# Spectral Calculations for Quasiperiodic Schrödinger Operators 

David Damanik Mark Embree Rice University

# Anton Gorodetski Serguei Tcheremchantsev <br> UC Irvine <br> Université d'Orléans 

IWASEP 7
June 2008

## One dimensional Schrödinger operators

Consider the Hamiltonian $H$ defined pointwise by

$$
(H \psi)(n)=\psi(n+1)+\psi(n-1)+V(n) \psi(n)
$$

for doubly-infinite square-summable sequences $\psi \in \ell_{2}(\mathbf{Z})$.

- Here the potential $\{V(n)\}$ is a bounded, real-valued sequence.
- Thus $H$ is a bounded, self-adjoint operator with matrix representation

$$
H=\left[\begin{array}{ccccccc}
\ddots & \ddots & \ddots & & & & \\
& 1 & V(-1) & 1 & & & \\
& & 1 & V(0) & 1 & & \\
& & & 1 & V(1) & 1 & \\
& & & & \ddots & \ddots & \ddots
\end{array}\right]
$$

- We wish to understand how the potential $V$ affects the solution $\psi(t)$ of the Schrödinger equation

$$
\psi_{t}(t)=-\mathrm{i} H \psi(t)
$$

- Such an understanding requires knowledge of the spectrum $\sigma(H)$.


## Overview

- A 'rough guide' to one-dimensional Schrödinger operators - periodic, random, and quasi-periodic potentials
- Properties of the Fibonacci Hamiltonian - spectral estimates
- Computation of the fractal dimension of the spectrum


## Three classes of potential

We shall encounter three classes of potential functions, each of which give rise to Schrödinger operators with distinct spectral characteristics.

- Periodic potentials. $1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, \ldots($ period 1$)$ $1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, \ldots($ period 2$)$
- Random potentials.
$0,1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0,1,0,1,1,0,0,0, \ldots$ (Bernoulli)
- Deterministic potentials that are not periodic. $1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,0,1,1,0,1, \ldots$ (Fibonacci)

We wish to characterize the spectrum in terms of the potential function.

## Spectral Theorem

If $H$ is a self-adjoint, $N$-dimensional matrix, we can always write

$$
H=\sum_{k=1}^{N} \lambda_{j} P_{j}
$$

where $P_{j}=u_{j} u_{j}^{*}$ is an orthogonal projection onto the span of the unit eigenvector $u_{j}$. For any function $f$ analytic on the spectrum of $H$, we have

$$
\langle x, f(H) x\rangle=\sum_{k=1}^{N} f\left(\lambda_{j}\right)\left\langle x, P_{j} x\right\rangle
$$

Similarly, if $H$ is a bounded, self-adjoint operator on $\ell_{2}(\mathbf{Z})$, then for all $\psi \in \ell_{2}(\mathbf{Z})$ there exists a unique spectral measure $\mu_{\psi}$ such that

$$
\langle\psi, f(H) \psi\rangle=\int_{\sigma(A)} f(E) \mathrm{d} \mu_{\psi}(E)
$$

for all $f$ analytic on $\sigma(H)$.
The measure can be decomposed into its absolutely continuous, singular continuous, and pure point components.

See, e.g., [Reed \& Simon 1978; Teschl 1999; Damanik].

## Periodic potentials

Let the potential $V$ be periodic with period $p$.
Let $H^{ \pm}$denote rank-2 updates of the $p \times p$ section:

$$
H^{ \pm}=\left[\begin{array}{cccc}
V(1) & 1 & & \\
1 & V(2) & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & V(p)
\end{array}\right] \pm e_{1} e_{n}^{*} \pm e_{n} e_{1}^{*}
$$

with eigenvalues

$$
\sigma\left(H^{+}\right)=\left\{E_{1}^{+}, \ldots, E_{p}^{+}\right\}, \quad \sigma\left(H^{-}\right)=\left\{E_{1}^{-}, \ldots, E_{p}^{-}\right\} .
$$

Collect the union of these eigenvalues and sort them in increasing order:

$$
E_{1}<E_{2} \leq E_{3}<E_{4} \leq \cdots \leq E_{2 p-1}<E_{2 p}
$$

The spectrum of the Hamiltonian is purely absolutely continuous and

$$
\sigma(H)=\bigcup_{j=1}^{p}\left[E_{2 j-1}, E_{2 j}\right]
$$

## Example of a periodic potential

Spectrum of a $500 \times 500$ section: periodic potential with $V(n)=(-1)^{n}$.


## Example of a periodic potential

Spectrum of a $500 \times 500$ section: periodic potential with $V(n)=(-1)^{n}$.


## Example of a periodic potential

Spectrum of a $500 \times 500$ section: periodic potential with $V(n)=(-1)^{n}$.

sample eigenvector (log scale)


## Example of a periodic potential

Spectrum of a $500 \times 500$ section: periodic potential with $V(n)=(-1)^{n}$.
blue bands show $\sigma(H)$

sample eigenvector (log scale)


## Random potentials

We restrict attention to Anderson models, where every entry of the potential is an independent, identically distributed (iid) random variable.
For example, $V(n)= \pm 1$, or $V(n) \in[-2,2]$, with uniform probability.
There are exceptional ways to sample such distributions (e.g., giving periodic samples), so we can only hope for "almost sure" statements (those that hold with probability 1 ).

## Random potentials

We restrict attention to Anderson models, where every entry of the potential is an independent, identically distributed (iid) random variable.
For example, $V(n)= \pm 1$, or $V(n) \in[-2,2]$, with uniform probability.
There are exceptional ways to sample such distributions (e.g., giving periodic samples), so we can only hope for "almost sure" statements (those that hold with probability 1 ).

Summary of results [Teschl 1999, Ch. 5; Damanik] for potentials $V$ drawn from a compact, nontrivial interval of $\mathbf{R}$.

- There exists some bounded set $\Sigma \subset \mathbf{R}$ such that

$$
\sigma(H)=\Sigma, \text { a.s. }
$$

- The spectrum is almost surely pure point.
- The eigenfunctions are almost surely localized (exponentially decaying).

The non-self-adjoint case is also interesting [Hatano and Nelson 1996, ...].

## Example of a random potential

Spectrum of a $500 \times 500$ section: random potential with $V(n) \in[-2,2]$ (iid).


## Example of a random potential

Spectrum of a $500 \times 500$ section: random potential with $V(n) \in[-2,2]$ (iid).



## Example of a random potential

Spectrum of a $500 \times 500$ section: random potential with $V(n) \in[-2,2]$ (iid).



Anderson localization

## Deterministic, non-periodic potentials

The periodic and stochastic models are separated by a gulf of deterministic, non-periodic potentials that are of particular interest as models, e.g., of quasicrystals.

Do these more closely resemble the periodic or stochastic case?
To answer to this question, one analyzes details of each particular potential. Three examples, all with $\lambda>0$ :

- Almost Mathieu potential. Let $|\omega|=1$ and $\alpha$ irrational:

$$
V(n)=\lambda \cos (2 \pi(\omega+\alpha n))
$$

- Period doubling potential. Let $\alpha$ be irrational:

$$
V(n)=\lambda \cos \left(2 \pi \alpha 2^{n}\right)
$$

- Fibonacci potential. Let $\phi$ denote the golden ratio, $\phi \equiv \frac{1}{2}(\sqrt{5}+1)$;

$$
V(n)= \begin{cases}\lambda, & (n / \phi \bmod 1) \geq 1-1 / \phi \\ 0, & \text { otherwise }\end{cases}
$$

## Example of a deterministic, non-periodic potential

Spectrum of a $500 \times 500$ section: Fibonacci potential with $\lambda=4.1$.


## Example of a deterministic, non-periodic potential

Spectrum of a $500 \times 500$ section: Fibonacci potential with $\lambda=4.1$.


## Example of a deterministic, non-periodic potential

Spectrum of a $500 \times 500$ section: Fibonacci potential with $\lambda=4.1$.


## Closer examination of the Fibonacci spectrum

$5000 \times 5000$ section with Fibonacci potential, $\lambda=4.1$.
We zoom-in near the left end of the spectrum...


## Closer examination of the Fibonacci spectrum

$5000 \times 5000$ section with Fibonacci potential, $\lambda=4.1$.
We zoom-in near the left end of the spectrum...


## Closer examination of the Fibonacci spectrum

$5000 \times 5000$ section with Fibonacci potential, $\lambda=4.1$.
We zoom-in near the left end of the spectrum...


## Closer examination of the Fibonacci spectrum

$5000 \times 5000$ section with Fibonacci potential, $\lambda=4.1$.
We zoom-in near the left end of the spectrum...


## Closer examination of the Fibonacci spectrum

$5000 \times 5000$ section with Fibonacci potential, $\lambda=4.1$.
We zoom-in near the left end of the spectrum...


## Closer examination of the Fibonacci spectrum

$5000 \times 5000$ section with Fibonacci potential, $\lambda=4.1$.
We zoom-in near the left end of the spectrum...


We would like to rigorously explain this phenomenon.

## Fibonacci potential

Let $\Sigma_{\lambda}$ denote the spectrum of the Hamilonian with Fibonacci potential

$$
V(n)= \begin{cases}\lambda, & (n / \phi \bmod 1) \geq 1-1 / \phi \\ 0, & \text { otherwise }\end{cases}
$$

[Kohmoto, Kadanoff, Tang 1983; Ostlund et al. 1983]
Fibonacci potential $V(n)$ for $n=1, \ldots 75$ with $\lambda=1$ :
101101011011010110101101101011011010110101101101011010110110101101101011010
75 random Bernoulli samples:
101111100100001100101100010000001101001101011111001001110001011000001001001

## Fibonacci potential

Let $\Sigma_{\lambda}$ denote the spectrum of the Hamilonian with Fibonacci potential

$$
V(n)= \begin{cases}\lambda, & (n / \phi \bmod 1) \geq 1-1 / \phi \\ 0, & \text { otherwise }\end{cases}
$$

[Kohmoto, Kadanoff, Tang 1983; Ostlund et al. 1983]
Fibonacci potential $V(n)$ for $n=1, \ldots 75$ with $\lambda=1$ :
101101011011010110101101101011011010110101101101011010110110101101101011010
75 random Bernoulli samples:
101111100100001100101100010000001101001101011111001001110001011000001001001

Some known facts [Sütő 1989]:

- $\Sigma_{\lambda}$ is a Cantor set, $\operatorname{Leb}\left(\Sigma_{\lambda}\right)=0$;
- The spectral measures associated with $\Sigma_{\lambda}$ are purely singular continuous.


## Box counting dimension

We wish to measure the fractal dimension of the spectrum $\Sigma_{\lambda}$.
One characterization is the box counting dimension.
For fixed $\varepsilon>0$, count the number of $\varepsilon$-intervals that cover $S \subset \mathbf{R}$ :

$$
N_{S}(\varepsilon)=\#\{j \in \mathbf{Z}:[j \varepsilon,(j+1) \varepsilon) \cap S \neq \emptyset\}
$$

We can then define the lower and upper box counting dimension as

$$
\operatorname{dim}_{B}^{-}(S)=\liminf _{\varepsilon \rightarrow 0} \frac{\log N_{S}(\varepsilon)}{\log (1 / \varepsilon)}, \quad \operatorname{dim}_{B}^{+}(S)=\limsup _{\varepsilon \rightarrow 0} \frac{\log N_{S}(\varepsilon)}{\log (1 / \varepsilon)}
$$

When these two values agree, the result is the box counting dimension:

$$
\operatorname{dim}_{B}(S)=\operatorname{dim}_{B}^{-}(S)=\operatorname{dim}_{B}^{+}(S)
$$

## Box counting dimension

Examples:

- If $S=[a, b]$ with $b>a$, then $N_{S}(\varepsilon) \approx(b-a) / \varepsilon$ and so

$$
\operatorname{dim}_{B}(S)=\lim _{\varepsilon \rightarrow 0} \frac{\log (b-a)+\log (1 / \varepsilon)}{\log (1 / \varepsilon)}=1
$$

## Box counting dimension

## Examples:

- If $S=[a, b]$ with $b>a$, then $N_{S}(\varepsilon) \approx(b-a) / \varepsilon$ and so

$$
\operatorname{dim}_{B}(S)=\lim _{\varepsilon \rightarrow 0} \frac{\log (b-a)+\log (1 / \varepsilon)}{\log (1 / \varepsilon)}=1 .
$$

- For the Cantor middle-thirds set,

$$
\operatorname{dim}_{B}(S)=\frac{\log (2)}{\log (3)}=0.6309 \ldots
$$

## Box counting dimension

## Examples:

- If $S=[a, b]$ with $b>a$, then $N_{S}(\varepsilon) \approx(b-a) / \varepsilon$ and so

$$
\operatorname{dim}_{B}(S)=\lim _{\varepsilon \rightarrow 0} \frac{\log (b-a)+\log (1 / \varepsilon)}{\log (1 / \varepsilon)}=1
$$

- For the Cantor middle-thirds set,

$$
\operatorname{dim}_{B}(S)=\frac{\log (2)}{\log (3)}=0.6309 \ldots
$$

- For the Fibonacci spectrum $\Sigma_{\lambda}$, we expect $\operatorname{dim}_{B}\left(\Sigma_{\lambda}\right) \in(0,1)$.


## Box counting dimension

Examples:

- If $S=[a, b]$ with $b>a$, then $N_{S}(\varepsilon) \approx(b-a) / \varepsilon$ and so

$$
\operatorname{dim}_{B}(S)=\lim _{\varepsilon \rightarrow 0} \frac{\log (b-a)+\log (1 / \varepsilon)}{\log (1 / \varepsilon)}=1
$$

- For the Cantor middle-thirds set,

$$
\operatorname{dim}_{B}(S)=\frac{\log (2)}{\log (3)}=0.6309 \ldots
$$

- For the Fibonacci spectrum $\Sigma_{\lambda}$, we expect $\operatorname{dim}_{B}\left(\Sigma_{\lambda}\right) \in(0,1)$.

Bounds derived from [Liu and Wen 2004] and [Raymond 1997]:

$$
0.23104 \ldots=\frac{\log 2}{3} \leq \lim _{\lambda \rightarrow \infty} \operatorname{dim}_{B}\left(\Sigma_{\lambda}\right) \log \lambda \leq 2 \log \phi=0.96242 \ldots
$$

## Wave packet spreading

Why care about the fractal dimension of the spectrum?

## Wave packet spreading

## Why care about the fractal dimension of the spectrum?

We wish to measure how fast a localized initial state $\psi(0)$ spreads out under the evolution of the Schrödinger equation

$$
\psi^{\prime}(t)=-\mathrm{i} H t \psi(t)
$$

Let $\delta_{n} \in \ell_{2}(\mathbf{Z})$ be zero everywhere except for 1 in the $n$th entry.
We will take $\psi(0)=\delta_{1}$.

How much energy is contained in the tails of the solution?
At time $T$, define

$$
P(N, T)=\frac{2}{T} \sum_{|n|>N} \mathrm{e}^{-2 t / T}\left|\left\langle\mathrm{e}^{-i H t} \delta_{1}, \delta_{n}\right\rangle\right|^{2} \mathrm{~d} t
$$

## Decay of wave packet tails

$$
P(N, T)=\frac{2}{T} \sum_{|n|>N} \mathrm{e}^{-2 t / T}\left|\left\langle\mathrm{e}^{-\mathrm{i} H t} \delta_{1}, \delta_{n}\right\rangle\right|^{2} \mathrm{~d} t
$$

How fast are the tails of the wave packet decaying?
With
$S^{-}(\alpha)=-\liminf _{T \rightarrow \infty} \frac{\log P\left(T^{\alpha}-2, T\right)}{\log T}, \quad S^{+}(\alpha)=-\limsup _{T \rightarrow \infty} \frac{\log P\left(T^{\alpha}-2, T\right)}{\log T}$,
we have the critical exponent:

$$
\alpha^{ \pm}=\sup \left\{\alpha \geq 0: S^{ \pm}(\alpha)<\infty\right\}
$$

Theorem [DEGT 2008]: For the Fibonacci potential with $\lambda>0$,

$$
\alpha^{ \pm} \geq \operatorname{dim}_{B}\left(\Sigma_{\lambda}\right)
$$

## Wave packet spreading: illustration

Consider the following discrete simulation with the same periodic, random, and Fibonacci potentials whose spectra were illustrated earlier.


Simulation with $N=1000$ and $\psi_{n}(0)=\delta_{500}$.

## Sütő's periodic potentials

Sütő [1987] showed that if we replace $\phi$ in the Fibonacci potential with the ratio of successive Fibonacci numbers, $\phi_{k}=F_{k} / F_{k-1}$, we obtain

$$
V_{k}(n)= \begin{cases}\lambda, & \left(n / \phi_{k} \bmod 1\right) \geq 1-1 / \phi_{k} \\ 0, & \text { otherwise }\end{cases}
$$

The potential $V_{k}$ is periodic, as seen in the following table with $\lambda=1$.

| $k$ |  | $F_{k}$ |
| :---: | ---: | :---: |
| 1 | 1 | 11111111111111111111111111111111111111111111111111111111111111111111 |
| 2 | 2 | 10101010101010101010101010101010101010101010101010101010101010101010 |
| 3 | 3 | 11011011011011011011011011011011011011011011011011011011011011011011 |
| 4 | 5 | 10110101101011010110101101011010110101101011010110101101011010110101 |
| 5 | 8 | 10110110101101101011011010110110101101101011011010110110101101101011 |
| 6 | 13 | 10110101101101011010110110101101011011010110101101101011010110110101 |
| 7 | 21 | 10110101101101011011010110101101101011011010110101101101011011010110 |
| 8 | 34 | 10110101101101011010110110101101101011010110110101101011011010110110 |
| $\infty$ | $\infty$ | $10110101101101011010110110101101101011010110110101101011011010110110 \ldots$ |

## Sütő's periodic potentials: polynomials

Furthermore, Sütő [1987] showed that the spectrum of the associated Hamiltonian

$$
\left(H_{k} \psi\right)(n)=\psi(n+1)+\psi(n-1)+V_{k}(n) \psi(n)
$$

can be determined from the polynomials

$$
\begin{aligned}
p_{-1}(E) & =2 \\
p_{0}(E) & =E \\
p_{1}(E) & =E-\lambda \\
& \vdots \\
p_{k+1}(E) & =p_{k}(E) p_{k-1}(E)-p_{k-2}(E)
\end{aligned}
$$

The spectrum of $H_{k}$ is given by

$$
\sigma_{k}:=\left\{E \in \mathbf{R}:\left|p_{k}(E)\right| \leq 2\right\}
$$

## Sütő's periodic potentials: polynomials

Furthermore, Sütő [1987] showed that the spectrum of the associated Hamiltonian

$$
\left(H_{k} \psi\right)(n)=\psi(n+1)+\psi(n-1)+V_{k}(n) \psi(n)
$$

can be determined from the polynomials

$$
\begin{aligned}
p_{-1}(E) & =2 \\
p_{0}(E) & =E \\
p_{1}(E) & =E-\lambda \\
& \vdots \\
p_{k+1}(E) & =p_{k}(E) p_{k-1}(E)-p_{k-2}(E)
\end{aligned}
$$

The spectrum of $H_{k}$ is given by

$$
\sigma_{k}:=\left\{E \in \mathbf{R}:\left|p_{k}(E)\right| \leq 2\right\}
$$

For $k \geq 0$, note that $\operatorname{deg}\left(p_{k}\right)=F_{k}$, the $k$ th Fibonacci number.
For example, $\operatorname{deg}\left(p_{100}\right)>5.73 \times 10^{20}$.

## Sütö's approximate spectrum for $\lambda=1$

The blue line shows $p_{k}(E)$.
The red lines show where $\left|p_{k}(E)\right|=2$.
The black dots show eigenvalues for a $500 \times 500$ finite section.


## Sütö's approximate spectrum for $\lambda=1$

The blue line shows $p_{k}(E)$.
The red lines show where $\left|p_{k}(E)\right|=2$.
The black dots show eigenvalues for a $500 \times 500$ finite section.


## Sütö's approximate spectrum for $\lambda=1$

The blue line shows $p_{k}(E)$.
The red lines show where $\left|p_{k}(E)\right|=2$.
The black dots show eigenvalues for a $500 \times 500$ finite section.


## Sütő's approximate spectrum for $\lambda=1$

The blue line shows $p_{k}(E)$.
The red lines show where $\left|p_{k}(E)\right|=2$.
The black dots show eigenvalues for a $500 \times 500$ finite section.


## Sütö's approximate spectrum for $\lambda=1$

The blue line shows $p_{k}(E)$.
The red lines show where $\left|p_{k}(E)\right|=2$.
The black dots show eigenvalues for a $500 \times 500$ finite section.


## Spectral estimates based on Sütö's polynomials



## Spectral statistics for Sütö's approximation

At level $k$, the periodic approximation has $F_{k}$ bands.
These bands are shrinking in width and getting closer as $k$ increases.
These properties make computation of the bandwidths nontrivial.


## Spectral statistics for Sütö's approximation

At level $k$, the periodic approximation has $F_{k}$ bands.
These bands are shrinking in width and getting closer as $k$ increases.
These properties make computation of the bandwidths nontrivial.


## Spectral statistics for Sütö's approximation

At level $k$, the periodic approximation has $F_{k}$ bands.
These bands are shrinking in width and getting closer as $k$ increases.
These properties make computation of the bandwidths nontrivial.


## Classification of bands in $\sigma_{k}$

Sütő [1987] also showed that

$$
\left(\sigma_{k} \cup \sigma_{k+1}\right) \subset\left(\sigma_{k-1} \cup \sigma_{k}\right)
$$

and

$$
\sigma(H)=\bigcap_{k \geq 1}\left(\sigma_{k} \cup \sigma_{k+1}\right)
$$

[Killip, Kiselev, Last 2003]: All bands $I_{k}$ in $\sigma_{k}$ can be classified in one of two ways:

- If $I_{k} \subset \sigma_{k-1}$, it is called 'Type $\mathrm{A}^{\prime}$;
- If $I_{k} \subset \sigma_{k-2}$, it is called 'Type $B$ '.

We can write down a recurrence for the bands of each type at each level $k$, and asymptotically measure the width of these bands.

## Spectral Estimates Based on Sütö's Polynomials



## Spectral Estimates: A bands (blue) and B bands (red)



## Spectral Estimates: A bands (blue) and B bands (red)



## Classification of bands in $\sigma_{k}$

Moreover, we can describe how bands overlap at each level:
$a_{k, m}=$ number of type-A bands $I$ in $\sigma_{k}$ with $\#\left\{0 \leq j<k: I \cap \sigma_{j} \neq \emptyset\right\}=m$;
$b_{k, m}=$ number of type-B bands $I$ in $\sigma_{k}$ with $\#\left\{0 \leq j<k: I \cap \sigma_{j} \neq \emptyset\right\}=m$.
We have a recurrence for these values:

$$
\begin{aligned}
& a_{k, m}=b_{k-1, m-1} \\
& b_{k, m}=a_{k-2, m-1}+2 b_{k-2, m-1}
\end{aligned}
$$

with $a_{0, m}=a_{1, m}=b_{0, m}=b_{1, m}=0$ except for

$$
a_{0,0}=1, \quad b_{1,0}=1
$$

## Classification of bands in $\sigma_{k}$

Moreover, we can describe how bands overlap at each level:
$a_{k, m}=$ number of type-A bands $I$ in $\sigma_{k}$ with $\#\left\{0 \leq j<k: I \cap \sigma_{j} \neq \emptyset\right\}=m$;
$b_{k, m}=$ number of type-B bands $I$ in $\sigma_{k}$ with $\#\left\{0 \leq j<k: I \cap \sigma_{j} \neq \emptyset\right\}=m$.
We have a recurrence for these values:

$$
\begin{aligned}
& a_{k, m}=b_{k-1, m-1} \\
& b_{k, m}=a_{k-2, m-1}+2 b_{k-2, m-1}
\end{aligned}
$$

with $a_{0, m}=a_{1, m}=b_{0, m}=b_{1, m}=0$ except for

$$
a_{0,0}=1, \quad b_{1,0}=1
$$

We see that for all $k, m \geq 0$ :

$$
b_{k, m}=a_{k+1, m+1}
$$

## Classification of bands in $\sigma_{k}$

Moreover, we can describe how bands overlap at each level:
$a_{k, m}=$ number of type-A bands $I$ in $\sigma_{k}$ with $\#\left\{0 \leq j<k: I \cap \sigma_{j} \neq \emptyset\right\}=m ;$
$b_{k, m}=$ number of type-B bands $I$ in $\sigma_{k}$ with $\#\left\{0 \leq j<k: I \cap \sigma_{j} \neq \emptyset\right\}=m$.
We have a recurrence for these values:

$$
\begin{aligned}
& a_{k, m}=b_{k-1, m-1} \\
& b_{k, m}=a_{k-2, m-1}+2 b_{k-2, m-1}
\end{aligned}
$$

with $a_{0, m}=a_{1, m}=b_{0, m}=b_{1, m}=0$ except for

$$
a_{0,0}=1, \quad b_{1,0}=1
$$

We see that for all $k, m \geq 0$ :

$$
b_{k, m}=a_{k+1, m+1}
$$

Can we find explicit formulas for $a_{k, m}$ ?

## Values of $a_{k, m}$ ( $k$ on vertical axis, $m$ on horizontal axis)

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  | 4 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  | 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  | 8 | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  | 20 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  | 16 | 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  | 48 | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  | 32 | 56 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  | 112 | 32 |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  | 64 | 160 | 9 |  |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  | 256 | 120 | 1 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  | 128 | 432 | 50 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  | 576 | 400 | 11 |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  | 256 | 1120 | 220 | 1 |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  | 1280 | 1232 | 72 |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  | 512 | 2816 | 840 | 13 |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |  | 2816 | 3584 | 364 | 1 |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |  | 1024 | 6912 | 2912 | 98 |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |  |  | 6144 | 9984 | 1568 | 15 |  |  |  |  |  |
| 24 |  |  |  |  |  |  |  |  |  |  |  |  | 2048 | 16640 | 9408 | 560 | 1 |  |  |  |  |
| 25 |  |  |  |  |  |  |  |  |  |  |  |  |  | 13312 | 26880 | 6048 | 128 |  |  |  |  |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

## Closed form expressions for $a_{k, m}$ and $b_{k, m}$

We have $a_{k, m}=0$ unless $\lceil k / 2\rceil \leq m \leq\lfloor 2 k / 3\rfloor$, in which case:

$$
a_{k, m}=2^{2 k-3 m-1} \frac{m}{k-m}\binom{k-m}{2 m-k} .
$$

Then for all $k, m \geq 0$ :

$$
b_{k, m}=a_{k+1, m+1}
$$

## Computing the fractal dimension as $\lambda \rightarrow \infty$

Using Stirling's approximation, we obtain $k / 2 \leq m \leq 2 k / 3$,

$$
\frac{1}{\sqrt{k}} \exp (m f(m / k)) \lesssim a_{k, m} \lesssim \sqrt{k} \exp (m f(m / k))
$$

where

$$
\begin{aligned}
& f(x)=\frac{1}{x}((2-3 x) \log 2+(1-x) \log (1-x) \\
&-(2 x-1) \log (2 x-1)-(2-3 x) \log (2-3 x))
\end{aligned}
$$

with $f(1 / 2)=\log 2$ and $f(2 / 3)=0$.

## Computing the fractal dimension as $\lambda \rightarrow \infty$

Using Stirling's approximation, we obtain $k / 2 \leq m \leq 2 k / 3$,

$$
\frac{1}{\sqrt{k}} \exp (m f(m / k)) \lesssim a_{k, m} \lesssim \sqrt{k} \exp (m f(m / k))
$$

where

$$
\begin{aligned}
f(x)=\frac{1}{x}((2-3 x) & \log 2+(1-x) \log (1-x) \\
& -(2 x-1) \log (2 x-1)-(2-3 x) \log (2-3 x))
\end{aligned}
$$

with $f(1 / 2)=\log 2$ and $f(2 / 3)=0$.
From this we deduce that

$$
\lim _{k \rightarrow \infty} \max _{m} \frac{\log a_{m, k}}{m}=f^{*}
$$

where $f^{*}$ is the maximum of $f$ over $x \in[1 / 2,2 / 3]$.

## Summary

Using properties of the band widths, we arrive at:
Theorem. If $\lambda>16$, then

$$
\frac{f^{*}}{\log S_{u}(\lambda)} \leq \operatorname{dim}_{B}\left(\Sigma_{\lambda}\right) \leq \frac{f^{*}}{\log S_{l}(\lambda)}
$$

where

$$
S_{u}(\lambda)=2 \lambda+22, \quad S_{l}(\lambda)=\frac{1}{2}\left((\lambda-4)+\sqrt{(\lambda-4)^{2}-12}\right)
$$

and

$$
f^{*}=\log (1+\sqrt{2})
$$

Corollary.

$$
\lim _{\lambda \rightarrow \infty} \operatorname{dim}\left(\Sigma_{\lambda}\right) \cdot \log \lambda=f^{*}
$$

## Summary

Using properties of the band widths, we arrive at:
Theorem. If $\lambda>16$, then

$$
\frac{f^{*}}{\log S_{u}(\lambda)} \leq \operatorname{dim}_{B}\left(\Sigma_{\lambda}\right) \leq \frac{f^{*}}{\log S_{l}(\lambda)}
$$

where

$$
S_{u}(\lambda)=2 \lambda+22, \quad S_{l}(\lambda)=\frac{1}{2}\left((\lambda-4)+\sqrt{(\lambda-4)^{2}-12}\right)
$$

and

$$
f^{*}=\log (1+\sqrt{2})
$$

Corollary.

$$
\lim _{\lambda \rightarrow \infty} \operatorname{dim}\left(\Sigma_{\lambda}\right) \cdot \log \lambda=f^{*}
$$

D. Damanik, M. Embree, A. Gorodetski, S. Tcheremchantsev.

The Fractal dimension of the spectrum of the Fibonacci Hamiltonian.
Comm. Math. Phys. 280 (2008) 499-516.
See also the subsequent article:
Q.-H. Liu, J. Peyrière, Z.-Y. Wen. Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials.
C. R. Acad. Sci. Paris, Ser. I 345 (2007) 667-672.

