

Numerical solution of eigenvalue problems from acoustic field computations

Volker Mehrmann

TU Berlin, Institut für Mathematik
with T. Brüll, C. Schröder, K. Schreiber and E. Teidelt
DFG Research Center Matheon Mathematics for key technologies 7
\triangleright Introduction.
\triangleright Application.
\triangleright Linear system.
\triangleright Eigenvalue problems.
\triangleright Future challenges.
\triangleright Conclusions.
\triangleright A cry for help.

Nonlinear eigenvalue problems in acoustics

The analysis of the acoustic behavior of structures and vehicles needs the numerical solution of parameter dependent linear systems and eigenvalue problems.
\triangleright Such systems have been solved for decades!
\triangleright The mathematics is well-known and used in industrial engineering every day!
\triangleright Numerical methods are available in (commercial) software! (NASTRAN)
\triangleright Do we still need to talk about it?
\triangleright Do we need improved numerical methods?
\triangleright Is the achieved accuracy acceptable?
\triangleright What are the challenges?

Optimality through mathematics

\triangleright Society is increasingly sensitive to inconveniences that come with modern technologies such as air and water pollution, noise by airplanes, cars, trains.
\triangleright There is an increasing demand for optimal solutions. Minimal energy consumption, minimal noise, pollution, waste.
\triangleright Optimal solutions are obtained by using mathematical techniques, such as model based optimization/ optimal control.
\triangleright We need better mathematical models, faster and more accurate numerical methods, robust implementations on modern computer architectures.
\triangleright Industrial problems create interesting new mathematical problems.
\triangleright Discretization methods, optimization methods and numerical linear algebra methods must go hand in hand.

Acoustic field in car interior

Project with company SFE in Berlin 2007/2008.
\triangleright Computation of acoustic field for coupled system of car body and air.
\triangleright Use of SFEs parameterized FEM model which allows geometry and topology changes.
\triangleright Frequent solution of linear systems and eigenvalue problems (up to size $10,000,000$) within optimization loop that changes geometry, topology, damping material, etc.
\triangleright Ultimate goal: Minimize noise in important regions in car interior.
\triangleright Numerical methods for large scale structured parameter dependent linear systems.
\triangleright These methods are used to determine the frequency response of the system under excitations.
\triangleright Numerical methods for large scale structured parameter dependent nonlinear eigenvalue problems (model reduction for coupled model), modal analysis, optimization of frequencies.
\triangleright Determine all eigenvalues in a given region of \mathbb{C}.
\triangleright Determine projectors on important spectral subspaces for model reduction.
\triangleright Implementation of parallel solver in SFE Concept.

Frequency response I

Frequency response II

Mathematical model: Linear system

Solve $P(\omega, \alpha) u(\omega, \alpha)=f(\omega, \alpha)$, where

$$
P(\omega, \alpha):=-\omega^{2}\left[\begin{array}{cc}
M_{s} & 0 \\
0 & M_{f}
\end{array}\right]+\imath \omega\left[\begin{array}{cc}
D_{s} & D_{a s}^{T} \\
D_{a s} & D_{f}
\end{array}\right]+\left[\begin{array}{cc}
K_{s}(\omega) & 0 \\
0 & K_{f}
\end{array}\right],
$$

is complex symmetric of dimension up to $10,000,000$,
$\triangleright M_{s}, M_{f}, K_{f}$ are real symm. pos. semidef. mass/stiffness matrices of structure and air, M_{s} is singular and diagonal, M_{f} is sparse. M_{s} is a factor $1000-10000$ larger than M_{f}.
$\triangleright K_{s}(\omega)=K_{s}(\omega)^{T}=K_{1}(\omega)+\imath K_{2}$.
$\triangleright D_{s}$ is a real damping matrix, D_{f} is complex symmetric.
$\triangleright D_{a s}$ is real coupling matrix between structure and air.
\triangleright All or part of the matrices depend on geometry, topology and material parameters.

Sparsity of fluid mass matrix M_{t}

Sparsity of K_{2}

Detailed tasks

\triangleright Solve for a given set of parameters $\alpha_{i}, i=1,2, \ldots$, the linear system $P(\omega) u(\omega)=f(\omega)$, for $\omega=0, \ldots, 1000 h z$ in small frequency steps.
\triangleright The parameters α_{i} are determined in a manual or (later) automatic optimization process, i.e. α_{i} and α_{i+1} are close.
\triangleright Parallelization in multi-processor multicore environment.
\triangleright Often many right hand sides (load vectors) $f(\omega)$.
\triangleright Accuracy goal: Relative residual 10^{-6}.

Difficulties and challenges

\triangleright Problems are badly scaled and get increasingly ill-conditioned when ω grows.
\triangleright For some parameter constellations the system becomes exactly singular with inconsistent right hand side.
\triangleright Direct solution methods would be ideal but work only work out-of-core.
\triangleright Small blocks of matrices are changed with α remaining system is the same.
\triangleright No multilevel or adaptive grid refinement available, methods must be purely matrix based.

Our contribution

\triangleright Generated and implemented subspace recycling Krylov subspace method with sparse out of core $L D L^{\top}$ preconditioner (MUMPS, PARDISO) for real part of linear system, i.e.

$$
\tilde{P}(\omega):=-\omega^{2}\left[\begin{array}{cc}
M_{s} & 0 \\
0 & M_{f}
\end{array}\right]+\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{f}
\end{array}\right] .
$$

\triangleright For small ω only 2 - 4 iteration steps per frequency are necessary.
\triangleright The number of iteration steps grows substantially for larger ω so that more and more new preconditioners are needed or the number of iterations or restarts increases.

Comparison with NASTRAN

Consider nonlinear eigenvalue problem $P(\lambda) x=0$, where the matrix polynomial

$$
P(\lambda):=\lambda^{2}\left[\begin{array}{cc}
M_{s} & 0 \\
0 & M_{f}
\end{array}\right]+\lambda\left[\begin{array}{cc}
D_{s} & D_{a s}^{T} \\
D_{a s} & D_{f}
\end{array}\right]+\left[\begin{array}{cc}
K_{s}(\lambda) & 0 \\
0 & K_{f}
\end{array}\right],
$$

is complex symmetric and has dimension up to 10,000,000, and all coefficients depend in part on α.
\triangleright Compute all smallest real eigenvalues in a given region of \mathbb{C} and associated eigenvectors.
\triangleright Project the problem into the subspace spanned by these eigenvectors.
\triangleright Solve the second order differential algebraic system (DAE).
\triangleright Optimize the eigenfrequencies/acoustic field w.r.t. the set of parameters.

Numerical methods for polynomial eigenvalue problems

Methods directly for nonlinear problem (incomplete list). For surveys see M./Voss 2005 or Dissertation Schreiber 2008.
\triangleright Second order Arnoldi method Bai 2006
\triangleright Rational Krylov method Ruhe 1998, 2000
\triangleright Residual iteration method Neumaier 1985
\triangleright Newton-Type methods Schreiber/Schwetlick 2006, 2008,
\triangleright Rayleigh quotient iterations Schreiber 2008, Freitag/Spence 2007, 2008
\triangleright Jacobi-Davidson method Sleijpen/Van der Vorst et al 1996, Betcke/Voss 2004, Hochstenbach 2007
\triangleright Arnoldi type methods Voss 2003

Can we use these methods

\triangleright None of these methods can be applied directly.
\triangleright We need to improve convergence and preconditioning.
\triangleright We need better perturbation and error analysis.
\triangleright How can we guarantee a required accuracy.
\triangleright We need the methods in parallel on modern multi-processor, multi-core machines.

Challenges

\triangleright Guarantee that all desired eigenvalues are obtained.
\triangleright Guaranteed relative residual?
\triangleright Previously used decoupled methods for structure/fluid subsystems do not work appropriately.
\triangleright Problem is in some cases truely nonlinear since K_{s} may depend on λ.
\triangleright Eigenvalue is very ill-conditioned for some parameter sets.
\triangleright Mass matrix is block diagonal and singular. (Nullspace is available without extra computation.)
\triangleright Infinite eigenvalues have index 2.
\triangleright For some parameters α the whole matrix polynomial is singular.
\triangleright Locking and purging or deflation of converged eigenvalues?

Our contribution so far

\triangleright Analysis of singularity and structure.
\triangleright Trimmed structured linearization method to deal with singular mass matrix and singular pencil. Byers/M./Xu 2007
\triangleright Implicitly restarted Arnoldi for undamped system with guaranteed eigenvalues in a given interval for undamped systems. This is used as starting configuration in homotopy method for damped system. (Diploma thesis Elena Teidelt 2008)
\triangleright Newton-like methods and generalized Rayleigh quotient methods for general nonlinear systems (Dissertation Kathrin Schreiber May 2008)
\triangleright Special deflation methods for converged eigenvalues.

Linearization

The classical companion linearization for polynomial eigenvalue problems

$$
P(\lambda) x=\sum_{i=0}^{k} \lambda^{i} \boldsymbol{A}_{i} x
$$

is to introduce new variables

$$
T=\left[y_{1}, y_{2}, \ldots, y_{k}\right]^{T}=\left[x, \lambda x, \ldots, \lambda^{k-1} x\right]^{T}
$$

and to turn it into a generalized linear eigenvalue problem

$$
L(\lambda) y:=(\lambda \mathcal{E}+\mathcal{A}) y=0
$$

of size $n k \times n k$.

Linearization

Definition: For a matrix polynomial $P(\lambda)$ of degree k, a matrix pencil $L(\lambda)=(\lambda \mathcal{E}+\mathcal{A})$ is called linearization of $P(\lambda)$, if there exist nonsingular unimodular matrices (i.e., of constant nonzero determinant) $S(\lambda), T(\lambda)$ such that

$$
S(\lambda) L(\lambda) T(\lambda)=\operatorname{diag}\left(P(\lambda), I_{(n-1) k}\right) .
$$

Properties of companion linearization

\triangleright Companion linearization preserves the algebraic and geometric multiplicities of all finite eigenvalues.
\triangleright There are some difficulties with multiple eigenvalues including ∞ and the singular part, Byers/M./Xu 2008.
\triangleright The geometric multiplicity of the eigenvalue ∞ and the sizes of singular blocks are not invariant under unimodular transformations.
\triangleright Companion linearization destroys the structure.

Example: Constrained Multi-body system

Consider the Euler-Lagrange equations of a linear,

$$
\begin{aligned}
\hat{M} \ddot{x}+\hat{D} \dot{x}+\hat{K} x+\hat{G}^{T} \mu & =f(t) \\
\hat{G} x & =g .
\end{aligned}
$$

The associated matrix polynomial is

$$
P(\lambda)=\lambda^{2}\left[\begin{array}{cc}
\hat{M} & 0 \\
0 & 0
\end{array}\right]+\lambda\left[\begin{array}{ll}
\hat{D} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\hat{K} & \hat{G}^{T} \\
\hat{G} & 0
\end{array}\right] .
$$

If \hat{M} is positive definite and \hat{G} has full row rank, then the companion form has a Kronecker block associated with ∞ of size 4.

Modified first order form

The first order formulation used in multibody dynamics only introduces $\boldsymbol{y}=\dot{\boldsymbol{x}}$ and not $\gamma=\dot{\mu}$.

$$
\begin{aligned}
M \dot{y}+D \dot{x}+K x+G^{T} \mu & =f(t), \\
\dot{x} & =y, \\
G x & =0
\end{aligned}
$$

and the associated linear matrix pencil

$$
\tilde{L}(\lambda)=\lambda\left[\begin{array}{lll}
M & 0 & 0 \\
0 & l & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
D & K & G^{T} \\
-I & 0 & 0 \\
0 & G & 0
\end{array}\right],
$$

has a Kronecker block at ∞ of size 3 . Even smaller blocks can be achieved.

Companion form and structure

Example For the complex symmetric problem

$$
\left(\lambda^{2} M+\lambda D+K\right) x=0
$$

the companion linearizations

$$
\lambda\left[\begin{array}{cc}
1 & O \\
O & M
\end{array}\right]-\left[\begin{array}{cc}
O & 1 \\
K & -D
\end{array}\right], \quad \lambda\left[\begin{array}{cc}
1 & O \\
D & M
\end{array}\right]-\left[\begin{array}{cc}
O & 1 \\
K & O
\end{array}\right]
$$

do not preserve the structure and the symmetric versions

$$
\lambda\left[\begin{array}{cc}
K & O \\
O & M
\end{array}\right]-\left[\begin{array}{cc}
O & K \\
K & -D
\end{array}\right], \quad \lambda\left[\begin{array}{cc}
M & O \\
D & M
\end{array}\right]-\left[\begin{array}{cc}
O & M \\
K & O
\end{array}\right]
$$

may be singular. Linearization theory Mackey/Mackey/Mehl/M. 2006, Mackey/Higham/Tisseur 2006, Dopico/Mackey/Teran 2008 is needed.

Trimmed linearization

Consider the polynomial eigenvalue problem

$$
\left(\sum_{i=0}^{k} A_{i} \lambda^{i}\right) x=0 .
$$

\triangleright Can we do as in the multibody context?
\triangleright Can we remove singular and high index parts for the eigenvalue ∞ completely.
\triangleright In Byers/M./Xu 2008 a new trimmed linearization theory is developed.

A simple example

Consider the DAE

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\ddot{x} \\
\ddot{\mu}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x} \\
\dot{\mu}
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\mu
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] .
$$

Index reduction (inserting the derivatives of the second equation into the first) gives the first order DAE

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\mu
\end{array}\right]=\left[\begin{array}{c}
f_{1}-f_{2}-\dot{f}_{2}-\ddot{f}_{2} \\
f_{2}
\end{array}\right] .
$$

This is first order, no first order formulation is necessary.

The associated matrix polynomial

$$
P(\lambda)=\left[\begin{array}{cc}
\lambda^{2}+\lambda+1 & 1 \\
1 & 0
\end{array}\right]
$$

has only the eigenvalue ∞. Using a unimodular transformation from the left with

$$
Q(\lambda)=\left[\begin{array}{cc}
1 & -\left(\lambda^{2}+\lambda+1\right) \\
0 & 1
\end{array}\right]
$$

we obtain the first order

$$
T(\lambda)=Q(\lambda) P(\lambda)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

which has only degree 0 .
Is this a polynomial of degree 2 , or 1 with leading coefficients 0 .

Theorem Byers/M./Xu 2007
Let $A_{i} \in \mathbb{C}^{m, n} i=0, \ldots, k$. Then, the tuple $\left(A_{k}, \ldots, A_{0}\right)$ is unitarily equivalent to a matrix tuple $\left(\hat{A}_{k}, \ldots, \hat{A}_{0}\right)=\left(U A_{k} V, \ldots, U A_{0} V\right)$, where all terms $\hat{A}_{i}, i=0, \ldots, k$, have the form

Properties of this staircase form

\triangleright Each of the blocks $A_{j}^{(i)} i=0, \ldots, k, j=1, \ldots, l$ either has the form $\left[\begin{array}{ll}\Sigma & 0\end{array}\right]$ or $\left[\begin{array}{ll}0 & 0\end{array}\right]$,
\triangleright Each of the blocks $\tilde{A}_{j}^{(i)} i=1, \ldots, k, j=1, \ldots, l$ either has the form $\left[\begin{array}{l}\Sigma \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
\triangleright For each j only one of the $A_{j}^{(i)}$ and $\tilde{A}_{j}^{(i)}$ is nonzero.
\triangleright In the tuple of middle blocks $\left(A_{0}^{(k)}, \ldots, A_{0}^{(k)}\right)$ no k of the coefficients have a common nullspace.
\triangleright Is this all we need?

Deflation of singular parts

Let $P(\lambda) x(\lambda) \equiv 0, \tilde{x}(\lambda):=V x(\lambda)$, where V is as in staircase form, and set

$$
\left[\begin{array}{ccc}
P_{11}(\lambda) & P_{12}(\lambda) & P_{13}(\lambda) \\
P_{21}(\lambda) & P_{22}(\lambda) & 0 \\
P_{31}(\lambda) & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1}(\lambda) \\
x_{2}(\lambda) \\
x_{3}(\lambda)
\end{array}\right]=0 .
$$

Then $x_{1}(\lambda) \equiv 0$, i.e. the right singular blocks of the polynomial $P(\lambda)$ are contained in the submatrix polynomial
$\left.\begin{array}{cc}P_{12}(\lambda) & P_{13}(\lambda) \\ P_{22}(\lambda) & 0\end{array}\right]$.
All the eigenvalue information associated with finite nonzero eigenvalues is contained in $P_{22}(\lambda)$.

Properties of staircase form

\triangleright Staircase form allows to deflate long chains associated with ∞ and singular part.
\triangleright Concept can be extended to any other eigenvalue.
\triangleright Unfortunately for degree >1 the information may not be complete, see following example.
\triangleright There is a good case, where all the information is available.

Bad Example

$$
P(\lambda)=\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\lambda\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right],
$$

has double eigenvalues at $0, \infty$ with right and left chains

$$
x_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]
$$

associated with infinity and

$$
z_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad z_{2}=\left[\begin{array}{c}
0 \\
-1 / 2
\end{array}\right]
$$

associated with 0 . No two coefficients have a common nullspace.
We cannot reduce this matrix polynomial further with strong equivalence.

Complete information about ev. $0, \infty$.

The complete information associated with $0, \infty$ is available if the staircase procedure ends up with a tuple of middle blocks $\left(A_{0}^{(k)}, \ldots, A_{0}^{(k)}\right)$ which has a growing anti-triangular form

$$
\begin{aligned}
& \left(\left[\begin{array}{ccccc}
\Sigma_{k} & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & 0
\end{array}\right],\left[\begin{array}{ccccc}
A_{11}^{(k-1)} & A_{12}^{(k-1)} & 0 & \cdots & 0 \\
A_{21}^{(k-1)} & \Sigma_{k-1} & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right]\right. \\
& \left.\left[\begin{array}{ccccc}
A_{11}^{(1)} & A_{12}^{(1)} & \ldots & A_{1, k-1}^{(1)} & 0 \\
\vdots & \ddots & \ldots & A_{2, k-1}^{(1)} & 0 \\
\vdots & \vdots & \ddots & \ldots & \vdots \\
A_{k-1,1}^{(1)} & A_{k-1,2}^{(1)} & \cdots & \Sigma_{1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccccc}
A_{11}^{(0)} & A_{12}^{(0)} & \cdots & \cdots & A_{1, k}^{(0)} \\
\vdots & \ddots & \cdots & \cdots & A_{2, k}^{(0)} \\
\vdots & \vdots & \ddots & & \vdots \\
A_{k-1,1}^{(0)} & A_{k-1,2}^{(0)} & \cdots & A_{k-1, k-1}^{(0)} & A_{k-1, k}^{(0)} \\
A_{k, 1}^{(0)} & A_{k, 2}^{(0)} & \cdots & A_{k, k-1}^{(0)} & \Sigma_{0}
\end{array}\right]\right)
\end{aligned}
$$

Corollary If the middle block has growing anti-triangular form and is regular, then it only has simply eigenvalues associated with ∞.
Consider the associated eigenvalue problem $P_{22}(\lambda) \tilde{x}=0$ with $\tilde{x}=\left[x_{0}^{T}, x_{1}^{\top}, \ldots, x_{k}^{T}\right]^{T}$. Then we obtain a linear eigenvalue problem by introducing selected new variables (different from the usual companion form). Let

$$
\begin{aligned}
& z_{0,1}=\lambda x_{0}, \quad z_{0,2}=\lambda z_{0,1}=\lambda^{2} x_{0}, \ldots, z_{0, k-1}=\lambda z_{0, k-2}=\lambda^{k-1} x_{0}, \\
& z_{1,1}=\lambda x_{1}, \quad z_{1,2}=\lambda z_{1,1}=\lambda^{2} x_{1}, \ldots, z_{1, k-2}=\lambda z_{1, k-3}=\lambda^{k-2} x_{1}, \\
& \vdots \\
& z_{k-2,1}=\lambda x_{k-2} .
\end{aligned}
$$

Define
$z=\left[x_{0}^{T}, x_{1}^{T}, \ldots, x_{k}^{T}, z_{0,1}^{T}, \ldots, z_{k-2,1}^{T}, z_{0,2}^{T}, \ldots, z_{k-3,2}^{T}, \ldots, z_{0, k-2}^{T}, z_{1, k-2}^{T}, z_{0, k}^{T}\right.$
We call this trimmed linearization.

What do we learn from this?

\triangleright The trimmed linearization theory allows to remove singular parts and high index parts directly in the nonlinear system.
\triangleright In our application we can apply this technique directly to get regular structured linearizations.
\triangleright No null-space computation is necessary, since the kernel of M is available directly and exactly.
\triangleright Thus we can use structured methods for generalized eigenvalue problems.

Finding all evs in an interval/box

One of the goals is to find all eigenvalues in a real interval $[a, b]$ (undamped case) or a box of the complex plane.
\triangleright This is relatively easy for the undamped problem $\lambda^{2} M-K$, we need to find all eigenvalues in a given real interval $[a, b]$.
\triangleright Carry out factorizations $P(a)=L(a) D(a) L(a)^{T}$ and $P(b)=L(b) D(b) L(b)^{T}$ and use inertia to determine number of eigenvalues in interval.
\triangleright Use several starts of implicitly restarted Arnoldi with shift-and-invert preconditioner for $P(a)^{-1}, P(b)^{-1}$, $P((b-a) / 2)^{-1}, \ldots$ until all eigenvalues are found.
\triangleright In the general case we can use Bendixon's theorem or Gersgorin type results to analyse the number of eigenvalues.
\triangleright The computation can be done as in the interval case with several complex targets or using the sign function method.

Numerical results I, Dipl.

\triangleright Balanced, scaled problem, infinite eigenvalues deflated.
\triangleright Matrix dimension: 478788 . Smallest 50 eigenvalues
\triangleright Condition number kappa $=\left||x|^{2} /|\operatorname{lambda}|^{2} *\right| x^{\prime} * M * x \mid$
$\triangleright 1$ factorization needed.

Ev. no	λ	residual	κ
1	$3.116828 e+01$	$2.784910 e-16$	$1.381088 e+08$
2	$3.939059 e+01$	$2.632970 e-16$	$7.76505 e+07$
3	$4.770588 e+01$	$2.730574 e-16$	$6.185278 e+07$
\vdots	\vdots	\vdots	\vdots
6	$6.553705 e+01$	$2.687169 e-16$	$3.215041 e+07$
7	$1.435197 e+02$	$2.508269 e-16$	$6.759916 e+06$
\vdots	\vdots	\vdots	\vdots
48	$6.600993 e+02$	$1.716196 e-16$	$3.239416 e+05$
49	$6.677409 e+02$	$3.189563 e-16$	$5.416045 e+05$
50	$6.837248 e+02$	$2.204968 e-13$	$4.647000 e+05$

Numerical results II Dipl.

\triangleright Balanced, scaled problem, infinite eigenvalue deflated.
\triangleright Matrix dimension: 478788
\triangleright All eigenvalues in $[400,650]$
$\triangleright 31$ eigenvalues found, all converged.
$\triangleright 2$ factorizations needed.

Ev. no	λ	residual	κ
1	$4.007569 e+02$	$5.566134 e-16$	$1.747769 e+06$
\vdots	\vdots	\vdots	\vdots
30	$6.427129 e+02$	$1.286406 e-08$	$2.231207 e+05$
31	$6.431337 e+02$	$1.149491 e-08$	$2.423338 e+05$

General quadratic problem, in progress

\triangleright Bring in damping via homotopy. Solve

$$
\left(1-t_{i}\right)\left(\lambda^{2} M+K\right)+t_{i}(\lambda D), t_{0}, \ldots, t_{\ell} \in[0,1]
$$

\triangleright Use computed symmetric factorizations as long as possible.
\triangleright Use new symmetric factorizations of real part.
\triangleright Recycle Krylov subspaces when possible.
\triangleright Follow eigenvalue curves with stepsize control to guarantee that no eigenvalue is missed.
\triangleright Use Newton method for fully nonlinear problem.

Nonlinear Newton evp. solver.

Truely nonlinear evp $T(\lambda) x=\left(\lambda^{2} M+\lambda D+K(\lambda)\right) x=0$. Apply Newton to function

$$
f_{w}(x, \lambda)=\left[\begin{array}{c}
T(\lambda) x \\
w^{H} x-1
\end{array}\right]=0 .
$$

The Newton system for $\lambda_{k+1}=\lambda_{k}+\mu_{k}$ and $x_{k+1}=x_{k}+s_{k}$ is

$$
\left[\begin{array}{cc}
T\left(\lambda_{k}\right) & \dot{T}\left(\lambda_{k}\right) x_{k} \\
w^{H} & 0
\end{array}\right]\left[\begin{array}{c}
s_{k} \\
\mu_{k}
\end{array}\right]=-\left[\begin{array}{c}
T\left(\lambda_{k}\right) x_{k} \\
w^{H} x_{k}-1
\end{array}\right]
$$

or

$$
\begin{aligned}
& \lambda_{k+1}=\lambda_{k}-\frac{1}{w^{H} T\left(\lambda_{k}\right)^{-1} \dot{T}\left(\lambda_{k}\right) x_{k}} \\
& x_{k+1}=\left(\lambda_{k}-\lambda_{k+1}\right) T\left(\lambda_{k}\right)^{-1} \dot{T}\left(\lambda_{k}\right) x_{k} .
\end{aligned}
$$

Dissertation

\triangleright Conditions for local quadratic convergence of Newton.
\triangleright Proof of local cubic connvergence of two-sided nonlinear Jacobi-Davidson and Rayleigh quotient interation.
\triangleright Implementation of method.
\triangleright Comparison of methods Newton type, Jacobi Davidson, nonlinear two-sided Rayleigh quotients.
\triangleright Special methods for complex symmetric problems.

Difficulties

\triangleright Small homotopy steps necessary to track eigenvalues of polynomial and nonlinear problem.
\triangleright Need to store intermediate Krylov subspaces to make efficient restart.
\triangleright Need to use out-of-core sparse solvers.
\triangleright Need to get into convergence intervals for Newton, JD.
\triangleright No global analysis and industrial implementation yet.

Model/modal reduction

\triangleright After desired eigenvalues and corresponding deflating subspaces $U=\left[u_{1}, \ldots, k\right]$ have been computed, the projected coupled DAE system

$$
U^{\top} M(\alpha) U \ddot{z}+U^{\top} D(\alpha) U \dot{z}+U^{\top} K(\alpha) U z=U^{\top} f
$$

is formed and eigenvalue/frequency optimization is done on this system.
\triangleright The decoupled projection does not work.
\triangleright We would really need nonlinear model reduction.
\triangleright We need to use the fact that only a small part of the system is changed in every optimization step.
\triangleright We need to integrate ev computation, gradient computation, discretization.
\triangleright A multilevel approach would be great.

Conclusions

\triangleright Industrial applications lead to nice mathematical questions.
\triangleright Commercially available codes are not satisfactory.
\triangleright Coupled nonlinear eigenvalue with a structured part.
\triangleright Structure preserving linearization techniques have been derived for polynomial part, but infinite eigenvalues and singularities need to be deflated first.
\triangleright Homotopy and Newton like method are developed.
\triangleright Industrial production code development is a challenge.

Acry for help.

\triangleright Really nonlinear eigenvalue solvers are not well understood.
\triangleright Conditioning and accuracy of eigenvalues is not well understood.
\triangleright Jacobi-Davidson method need to be improved to be compatible.
\triangleright Deflation of converged eigenvalues need to be improved.
\triangleright Subspace recycling in homotopy, Newton, and optimization methods needs to be improved.
\triangleright Linear system and eigenvalue solvers need to be better adapted.
\triangleright Adaptive methods for PDE eigenvalue problems are needed.

References

http://www.matheon.de/
R. Byers, V. Mehrmann and H. Xu. Trimmed linearizations ..., LAA, 2008.
N.J. Higham, D.S. Mackey, and F. Tisseur. The conditioning of linearizations of matrix polynomials. SIMAX 2006.
D.S. Mackey, N. Mackey, C. Mehl and V. Mehrmann. Vector spaces of linearizations for matrix polynomials, SIMAX 2006.
D.S. Mackey, N. Mackey, C. Mehl and V. Mehrmann. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations, SIMAX 2006.
V. Mehrmann and H. Voss: Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods. GAMM Mitteilungen, 2005. K. Schreiber, Nonlinear eigenvalue problems, Newton-type methods and nonlinear Rayleigh functionals, Dissertation, TU Berlin, May 2008.

Thank you very much for your attention.

