Quadratic two-parameter eigenvalue problem

Andrej Muhič
Institute of Mathematics, Physics and Mechanics, Ljubljana
IWASEP 7, Dubrovnik, June 9-12, 2008

This is joint work with B. Plestenjak.

Outline

(1) Quadratic two-parameter eigenvalue problem
(2) Properties of linearization for QMEP
(3) Algorithm for the extraction of the common regular part

Quadratic two-parameter eigenvalue problem

- Quadratic two-parameter eigenvalue problem:

$$
\begin{align*}
& \overbrace{\left(A_{1}+\lambda B_{1}+\mu C_{1}+\lambda^{2} D_{1}+\lambda \mu E_{1}+\mu^{2} F_{1}\right)}^{W_{1}(\lambda, \mu)} x=0 \\
& \overbrace{\left(A_{2}+\lambda B_{2}+\mu C_{2}+\lambda^{2} D_{2}+\lambda \mu E_{2}+\mu^{2} F_{2}\right)}^{W_{2}(\lambda, \mu)} y=0 \tag{QMEP}
\end{align*}
$$

where $A_{i}, B_{i}, C_{i}, D_{i}, E_{i}, F_{i}$ are $n_{i} \times n_{i}$ matrices, $\lambda, \mu \in \mathbb{C}, x \in \mathbb{C}^{n_{1}}$, $y \in \mathbb{C}^{n_{2}}$.

- Eigenvalue: a pair (λ, μ) which satisfies (QMEP) for nonzero x and y.
- Equivalent problem in generic case: finding common zeros of polynomials $p_{1}(\lambda, \mu)=\operatorname{det}\left(W_{1}(\lambda, \mu)\right)$ and $p_{2}(\lambda, \mu)=\operatorname{det}\left(W_{2}(\lambda, \mu)\right)$.
- number of eigenvalues in generic case is $4 n_{1} n_{2}$
- Goal: compute all eigenvalues (λ, μ)

Linearization for QMEP

- Possible linearization for QMEP:

$$
\begin{aligned}
& (\overbrace{\left[\begin{array}{ccc}
A_{1} & B_{1} & C_{1} \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]}^{A^{(1)}}+\lambda \overbrace{\left[\begin{array}{ccc}
0 & D_{1} & \frac{1}{2} E_{1} \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}^{B^{(1)}}+\mu \overbrace{\left[\begin{array}{ccc}
0 & \frac{1}{2} E_{1} & F_{1} \\
0 & 0 & 0 \\
-I & 0 & 0
\end{array}\right]}^{C^{(1)}}) w_{1}={ }_{0}=\overbrace{\left[\begin{array}{ccc}
A_{2} & B_{2} & C_{2} \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]}^{A^{(2)}}+\lambda \overbrace{\left[\begin{array}{ccc}
0 & D_{2} & \frac{1}{2} E_{2} \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}^{B^{(2)}}+\overbrace{\left[\begin{array}{ccc}
0 & \frac{1}{2} E_{2} & F_{2} \\
0 & 0 & 0 \\
-I & 0 & 0
\end{array}\right]}^{C^{(2)}}) w_{2}=0,
\end{aligned}
$$

blocks in row i are $n_{i} \times n_{i}$ complex matrices. Linearizations are of the dimension $3 n_{i} \times 3 n_{i}$.

- this is standard two-parameter eigenvalue problem
- problem is singular

Two parameter eigenvalue problem

- Two parameter eigenvalue problem:

$$
\begin{aligned}
& \left(A^{(1)}+\lambda B^{(1)}+\mu C^{(1)}\right) w_{1}=0 \\
& \left(A^{(2)}+\lambda B^{(2)}+\mu C^{(2)}\right) w_{2}=0
\end{aligned}
$$

(MEP)

- Eigenvalue: a pair (λ, μ) which satisfies (MEP) for nonzero w_{1} and w_{2}.
- Eigenvector: the tensor product $w_{1} \otimes w_{2}$.

Tensor product approach

- We define Δ_{i} matrices on the space $\mathbb{C}^{3 n_{1} \times 3 n_{2}}$

$$
\begin{aligned}
& \Delta_{0}=B^{(1)} \otimes C^{(2)}-C^{(1)} \otimes B^{(2)} \\
& \Delta_{1}=C^{(1)} \otimes A^{(2)}-A^{(1)} \otimes C^{(2)} \\
& \Delta_{2}=A^{(1)} \otimes B^{(2)}-B^{(1)} \otimes A^{(2)} .
\end{aligned}
$$

- MEP is nonsingular \Longleftrightarrow some combination of Δ_{i} (usually Δ_{0}) is nonsingular.
- MEP is eiquivalent to coupled GEP

$$
\begin{align*}
& \Delta_{1} z=\lambda \Delta_{0} z \\
& \Delta_{2} z=\mu \Delta_{0} z,
\end{align*}
$$

where $z=w_{1} \otimes w_{2}$.

- $\Delta_{0}^{-1} \Delta_{1}$ and $\Delta_{0}^{-1} \Delta_{2}$ commute.

Singular two-parameter eigenvalue problem

- every combination of Δ_{i} is singular
- pencils $\lambda \Delta_{0}-\Delta_{1}$ and $\mu \Delta_{0}-\Delta_{2}$ are singular
- eigenvalue ω is a finite regular eigenvalue of matrix pencil $\lambda B-A$ if and only if

$$
\operatorname{rank}(\omega B-A)<\max _{s \in \mathbb{C}} \operatorname{rank}(s B-A)=n_{r} .
$$

- Model updating (Cottin 2001, Cottin and Reetz 2006): finite element models of multibody systems are updated to match the measured input-output data.
- Spectrum of delay-differential equations (Jahrlebring 2008)
- QMEP

Finite regular eigenvalue of two pencils

Definition

$\operatorname{Pair}(\lambda, \mu)$ is a finite regular eigenvalue of pencils $\lambda \Delta_{0}-\Delta_{1}$ and $\mu \Delta_{0}-\Delta_{2}$, if and only if
(1) λ is a finite regular eigenvalue of $\lambda \Delta_{0}-\Delta_{1}$,
(2) μ is a finite regular eigenvalue of $\mu \Delta_{0}-\Delta_{2}$,

- there exists common proper eigenvector z in the intersection of regular parts of pencils $\lambda \Delta_{0}-\Delta_{1}, \mu \Delta_{0}-\Delta_{2}$ for which

$$
\begin{aligned}
& \left(\lambda \Delta_{0}-\Delta_{1}\right) z=0 \\
& \left(\mu \Delta_{0}-\Delta_{2}\right) z=0
\end{aligned}
$$

Kronecker canonical form

Definition

Let $\lambda B-A \in \mathbb{C}^{m \times n}$ be a matrix pencil. There exist nonsingular matrices $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$, such that

$$
P^{-1}(B-\lambda A) Q=\widetilde{B}-\lambda \widetilde{A}=\operatorname{diag}\left(B_{1}-\lambda A_{1}, \ldots, B_{b}-\lambda A_{b}\right)
$$

is the Kronecker canonical form, where $B_{i}-\lambda A_{i}$ is one of regular blocks

$$
J_{j}(\alpha)=\left[\begin{array}{ll}
\alpha-\lambda & 1 \\
& \ddots
\end{array}\right.
$$

$$
N_{j}=\left[\begin{array}{ll}
1 & -\lambda \\
& \ddots
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\\
-\lambda \\
1
\end{array}\right],
$$

or one of singular blocks

$$
L_{j}=\left[\begin{array}{cccc}
-\lambda & 1 & & \\
& \ddots & \ddots & \\
& & -\lambda & 1
\end{array}\right], L_{j}^{T}=\left[\begin{array}{l}
-\lambda \tag{array}\\
1
\end{array}\right.
$$

Kronecker canonical structure for QMEP

Studying block structure of matrices Δ_{0}, Δ_{1} and Δ_{2} we prove the following theorem.

Theorem

Kronecker canonical form of pencils $\lambda \Delta_{0}-\Delta_{1}$ and $\mu \Delta_{0}-\Delta_{2}$ has $n_{1} n_{2} L_{0}$, $n_{1} n_{2} L_{0}^{T}, 2 n_{1} n_{2} N_{2}$ blocks and the finite regular part of size $4 n_{1} n_{2}$ in generic case.

- Δ_{0} is of rank $6 n_{1} n_{2}, \Delta_{1}$ and Δ_{2} are of rank $8 n_{1} n_{2}$
- common kernel of Δ_{0} and Δ_{1} is of the dimension $n_{1} n_{2}$
- common kernel of Δ_{0}^{T} and Δ_{1}^{T} is of the dimension $n_{1} n_{2}$
- pencil $\lambda \Delta_{0}^{T}-\Delta_{1}^{T}$ has at least $2 n_{1} n_{2}$ first root vectors for the eigenvalue ∞

Eigenvalues for QMEP

Theorem

The eigenvalues of QMEP are common regular eigenvalues of matrix pencils $\lambda \Delta_{0}-\Delta_{1}$ and $\lambda \Delta_{0}-\Delta_{2}$.

- Eigenvector of the form

$$
z=\left[\begin{array}{c}
x \\
\lambda x \\
\mu x
\end{array}\right] \otimes\left[\begin{array}{c}
y \\
\lambda y \\
\mu y
\end{array}\right]
$$

is the eigenvector for (λ, μ), which we get from linearization.

- Vector z has nonzero first block component.
- Vectors in the kernels of Δ_{1} and Δ_{2} have zero first block component.
- Rank decreases: $\operatorname{rank}\left(\lambda \Delta_{0}-\Delta_{1}\right)<8 n_{1} n_{2}, \operatorname{rank}\left(\mu \Delta_{0}-\Delta_{2}\right)<8 n_{1} n_{2}$.

QMEP is singular problem

Every combination of matrices Δ_{i} is such that
$\left(\alpha_{0} \Delta_{0}^{T}+\alpha_{1} \Delta_{1}^{T}+\alpha_{2} \Delta_{2}^{T}\right)\left(a\left[\begin{array}{l}0 \\ x \\ x\end{array}\right] \otimes\left[\begin{array}{l}0 \\ y \\ y\end{array}\right]+b\left[\begin{array}{l}0 \\ x \\ 0\end{array}\right] \otimes\left[\begin{array}{l}0 \\ y \\ 0\end{array}\right]+c\left[\begin{array}{l}0 \\ 0 \\ x\end{array}\right] \otimes\left[\begin{array}{l}0 \\ 0 \\ y\end{array}\right]\right)=0$,
where $a=\alpha_{1} \alpha_{2}, b=\alpha_{1}^{2}-\alpha_{1} \alpha_{2}$, and $c=\alpha_{2}^{2}-\alpha_{1} \alpha_{2}$.
Our problem is therefore singular.

Kronecker canonical like form

Definition

Possible Kronecker canonical like form for the matrix pencil $\lambda B-A$ is the following
$P^{*}(\lambda B-A) Q=\left[\begin{array}{cc|cc}\lambda B_{\mu}-A_{\mu} & & & \\ \times & \lambda B_{\infty}-A_{\infty} & & \\ \hline \times & \times & \lambda B_{f}-A_{f} & \\ \times & \times & \times & \lambda B_{\epsilon}-A_{\epsilon}\end{array}\right]$.
Pencils $\lambda B_{\mu}-A_{\mu}, \lambda B_{\infty}-A_{\infty}, \lambda B_{f}-A_{f}$, and $\lambda B_{\epsilon}-A_{\epsilon}$ contain the left singular structure, the infinite regular structure, the finite regular structure, and the right singular structure, respectively. Matrices P and Q are orthogonal.

We are interested in finite regular structure contained in lower block together with right singular part.

Row collumn compression

$D_{0}=\Delta_{0}, D_{1}=\Delta_{1}$
Repeat,
(1) Matrix D_{0} has size $m \times n$ and row rank r.
(2) If matrix D_{0} has full row rank, exit and return D_{0}, D_{1}.
(2) Compute row compression of matrix $D_{0}, U_{0}^{*} D_{0}={ }_{m-r}^{r}\left[\begin{array}{c}\times \\ 0\end{array}\right]$. Compute block H of $U_{0}^{*} D_{1}=\stackrel{r}{m-r}\left[\begin{array}{c}n \\ \\ H\end{array}\right]$ and compress it to full column rank c with V_{1}.
We get $U_{0}^{*}\left(\lambda D_{0}-D_{1}\right) V_{1}={ }_{m-r}^{r}\left[\begin{array}{cc}c & n-c \\ \times & \widehat{D}_{0} \\ 0 & 0\end{array}\right]-{ }_{m-r}{ }_{r}^{r}\left[\begin{array}{cc}c & n-c \\ \times & \widehat{D}_{1} \\ \times & 0\end{array}\right]$.

- Assign $D_{0}=\widehat{D}_{0}, D_{1}=\widehat{D}_{1}$ and proceed to 1 .

Collumn row compression

$D_{0}=\Delta_{0}, D_{1}=\Delta_{1}$
Repeat,
(1) (1) Matrix D_{0} has size $m \times n$ and column rank r.
(2) If matrix D_{0} has full column rank, exit and return D_{0}, D_{1}.
(2) Compute column compression of matrix D_{0},
$\left.D_{0}=D_{0} V_{0}=m \begin{array}{cc}c & n-c \\ \times & 0\end{array}\right]$. Compute block H of
$D_{1} V_{0}=m\left[\begin{array}{cc}c-c \\ \times & H\end{array}\right]$ and compress it to the full row rank r with U_{1}.
We get $U_{1}^{*}\left(\lambda D_{0}-D_{1}\right) V_{0}={ }_{m-r}^{r}\left[\begin{array}{cc}c & n-c \\ \times & 0 \\ \widehat{D}_{0} & 0\end{array}\right]-{ }_{m-r}^{r}\left[\begin{array}{cc}{ }^{c} & n-c \\ \times & \times \\ \widehat{D}_{1} & 0\end{array}\right]$.

- Assign $D_{0}=\widehat{D}_{0}, D_{1}=\widehat{D}_{1}$ and proceed to 1 .

Algorithm for the extraction of the common regular part

$P=I_{m}, Q=I_{n}, \Delta_{0}$ is of the size $m \times n$
(1) Separate infinite and finite part.
(a) Apply algorithm Row collumn compression on $\lambda P^{*} \Delta_{0} Q-P^{*} \Delta_{1} Q$ and $\mu P^{*} \Delta_{0} Q-P^{*} \Delta_{2} Q$. We get P_{1}, Q_{1} and P_{2}, Q_{2}.
(b) Join the spaces.

Compute orthogonal matrix Q such that $\mathcal{Q}=\mathcal{Q}_{1} \cap \mathcal{Q}_{2}$ and orthogonal matrix P such that $\mathcal{P}=\mathcal{P}_{1} \cup \mathcal{P}_{2}$.
(c) If $\mathcal{Q}=\mathcal{Q}_{1}$ return P, Q and proceed to 2 . Otherwise proceed to (a).
(2) Separate the finite regular part from the right singular part.
(a) Apply algorithm Collumn row compression on $\lambda P^{*} \Delta_{0} Q-P^{*} \Delta_{1} Q$ and $\mu P^{*} \Delta_{0} Q-P^{*} \Delta_{2} Q$. We get P_{1}, Q_{1} and P_{2}, Q_{2}.
(b) Join the spaces.

Compute orthogonal matrix Q such that $\mathcal{Q}=\mathcal{Q}_{1} \cup \mathcal{Q}_{2}$ and orthogonal matrix P such that $\mathcal{P}=\mathcal{P}_{1} \cap \mathcal{P}_{2}$.
(c) If $\mathcal{Q}=\mathcal{Q}_{1}$ return P, Q and exit. Otherwise proceed to (a).

Hypotesis
Algorithm returns $\widetilde{\Delta_{0}}=P^{*} \Delta_{0} Q, \widetilde{\Delta_{1}}=P^{*} \Delta_{1} Q, \widetilde{\Delta_{2}}=P^{*} \Delta_{2} Q$, such that ${\widetilde{\Delta_{0}}}^{-1} \widetilde{\Delta_{1}}$ and ${\widetilde{\Delta_{0}}}^{-1} \widetilde{\Delta_{2}}$ commute.

- Hypotesis holds for QMEP in generic case.
- We can solve coupled GEP in a standard way.

Model updating

Some results about special symmetric singular problems can be found in (Cottin 2001).

- All Δ_{i} matrices are symmetric and $\operatorname{Im}\left(\Delta_{1}\right), \operatorname{Im}\left(\Delta_{2}\right) \subseteq \operatorname{Im}\left(\Delta_{0}\right)$.
- One can use a generalised inverse of Δ_{0} to obtain matrices $\Delta_{0}^{+} \Delta_{0}$, $\Delta_{0}^{+} \Delta_{1}$, and $\Delta_{0}^{+} \Delta_{1}$.
- Matrices are of the form

$$
\left.\begin{array}{c}
\\
m \\
k
\end{array} \begin{array}{cc}
m & k \\
{\left[\begin{array}{c}
X \\
0
\end{array}\right.} & 0
\end{array}\right]
$$

where k is the dimension of $\operatorname{ker} \Delta_{0}$.

- We continue with $m \times m$ submatrices $\widehat{\Delta_{0}}=I_{m}, \widehat{\Delta_{1}}$, and $\widehat{\Delta_{2}}$.
- When all eigenvalues are semisimple, matrices $\widehat{\Delta_{1}}$ and $\widehat{\Delta_{2}}$ commute. This is only a special case of our algorithm for extraction of common regular part.

Conclusions

- Solution for QMEP in the generic case.
- We proposed an algorithm for solving SMEP.
- We are able to prove that our algorithm works in some special cases.

Work in progress: SMEP

- Regular eigenvalues for SMEP?
- How to do extraction algorithm simultaneously?
- Prove that our algorithm works in general.
- :

Numerical example

-

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
-3 & -1
\end{array}\right]+\lambda\left[\begin{array}{ll}
7 & 1
\end{array}\right]+\mu\left[\begin{array}{ll}
4 & 4
\end{array}\right]+\lambda^{2}\left[\begin{array}{ll}
6 & 2 \\
& 2
\end{array}\right]+\lambda \mu\left[\begin{array}{ll}
10 & 1
\end{array}\right]+\mu^{2}\left[\begin{array}{ll}
4 & -3
\end{array}\right]\right) x=0 \\
& \left(\left[\begin{array}{ll}
-1 & -1
\end{array}\right]+\lambda\left[\begin{array}{ll}
-1 & 2
\end{array}\right]+\mu\left[\begin{array}{ll}
2 & -1
\end{array}\right]+\lambda^{2}\left[\begin{array}{ll}
2 & 3
\end{array}\right]+\lambda \mu\left[\begin{array}{ll}
7 & 7
\end{array}\right]+\mu^{2}\left[\begin{array}{ll}
3 & 2
\end{array}\right]\right) y=0 .
\end{aligned}
$$

We multiply matrices in both equation with arbitrary orthogonal matrices and get a problem with known solutions.

- Matrices $\Delta_{0}, \Delta_{1}, \Delta_{2}$ obtained from linearization are of the size 36×36.
- Using our algorithm we obtain matrices $\widetilde{\Delta}_{0}, \widetilde{\Delta}_{1}, \widetilde{\Delta}_{2}$ of the size 16×16.
- Matrices $\widetilde{\Delta}_{0}^{-1} \widetilde{\Delta}_{1}$ and $\widetilde{\Delta}_{0}^{-1} \widetilde{\Delta}_{2}$ commute.
- We get exactly 16 common regular eigenvalues.

The discrete spectrum of two-parameter linear polynomial

For Further Reading

P. Van Dooren, The Computation of Kronecker's Canonical Form of a Singular Pencil, Lin. Alg. Appl., 27 (1979), pp. 103-141.
\& F. Gantmacher, The Theory of Matrices, Vol. I and II (transl.), Chelsea, New York, (1959).
B. KÅGStröm Singular Matrix Pencils. In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van der Vorst, editors, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, pages 260-277. SIAM Publications, Philadelphia, (2000).

N . Cottin, Dynamic model updating - a multiparameter eigenvalue problem, Mech. Syst. Signal Pr., 15 (2001), pp. 649-665.
围
E. Jahrlebring, The Spectrum of delay-differential equations: numerical methods, stability and pertubation, (2008).
围 Talk by M. Hochstenbach.

