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Nonlinear eigenvalue problems in acoustics

The analysis of the acoustic behavior of structures and vehicles
needs the numerical solution of parameter dependent linear
systems and eigenvalue problems.
. Such systems have been solved for decades!
. The mathematics is well-known and used in industrial

engineering every day!
. Numerical methods are available in (commercial) software!

(NASTRAN)
. Do we still need to talk about it?
. Do we need improved numerical methods?
. Is the achieved accuracy acceptable?
. What are the challenges?
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Optimality through mathematics
. Society is increasingly sensitive to inconveniences that come

with modern technologies such as air and water pollution,
noise by airplanes, cars, trains.

. There is an increasing demand for optimal solutions. Minimal
energy consumption, minimal noise, pollution, waste.

. Optimal solutions are obtained by using mathematical
techniques, such as model based optimization/ optimal
control.

. We need better mathematical models, faster and more
accurate numerical methods, robust implementations on
modern computer architectures.

. Industrial problems create interesting new mathematical
problems.

. Discretization methods, optimization methods and numerical
linear algebra methods must go hand in hand.
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Acoustic field in car interior

Project with company SFE in Berlin 2007/2008.

. Computation of acoustic field for coupled system of car body
and air.

. Use of SFEs parameterized FEM model which allows
geometry and topology changes.

. Frequent solution of linear systems and eigenvalue problems
(up to size 10, 000, 000) within optimization loop that changes
geometry, topology, damping material, etc.

. Ultimate goal: Minimize noise in important regions in car
interior.

Eigenvalue problems from acoustic field computation 5 / 51



The project

. Numerical methods for large scale structured parameter
dependent linear systems.

. These methods are used to determine the frequency
response of the system under excitations.

. Numerical methods for large scale structured parameter
dependent nonlinear eigenvalue problems (model reduction
for coupled model), modal analysis, optimization of
frequencies.

. Determine all eigenvalues in a given region of C.

. Determine projectors on important spectral subspaces for
model reduction.

. Implementation of parallel solver in SFE Concept.
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Frequency response I

SFE GmbH, Berlin
CEO: Hans Zimmer
h.zimmer@sfe-berlin.de
http://www.sfe-berlin.de

© SFE GmbH 2007

SFE AKUSMOD
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DLOAD 1 = symmetrical excitation
DLOAD 2 = antimetrical excitation

Unit force = 1 N mm

grid-ID 31010

grid-ID 31011
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Frequency response II

SFE GmbH, Berlin
CEO: Hans Zimmer
h.zimmer@sfe-berlin.de
http://www.sfe-berlin.de

© SFE GmbH 2007

SFE AKUSMOD

��������	�������������������������������

SPL #1

grid-ID ?

SPL #2
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Mathematical model: Linear system
Solve P(ω, α)u(ω, α) = f (ω, α), where

P(ω, α) := −ω2
[

Ms 0
0 Mf

]
+ ıω

[
Ds DT

as
Das Df

]
+

[
Ks(ω) 0

0 Kf

]
,

is complex symmetric of dimension up to 10, 000, 000,
. Ms, Mf , Kf are real symm. pos. semidef. mass/stiffness

matrices of structure and air, Ms is singular and diagonal, Mf

is sparse. Ms is a factor 1000− 10000 larger than Mf .
. Ks(ω) = Ks(ω)T = K1(ω) + ıK2.
. Ds is a real damping matrix, Df is complex symmetric.
. Das is real coupling matrix between structure and air.
. All or part of the matrices depend on geometry, topology and

material parameters.
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Sparsity of fluid mass matrix Mf
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Sparsity of K1(ω)
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Sparsity of K2

0 1 2 3 4

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
5

nz = 358128

hysteresisdamp−Structure

Eigenvalue problems from acoustic field computation 12 / 51



Detailed tasks

. Solve for a given set of parameters αi , i = 1, 2, . . . , the linear
system P(ω)u(ω) = f (ω), for ω = 0, . . . , 1000hz in small
frequency steps.

. The parameters αi are determined in a manual or (later)
automatic optimization process, i.e. αi and αi+1 are close.

. Parallelization in multi-processor multicore environment.

. Often many right hand sides (load vectors) f (ω).

. Accuracy goal: Relative residual 10−6.
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Difficulties and challenges

. Problems are badly scaled and get increasingly ill-conditioned
when ω grows.

. For some parameter constellations the system becomes
exactly singular with inconsistent right hand side.

. Direct solution methods would be ideal but work only work
out-of-core.

. Small blocks of matrices are changed with α remaining
system is the same.

. No multilevel or adaptive grid refinement available, methods
must be purely matrix based.
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Our contribution

. Generated and implemented subspace recycling Krylov
subspace method with sparse out of core LDLT preconditioner
(MUMPS, PARDISO) for real part of linear system, i.e.

P̃(ω) := −ω2
[

Ms 0
0 Mf

]
+

[
K1 0
0 Kf

]
.

. For small ω only 2− 4 iteration steps per frequency are
necessary.

. The number of iteration steps grows substantially for larger ω
so that more and more new preconditioners are needed or the
number of iterations or restarts increases.
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Comparison with NASTRAN

SFE GmbH, Berlin

CEO: Hans Zimmer

h.zimmer@sfe-berlin.de

http://www.sfe-berlin.de

© SFE GmbH 2008

Zeitvergleich SOL 108

Rechner: AMD Optheron 2*DualCore 2600 Mhz

Betriebsystem: Suse Linux 10.0 Kernel 2.6

OpenCore : 1.5 GB , RAM: 8 GB

Modell: 219.432 DOFs, Load Cases: 1

0          20        40        60        80        100      120      140      160       t / min

DMP = 1

DMP = 2

DMP = 4
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Comparison with NASTRAN

SFE GmbH, Berlin

CEO: Hans Zimmer

h.zimmer@sfe-berlin.de

http://www.sfe-berlin.de

© SFE GmbH 2008

Number of processors: 1, DOFs: 219,432

0             100            200             300            400            500    t / min
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Mathematical model: Eigenvalue problem

Consider nonlinear eigenvalue problem P(λ)x = 0, where the
matrix polynomial

P(λ) := λ2
[

Ms 0
0 Mf

]
+ λ

[
Ds DT

as
Das Df

]
+

[
Ks(λ) 0

0 Kf

]
,

is complex symmetric and has dimension up to 10, 000, 000,
and all coefficients depend in part on α.

. Compute all smallest real eigenvalues in a given region of C
and associated eigenvectors.

. Project the problem into the subspace spanned by these
eigenvectors.

. Solve the second order differential algebraic system (DAE).

. Optimize the eigenfrequencies/acoustic field w.r.t. the set of
parameters.
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Numerical methods for polynomial eigenvalue problems

Methods directly for nonlinear problem (incomplete list). For
surveys see M./Voss 2005 or Dissertation Schreiber 2008.
. Second order Arnoldi method Bai 2006
. Rational Krylov method Ruhe 1998, 2000
. Residual iteration method Neumaier 1985
. Newton-Type methods Schreiber/Schwetlick 2006, 2008,
. Rayleigh quotient iterations Schreiber 2008, Freitag/Spence

2007, 2008
. Jacobi-Davidson method Sleijpen/Van der Vorst et al 1996,

Betcke/Voss 2004, Hochstenbach 2007
. Arnoldi type methods Voss 2003
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Can we use these methods

. None of these methods can be applied directly.

. We need to improve convergence and preconditioning.

. We need better perturbation and error analysis.

. How can we guarantee a required accuracy.

. We need the methods in parallel on modern multi-processor,
multi-core machines.
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Challenges

. Guarantee that all desired eigenvalues are obtained.

. Guaranteed relative residual?

. Previously used decoupled methods for structure/fluid
subsystems do not work appropriately.

. Problem is in some cases truely nonlinear since Ks may
depend on λ.

. Eigenvalue is very ill-conditioned for some parameter sets.

. Mass matrix is block diagonal and singular. (Nullspace is
available without extra computation.)

. Infinite eigenvalues have index 2.

. For some parameters α the whole matrix polynomial is
singular.

. Locking and purging or deflation of converged eigenvalues?
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Our contribution so far

. Analysis of singularity and structure.

. Trimmed structured linearization method to deal with singular
mass matrix and singular pencil. Byers/M./Xu 2007

. Implicitly restarted Arnoldi for undamped system with
guaranteed eigenvalues in a given interval for undamped
systems. This is used as starting configuration in homotopy
method for damped system. (Diploma thesis Elena Teidelt
2008)

. Newton-like methods and generalized Rayleigh quotient
methods for general nonlinear systems (Dissertation Kathrin
Schreiber May 2008)

. Special deflation methods for converged eigenvalues.
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Linearization

The classical companion linearization for polynomial eigenvalue
problems

P(λ)x =
k∑

i=0

λiAix

is to introduce new variables

T =
[

y1, y2, . . . , yk
]T

=
[

x , λx , . . . , λk−1x
]T

and to turn it into a generalized linear eigenvalue problem

L(λ)y := (λE +A)y = 0

of size nk × nk .
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Linearization

Definition: For a matrix polynomial P(λ) of degree k , a matrix
pencil L(λ) = (λE +A) is called linearization of P(λ), if there
exist nonsingular unimodular matrices (i.e., of constant nonzero
determinant) S(λ), T (λ) such that

S(λ)L(λ)T (λ) = diag(P(λ), I(n−1)k).
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Properties of companion linearization

. Companion linearization preserves the algebraic and
geometric multiplicities of all finite eigenvalues.

. There are some difficulties with multiple eigenvalues including
∞ and the singular part, Byers/M./Xu 2008.

. The geometric multiplicity of the eigenvalue ∞ and the sizes
of singular blocks are not invariant under unimodular
transformations.

. Companion linearization destroys the structure.
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Example: Constrained Multi-body system

Consider the Euler-Lagrange equations of a linear,

M̂ẍ + D̂ẋ + K̂ x + ĜT µ = f (t)
Ĝx = g.

The associated matrix polynomial is

P(λ) = λ2
[

M̂ 0
0 0

]
+ λ

[
D̂ 0
0 0

]
+

[
K̂ ĜT

Ĝ 0

]
.

If M̂ is positive definite and Ĝ has full row rank, then the
companion form has a Kronecker block associated with ∞ of
size 4.
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Modified first order form

The first order formulation used in multibody dynamics only
introduces y = ẋ and not γ = µ̇.

Mẏ + Dẋ + Kx + GT µ = f (t),
ẋ = y ,

Gx = 0

and the associated linear matrix pencil

L̃(λ) = λ

 M 0 0
0 I 0
0 0 0

 +

 D K GT

−I 0 0
0 G 0

 ,

has a Kronecker block at ∞ of size 3. Even smaller blocks can
be achieved.
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Companion form and structure
Example For the complex symmetric problem

(λ2M + λD + K )x = 0

the companion linearizations

λ

[
I O
O M

]
−

[
O I
K −D

]
, λ

[
I O
D M

]
−

[
O I
K O

]
do not preserve the structure and the symmetric versions

λ

[
K O
O M

]
−

[
O K
K −D

]
, λ

[
M O
D M

]
−

[
O M
K O

]
may be singular. Linearization theory Mackey/Mackey/Mehl/M.
2006, Mackey/Higham/Tisseur 2006, Dopico/Mackey/Teran 2008
is needed.
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Trimmed linearization

Consider the polynomial eigenvalue problem

(
k∑

i=0

Aiλ
i)x = 0.

. Can we do as in the multibody context?

. Can we remove singular and high index parts for the
eigenvalue ∞ completely.

. In Byers/M./Xu 2008 a new trimmed linearization theory is
developed.
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A simple example

Consider the DAE[
1 0
0 0

] [
ẍ
µ̈

]
+

[
1 0
0 0

] [
ẋ
µ̇

]
+

[
1 1
1 0

] [
x
µ

]
=

[
f1
f2

]
.

Index reduction (inserting the derivatives of the second equation
into the first) gives the first order DAE[

0 1
1 0

] [
x
µ

]
=

[
f1 − f2 − ḟ2 − f̈2

f2

]
.

This is first order, no first order formulation is necessary.
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The associated matrix polynomial

P(λ) =

[
λ2 + λ + 1 1

1 0

]
has only the eigenvalue ∞. Using a unimodular transformation
from the left with

Q(λ) =

[
1 −(λ2 + λ + 1)
0 1

]
we obtain the first order

T (λ) = Q(λ)P(λ) =

[
0 1
1 0

]
which has only degree 0.
Is this a polynomial of degree 2, or 1 with leading coefficients 0.
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Staircase form

Theorem Byers/M./Xu 2007
Let Ai ∈ Cm,n i = 0, . . . , k . Then, the tuple (Ak , . . . , A0) is unitarily
equivalent to a matrix tuple (Âk , . . . , Â0) = (UAkV , . . . , UA0V ),
where all terms Âi , i = 0, . . . , k , have the form266666666666666666666666666664

A A A . . . . . . . . . A A A(i)
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A Ã(i)
l−1 0 . . .

. . . .
.
.

.

.

.
.
.
. 0
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Properties of this staircase form

. Each of the blocks A(i)
j i = 0, . . . , k , j = 1, . . . , l either has the

form
[

Σ 0
]

or
[

0 0
]
,

. Each of the blocks Ã(i)
j i = 1, . . . , k , j = 1, . . . , l either has the

form
[

Σ
0

]
or

[
0
0

]
.

. For each j only one of the A(i)
j and Ã(i)

j is nonzero.

. In the tuple of middle blocks (A(k)
0 , . . . , A(k)

0 ) no k of the
coefficients have a common nullspace.

. Is this all we need?
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Deflation of singular parts

Let P(λ)x(λ) ≡ 0, x̃(λ) := Vx(λ), where V is as in staircase
form, and set P11(λ) P12(λ) P13(λ)

P21(λ) P22(λ) 0
P31(λ) 0 0

 x1(λ)
x2(λ)
x3(λ)

 = 0.

Then x1(λ) ≡ 0, i.e. the right singular blocks of the polynomial
P(λ) are contained in the submatrix polynomial[

P12(λ) P13(λ)
P22(λ) 0

]
.

All the eigenvalue information associated with finite nonzero
eigenvalues is contained in P22(λ).
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Properties of staircase form

. Staircase form allows to deflate long chains associated with
∞ and singular part.

. Concept can be extended to any other eigenvalue.

. Unfortunately for degree > 1 the information may not be
complete, see following example.

. There is a good case, where all the information is available.
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Bad Example

P(λ) = λ2
[

1 0
0 0

]
+ λ

[
0 1
1 0

]
+

[
0 0
0 2

]
,

has double eigenvalues at 0,∞ with right and left chains

x1 =

[
0
1

]
, x2 =

[
−1

0

]
associated with infinity and

z1 =

[
1
0

]
, z2 =

[
0

−1/2

]
associated with 0. No two coefficients have a common
nullspace.
We cannot reduce this matrix polynomial further with strong
equivalence.
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Complete information about ev. 0,∞.

The complete information associated with 0,∞ is available if the
staircase procedure ends up with a tuple of middle blocks
(A(k)

0 , . . . , A(k)
0 ) which has a growing anti-triangular form

0BBBBBBBBBB@

2666666664
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.

.

.
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Corollary If the middle block has growing anti-triangular form
and is regular, then it only has simply eigenvalues associated
with ∞.
Consider the associated eigenvalue problem P22(λ)x̃ = 0 with
x̃ = [xT

0 , xT
1 , . . . , xT

k ]T . Then we obtain a linear eigenvalue
problem by introducing selected new variables (different from the
usual companion form). Let

z0,1 = λx0, z0,2 = λz0,1 = λ2x0, . . . , z0,k−1 = λz0,k−2 = λk−1x0,

z1,1 = λx1, z1,2 = λz1,1 = λ2x1, . . . , z1,k−2 = λz1,k−3 = λk−2x1,
...
zk−2,1 = λxk−2.

Define

z = [xT
0 , xT

1 , . . . , xT
k , zT

0,1, . . . , zT
k−2,1, zT

0,2, . . . , zT
k−3,2, . . . , zT

0,k−2, zT
1,k−2, zT

0,k−1]
T .

We call this trimmed linearization.
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What do we learn from this?

. The trimmed linearization theory allows to remove singular
parts and high index parts directly in the nonlinear system.

. In our application we can apply this technique directly to get
regular structured linearizations.

. No null-space computation is necessary, since the kernel of M
is available directly and exactly.

. Thus we can use structured methods for generalized
eigenvalue problems.

Eigenvalue problems from acoustic field computation 39 / 51



Finding all evs in an interval/box
One of the goals is to find all eigenvalues in a real interval [a, b]
(undamped case) or a box of the complex plane.
. This is relatively easy for the undamped problem λ2M − K , we

need to find all eigenvalues in a given real interval [a, b].
. Carry out factorizations P(a) = L(a)D(a)L(a)T and

P(b) = L(b)D(b)L(b)T and use inertia to determine number of
eigenvalues in interval.

. Use several starts of implicitly restarted Arnoldi with
shift-and-invert preconditioner for P(a)−1, P(b)−1,
P((b − a)/2)−1, . . . until all eigenvalues are found.

. In the general case we can use Bendixon’s theorem or
Gersgorin type results to analyse the number of eigenvalues.

. The computation can be done as in the interval case with
several complex targets or using the sign function method.
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Numerical results I, Dipl. E. Teidelt
. Balanced, scaled problem, infinite eigenvalues deflated.
. Matrix dimension: 478 788. Smallest 50 eigenvalues
. Condition number kappa = ||x ||2/|lambda|2 ∗ |x ′ ∗M ∗ x |
. 1 factorization needed.

Ev. no λ residual κ

1 3.116828e + 01 2.784910e − 16 1.381088e + 08
2 3.939059e + 01 2.632970e − 16 7.765305e + 07
3 4.770588e + 01 2.730574e − 16 6.185278e + 07
...

...
...

...
6 6.553705e + 01 2.687169e − 16 3.215041e + 07
7 1.435197e + 02 2.508269e − 16 6.759916e + 06
...

...
...

...
48 6.600993e + 02 1.716196e − 16 3.239416e + 05
49 6.677409e + 02 3.189563e − 16 5.416045e + 05
50 6.837248e + 02 2.204968e − 13 4.647000e + 05

Eigenvalue problems from acoustic field computation 41 / 51



Numerical results II Dipl. E. Teidelt

. Balanced, scaled problem, infinite eigenvalue deflated.

. Matrix dimension: 478 788

. All eigenvalues in [400, 650]

. 31 eigenvalues found, all converged.

. 2 factorizations needed.
Ev. no λ residual κ

1 4.007569e + 02 5.566134e − 16 1.747769e + 06
...

...
...

...
30 6.427129e + 02 1.286406e − 08 2.231207e + 05
31 6.431337e + 02 1.149491e − 08 2.423338e + 05
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General quadratic problem, in progress

. Bring in damping via homotopy. Solve

(1− ti)(λ2M + K ) + ti(λD), t0, . . . , t` ∈ [0, 1]

. Use computed symmetric factorizations as long as possible.

. Use new symmetric factorizations of real part.

. Recycle Krylov subspaces when possible.

. Follow eigenvalue curves with stepsize control to guarantee
that no eigenvalue is missed.

. Use Newton method for fully nonlinear problem.
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Nonlinear Newton evp. solver.
Truely nonlinear evp T (λ)x = (λ2M + λD + K (λ))x = 0.
Apply Newton to function

fw(x , λ) =

[
T (λ)x

wHx − 1

]
= 0.

The Newton system for λk+1 = λk + µk and xk+1 = xk + sk is[
T (λk) Ṫ (λk)xk

wH 0

] [
sk

µk

]
= −

[
T (λk)xk

wHxk − 1

]
or

λk+1 = λk −
1

wHT (λk)−1Ṫ (λk)xk

xk+1 = (λk − λk+1)T (λk)
−1Ṫ (λk)xk .
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Dissertation Schreiber 2008

. Conditions for local quadratic convergence of Newton.

. Proof of local cubic connvergence of two-sided nonlinear
Jacobi-Davidson and Rayleigh quotient interation.

. Implementation of method.

. Comparison of methods Newton type, Jacobi Davidson,
nonlinear two-sided Rayleigh quotients.

. Special methods for complex symmetric problems.
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Difficulties

. Small homotopy steps necessary to track eigenvalues of
polynomial and nonlinear problem.

. Need to store intermediate Krylov subspaces to make efficient
restart.

. Need to use out-of-core sparse solvers.

. Need to get into convergence intervals for Newton, JD.

. No global analysis and industrial implementation yet.
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Model/modal reduction
. After desired eigenvalues and corresponding deflating

subspaces U = [u1, . . . , k ] have been computed, the projected
coupled DAE system

UT M(α)Uz̈ + UT D(α)Uż + UT K (α)Uz = UT f

is formed and eigenvalue/frequency optimization is done on
this system.

. The decoupled projection does not work.

. We would really need nonlinear model reduction.

. We need to use the fact that only a small part of the system is
changed in every optimization step.

. We need to integrate ev computation, gradient computation,
discretization.

. A multilevel approach would be great.
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Conclusions

. Industrial applications lead to nice mathematical questions.

. Commercially available codes are not satisfactory.

. Coupled nonlinear eigenvalue with a structured part.

. Structure preserving linearization techniques have been
derived for polynomial part, but infinite eigenvalues and
singularities need to be deflated first.

. Homotopy and Newton like method are developed.

. Industrial production code development is a challenge.
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Acry for help.

. Really nonlinear eigenvalue solvers are not well understood.

. Conditioning and accuracy of eigenvalues is not well
understood.

. Jacobi-Davidson method need to be improved to be
compatible.

. Deflation of converged eigenvalues need to be improved.

. Subspace recycling in homotopy, Newton, and optimization
methods needs to be improved.

. Linear system and eigenvalue solvers need to be better
adapted.

. Adaptive methods for PDE eigenvalue problems are needed.
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Thank you very much
for your attention.
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