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Motivating Example (Cavalli–Sforza ’00)



Spread of Agriculture in Europe



Transfer of Technology or Spread of Farmers?



Methodology = PCA (read: SVD)

• Data: DNA sequences: 95 genes at 400 locations in Europe:

X =


x1,1 x1,2 . . . x1,400

x2,1 x2,2 . . . x2,400
...

x95,1 x95,2 . . . x95,400



• Principal Components = singular vectors = directions of maximal variance

(usually first 3 PC explain > 50% of total variance)

• Reveals structure, if it exists, but does not detect it or explain what it is

• Next: Contour plot of first principal component (singular vector)



Data Supports Thesis that Farmers Spread



Why Eigenvalues of Random Matrices

• Conventional model:

X ∈ Cm×n, X ∼ Nm(0,Σ), n-variate Gaussian,

i.e., xij—normal random variables and E(X∗X) = Σ.

• Key question: existence and nature of interdependence between X(:, i)’s

i.e., Σ =? Σ = I? Σ = Σ0? ...

• A ≡ X∗X is called n× n Wishart with m DOF and covariance Σ

• Cast as tests on λmax(A), a “test statistic”

• 5%, 1% benchmarks

• Thus (distributions of) eigenvalues of Wishart critical



Computational Aspects of Eigenvalues of Random Matrices

• Theory: 1960s: easy

• Surprise: Explicit formulas, but ...

• Algorithms: hard; only very recent

• Matrix size relatively small = population size

• Example: λmax of 4× 4 Wishart with 7 DOF, Σ = I
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Exact vs Empirical with 20,000 replications

• Formulas intrinsically accurate (sums of positives)



Computing Eigenvalues of Wisharts is Really Hard!

• Sample complaints:
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– A. Ozyildirim and Y. Tanik. SIR statistics in antenna arrays in the presence of correlated Rayleigh fading. In IEEE VTS 50th
Vehicular Technology Conference, 1999. VTC 1999 - Fall, volume 1, pages 67–71, 19-22 September 1999.

– Hyundong Shin and Jae Hong Lee. Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering,
and keyhole. IEEE Transactions on Information Theory, 49:2636–2647, October 2003.

– V. Smidl and A. Quinn. Fast variational PCA for functional analysis of dynamic image sequences. In Proceedings of the 3rd
International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003., volume 1, pages 555–560, 18-20
September 2003.



Computing Eigenvalues of Wisharts is Really Hard!



Computing Eigenvalues of Wisharts is Really Hard!



Hypergeometric Fn of Matrix Argument, Previous Best Algorithm



Hypergeometric Fn of Matrix Argument, Previous Best Algorithm



Hypergeometric Fn of Matrix Argument, Previous Best Algorithm

• New result (2.33 GHz Pentium):

>> tic; mhg(20,2,[],[],[1:20]/210), toc

ans =

2.71828182845905

elapsed_time =

0.03100000000000



Deriving the Distribution of λmax(XTX)

• Distribution of λmax (complex case):

Variable Density

x ∼ N (0, σ) f(x) = Ce−
|x|2
σ

X = (X1, . . . , Xn) ∼ Nm(0,Σ) f(X) = C|Σ|−1e−X
∗Σ−1X

A = X∗X ∼ Wm(n,Σ) f(A) = C|Σ|−m|A|m−ne−tr(Σ−1A)

P (λmax < x) = P (A < xI) =

∫
0<A<xI

f(A)dA



Distribution of λmax of Wishart

P (λmax < x) = P (A < xI)

=

∫
0<A<xI

C|Σ|−m|A|m−ne−tr(Σ−1A)dA

(A→ Q∗ΛQ) =

∫
Λ∈[0,x]n

C
∏
i<j

|λi − λj|2
n∏
i=1

λm−ni e−λidΛ

Selberg Integral, 1940s

=
∞∑
k=0

∑
κ`k

cκ · sκ(x1, . . . , xn)

• sκ = Schur functions, orthogonal basis of Π(x1, . . . , xn)

• Indexed by partitions κ:

Leading terms: x1, x2
1, x1x2, x3

1, x2
1x2, x1x2x3, ...



Distribution of λmax of Wishart

P (λmax < x) = P (A < xI)

=

∫
0<A<xI

C|Σ|−m|A|m−ne−tr(Σ−1A)dA

(A→ Q∗ΛQ) =

∫
Λ∈[0,x]n

C
∏
i<j

|λi − λj|2
n∏
i=1

λm−ni e−λidΛ

Selberg Integral, 1940s

=
∞∑
k=0

∑
κ`k

cκ · sκ(x1, . . . , xn)

∼ 1F1(m;n+m;x1, . . . , xn)

Hypergeometric Function of Matrix Argument

• Need to truncate for k ≤M for some M

• Even a single sκ is exponential if computed naively



Cost of Computing Schur Polynomials Naively

Degree Partition κ sκ Number of terms

1 (1) x1 + · · ·+ xn O(n)

2 (2)
∑
i≤j

xixj O(n2)

2 (1, 1)
∑
i<j

xixj O(n2)

3 (1, 1, 1)
∑
i<j<k

xixjxk O(n3)

|κ| κ
∑

xκ1
1 · · ·xκnn O

(
n|κ|

)
• New result: O(n) each, as long as one wants them all (and we do!)



Computing the Schur Polynomial “Cleverly”

• sκ of higher degree “contain” sλ of lower degree. Redundancy.

• E.g.:

s(1,1)(x1, . . . , xn) =
∑
i<j

xixj

= x1x2 + (x1 + x2)x3 + · · ·+ (x1 + · · ·+ xn−1)xn

• In general:

sκ(x1, x2, . . . , xn) =
∑
λ<κ

sλ(x1, x2, . . . , xn−1) · x|κ|−|λ|n

• Connection with representation theory:

– sκ are the irreducible characters of GLn(C)

– the characters of GLn−1(C) induce those of GLn(C)

• Result long known (Macdonald), but missed for 40 years



Computing the Schur Polynomial “Cleverly”

• Example: s(1,1)(x1, . . . , xn)

=
∑
i<j

xixj
(
∼ n2 operations

)
= x1︸︷︷︸

s1

x2 + (x1+x2︸ ︷︷ ︸
s2

)x3 + (x1+x2+x3︸ ︷︷ ︸
s3

)x4 + · · ·+ (x1+· · ·+xn−1︸ ︷︷ ︸
sn−1

)xn

• New cost: 3n− 2 instead of n2

• Generalizes to all κ:

Cost of sκ(x1, . . . , xn) goes down from O(n|κ|) to O(Nκn)

• It gets better: We can get rid of Nκ ≡ {#λ|λ < κ}



Analogy with the FFT

• Idea: (DFT)ij—characters of Z/nZ ←→ sλ—characters of GLn(C)

• Write our main identity

sκ(x1, x2, . . . , xn) =
∑
λ<κ

sλ(x1, x2, . . . , xn−1) · x|κ|−|λ|n

in matrix form: Cn = Cn−1 · Yn(xn), where

Y2(x) =


1 x x2 x3

1 x x2 x x2 x3 x4

1 x x x2 x3 x2 x3 x4 x5

1 x x2 x x2 x3 x3 x4 x5 x6




1 x x2 x3

1 x x2

1 x
1


−1

=


1 −x

1 −x
1 −x

1


• Matrix-vector multiplication by Yn costs O(n) per sλ instead of O(nNκ)



Our New Fast Algorithm

• Let A be the lower shift matrix ai+1,i = 1; B = AT

• Structure of Yn :

Un(xn) = I(N+1)n−1 + xn(A⊗Bn−1) + · · ·+ xNn (AN ⊗BN
n−1)

=
(
I(N+1)n−1 − xn(A⊗Bn−1)

)−1
,

Cn(xn) = Un(xn)Kn−1(xn),

Kn(xn) = IN+1 ⊗ Cn(xn),

Bn = Bn−1 ⊗ IN+1 = B ⊗ I(N+1)n−2,

Qn(xn) =
(
I(N+1)n−1 |xnBn | . . . |xNn B

N
n

)
Yn = Qn(xn)Kn(xn)

• New algorithm:

for i=n:-1:1

for all λ such that |λ| ≤M in reverse lexicographic order

sλ = sλ + sλ(i)xn

(where λ(i) ≡ (λ1, . . . , λi − 1, . . . , λn))

• Final cost: O(n) per each sλ, optimal



Open Problems: Many; Here are Two

• Generalize the FFT idea to real, α = 2 case

• How does one multiply quickly by the matrix:

A =



1 1 α+1
2

(α+1)(2α+1)
6

1 1 α+1
2

1 1

1



=



1 −2

1 − 2

1 −2

1



−1/2



Open problem 2: Are the decimal digits of π random?

• Test 1: Histogram: Passed

• Test 2: Longest increasing subsequence ≤ s∫
L

e
∑n
i=1 x

2
i

∏
i<j

(xi − xj)2dx1 · · · dxn−1

– L = {max
1≤i≤n

xi ≤ s, x1 + · · ·+ xn = 0}

– same as λmax of Gaussian matrix with trace 0



Conclusions

• Eigenvalues of random matrices matter, even for small matrices

• Papers and software at: http://www4.ncsu.edu/~pskoev

• Impact on important applications:

– 3D target classification

– Genomics

– Wireless communications

Future work

• New algorithms based on saddle point approximations

• Automatic convergence detection

• FFT generalization to zonal polynomials

• Tracy–Widom finite inference



Example: Genomics

• Population Classification with Nick Patterson, Broad Institute



Example: Genomics

• Given: DNA of m people

• Question: Is there structure in the observed population?

• Equivalently: DNA independent samples from same distribution?

X = (X1, X2, . . . , Xn) =


0 0 0 . . . 1
0 3 2 . . . 0
... ...
1 0 3 . . . 2


• Recenter to make the mean in each column 0

• If no population structure

– all columns of A have same multivariate distribution

– λmax(XX
T ) has same distribution as λmax(Wishart)

• Critical: We need the distribution of λmax(Wishart)!



Population Classification



3D Target Recognition (with Mike Jeffris, MITRE Corp.)

Blazer HMMWV M1 A1 Abrams

Leopard T62 Challenger



Old: 2D Target Recognition

Views: · · ·

×
Sizes: · · ·

×
Types:

· · ·

Inefficient



Enter 3D

Synthetic Aperture Radar

• Works in fog, smoke, cloud cover; returns 3D images

• Tank = n× 3 matrix



3D Target Recognition: The Math Problem

• Database: X1, X2, . . . , Xm (n× 3)

• Observe: Tank i (Xi) + errors (E ∼ N(0, σ2I3 ⊗ In)), rotated

X = Q · (Xi + E)

• The covariance matrix S ≡ XTX becomes the tank’s signature

• S is a non-central 3× 3 Wishart

• Inverse problem: i =?

• Hypothesis testing—based joint eigenvalue density of S:

logL(i|X) = tr

(
−

1

2
Σ−1S −

1

2
Ω

)
+ log

(
0F1

(
1

2
m;

1

4
ΩΣ−1S

))
• Requires the computation of 0F1!


