is given by

σk := {E ∈ R : |pk(E)| ≤ 2}.

For k ≥ 0, note that deg(pk) = Fk , the kth Fibonacci number.
For example, deg(p100) > 5.73× 1020.



Sütő’s periodic potentials: polynomials
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Sütő’s approximate spectrum for λ = 1

The blue line shows pk(E).
The red lines show where |pk(E)| = 2.
The black dots show eigenvalues for a 500× 500 finite section.
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Sütő’s approximate spectrum for λ = 1

The blue line shows pk(E).
The red lines show where |pk(E)| = 2.
The black dots show eigenvalues for a 500× 500 finite section.
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Sütő’s approximate spectrum for λ = 1

The blue line shows pk(E).
The red lines show where |pk(E)| = 2.
The black dots show eigenvalues for a 500× 500 finite section.
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Sütő’s approximate spectrum for λ = 1

The blue line shows pk(E).
The red lines show where |pk(E)| = 2.
The black dots show eigenvalues for a 500× 500 finite section.
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Sütő’s approximate spectrum for λ = 1

The blue line shows pk(E).
The red lines show where |pk(E)| = 2.
The black dots show eigenvalues for a 500× 500 finite section.
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Spectral estimates based on Sütő’s polynomials
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Spectral estimates based on Sütő’s polynomials
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Spectral estimates based on Sütő’s polynomials
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Spectral estimates based on Sütő’s polynomials
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Spectral statistics for Sütő’s approximation

At level k, the periodic approximation has Fk bands.
These bands are shrinking in width and getting closer as k increases.
These properties make computation of the bandwidths nontrivial.
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Spectral statistics for Sütő’s approximation

At level k, the periodic approximation has Fk bands.
These bands are shrinking in width and getting closer as k increases.
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Classification of bands in σk

Sütő [1987] also showed that

(σk ∪ σk+1) ⊂ (σk−1 ∪ σk)

and
σ(H) =

\
k≥1

(σk ∪ σk+1).

[Killip, Kiselev, Last 2003]: All bands Ik in σk can be classified in one of two
ways:

I If Ik ⊂ σk−1, it is called ‘Type A’;

I If Ik ⊂ σk−2, it is called ‘Type B’.

We can write down a recurrence for the bands of each type at each level k,
and asymptotically measure the width of these bands.



Spectral Estimates Based on Sütő’s Polynomials
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Spectral Estimates: A bands (blue) and B bands (red)
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Spectral Estimates: A bands (blue) and B bands (red)
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Classification of bands in σk

Moreover, we can describe how bands overlap at each level:

ak,m = number of type-A bands I in σk with #{0 ≤ j < k : I ∩ σj 6= ∅} = m;

bk,m = number of type-B bands I in σk with #{0 ≤ j < k : I ∩ σj 6= ∅} = m.

We have a recurrence for these values:

ak,m = bk−1,m−1

bk,m = ak−2,m−1 + 2bk−2,m−1

with a0,m = a1,m = b0,m = b1,m = 0 except for

a0,0 = 1, b1,0 = 1.

We see that for all k,m ≥ 0:

bk,m = ak+1,m+1.

Can we find explicit formulas for ak,m?
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Values of ak,m (k on vertical axis, m on horizontal axis)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1

1

2 1

3 1

4 2

5 3

6 4 1

7 8

8 8 5

9 20 1

10 16 18

11 48 7

12 32 56 1

13 112 32

14 64 160 9

15 256 120 1

16 128 432 50

17 576 400 11

18 256 1120 220 1

19 1280 1232 72

20 512 2816 840 13

21 2816 3584 364 1

22 1024 6912 2912 98

23 6144 9984 1568 15

24 2048 16640 9408 560 1

25 13312 26880 6048 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20



Closed form expressions for ak,m and bk,m

We have ak,m = 0 unless dk/2e ≤ m ≤ b2k/3c, in which case:

ak,m = 22k−3m−1 m

k −m

 
k −m

2m − k

!
.

Then for all k,m ≥ 0:
bk,m = ak+1,m+1.



Computing the fractal dimension as λ→∞

Using Stirling’s approximation, we obtain k/2 ≤ m ≤ 2k/3,

1√
k

exp(m f (m/k)) . ak,m .
√

k exp(m f (m/k)),

where

f (x) =
1

x

„
(2− 3x) log 2 + (1− x) log(1− x)

− (2x − 1) log(2x − 1)− (2− 3x) log(2− 3x)

«
with f (1/2) = log 2 and f (2/3) = 0.

From this we deduce that

lim
k→∞

max
m

log am,k

m
= f ∗,

where f ∗ is the maximum of f over x ∈ [1/2, 2/3].
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Summary

Using properties of the band widths, we arrive at:

Theorem. If λ > 16, then

f ∗

log Su(λ)
≤ dimB(Σλ) ≤ f ∗

log Sl(λ)
,

where

Su(λ) = 2λ+ 22, Sl(λ) = 1
2

„
(λ− 4) +

p
(λ− 4)2 − 12

«
and

f ∗ = log(1 +
√

2).

Corollary.
lim
λ→∞

dim(Σλ) · log λ = f ∗.
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