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Quadratic two-parameter eigenvalue problem

Quadratic two-parameter eigenvalue problem:

W1(λ,µ)︷ ︸︸ ︷
(A1 + λB1 + µC1 + λ2D1 + λµE1 + µ2F1) x = 0

(QMEP)W2(λ,µ)︷ ︸︸ ︷
(A2 + λB2 + µC2 + λ2D2 + λµE2 + µ2F2) y = 0

where Ai,Bi,Ci,Di,Ei,Fi are ni × ni matrices, λ, µ ∈ C, x ∈ Cn1 ,
y ∈ Cn2 .
Eigenvalue: a pair (λ, µ) which satisfies (QMEP) for nonzero x and y.

Equivalent problem in generic case:
finding common zeros of polynomials p1(λ, µ) = det(W1(λ, µ)) and
p2(λ, µ) = det(W2(λ, µ)).
number of eigenvalues in generic case is 4n1n2

Goal: compute all eigenvalues (λ, µ)
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Linearization for QMEP

Possible linearization for QMEP:



A(1)︷ ︸︸ ︷A1 B1 C1
0 I 0
0 0 I

+λ

B(1)︷ ︸︸ ︷ 0 D1
1
2 E1

−I 0 0
0 0 0

+µ

C(1)︷ ︸︸ ︷ 0 1
2 E1 F1

0 0 0
−I 0 0




w1 = 0



A(2)︷ ︸︸ ︷A2 B2 C2
0 I 0
0 0 I

+λ

B(2)︷ ︸︸ ︷ 0 D2
1
2 E2

−I 0 0
0 0 0

+µ

C(2)︷ ︸︸ ︷ 0 1
2 E2 F2

0 0 0
−I 0 0




w2 = 0,

blocks in row i are ni × ni complex matrices. Linearizations are of the
dimension 3ni × 3ni.

this is standard two-parameter eigenvalue problem
problem is singular
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Two parameter eigenvalue problem

Two parameter eigenvalue problem:(
A(1) + λB(1) + µC(1)

)
w1 = 0

(MEP)(
A(2) + λB(2) + µC(2)

)
w2 = 0

Eigenvalue: a pair (λ, µ) which satisfies (MEP) for nonzero w1 and w2.

Eigenvector: the tensor product w1 ⊗ w2.
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Tensor product approach

We define ∆i matrices on the space C3n1×3n2

∆0 = B(1) ⊗ C(2) − C(1) ⊗ B(2)

∆1 = C(1) ⊗ A(2) − A(1) ⊗ C(2)

∆2 = A(1) ⊗ B(2) − B(1) ⊗ A(2).

MEP is nonsingular⇐⇒ some combination of ∆i (usually ∆0) is
nonsingular.
MEP is eiquivalent to coupled GEP

∆1z = λ∆0z
(∆)

∆2z = µ∆0z,

where z = w1 ⊗ w2.
∆−1

0 ∆1 and ∆−1
0 ∆2 commute.
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Singular two-parameter eigenvalue problem

every combination of ∆i is singular
pencils λ∆0 −∆1 and µ∆0 −∆2 are singular
eigenvalue ω is a finite regular eigenvalue of matrix pencil λB− A if
and only if

rank(ωB− A) < max
s∈C

rank(sB− A) = nr.

Model updating (Cottin 2001, Cottin and Reetz 2006): finite element
models of multibody systems are updated to match the measured
input-output data.
Spectrum of delay-differential equations (Jahrlebring 2008)
QMEP
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Finite regular eigenvalue of two pencils

Definition

Pair (λ, µ) is a finite regular eigenvalue of pencils λ∆0 −∆1 and µ∆0 −∆2,
if and only if

1 λ is a finite regular eigenvalue of λ∆0 −∆1,

2 µ is a finite regular eigenvalue of µ∆0 −∆2,

3 there exists common proper eigenvector z in the intersection of regular
parts of pencils λ∆0 −∆1, µ∆0 −∆2 for which

(λ∆0 −∆1)z = 0,
(µ∆0 −∆2)z = 0.
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Kronecker canonical form

Definition

Let λB− A ∈ Cm×n be a matrix pencil. There exist nonsingular matrices
P ∈ Cm×m and Q ∈ Cn×n, such that

P−1(B− λA)Q = B̃− λÃ = diag(B1 − λA1, . . . ,Bb − λAb)

is the Kronecker canonical form, where Bi − λAi is one of regular blocks

Jj(α) =


α − λ 1

. . .
. . .

. . . 1
α − λ

 , Nj =


1 −λ

.. .
. . .

. . . −λ
1

 ,

or one of singular blocks

Lj =


−λ 1

. . .
. . .

−λ 1

 , LT
j =


−λ

1
. . .

. . . −λ
1

 .
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Kronecker canonical structure for QMEP

Studying block structure of matrices ∆0, ∆1 and ∆2 we prove the following
theorem.

Theorem
Kronecker canonical form of pencils λ∆0 −∆1 and µ∆0 −∆2 has n1n2 L0,
n1n2 LT

0 , 2n1n2 N2 blocks and the finite regular part of size 4n1n2in generic
case.

∆0 is of rank 6n1n2, ∆1 and ∆2 are of rank 8n1n2

common kernel of ∆0 and ∆1 is of the dimension n1n2

common kernel of ∆T
0 and ∆T

1 is of the dimension n1n2

pencil λ∆T
0 −∆T

1 has at least 2n1n2 first root vectors for the eigenvalue
∞
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Eigenvalues for QMEP

Theorem

The eigenvalues of QMEP are common regular eigenvalues of matrix pencils
λ∆0 −∆1 and λ∆0 −∆2.

Eigenvector of the form

z =

 x
λx
µx

⊗
 y
λy
µy


is the eigenvector for (λ, µ), which we get from linearization.
Vector z has nonzero first block component.
Vectors in the kernels of ∆1 and ∆2 have zero first block component.
Rank decreases: rank(λ∆0 −∆1) < 8n1n2, rank(µ∆0 −∆2) < 8n1n2.
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QMEP is singular problem

Every combination of matrices ∆i is such that

(α0∆T
0 +α1∆T

1 +α2∆T
2 )

a

0
x
x

⊗
0

y
y

+ b

0
x
0

⊗
0

y
0

+ c

0
0
x

⊗
0

0
y

 = 0,

where a = α1α2, b = α2
1 − α1α2, and c = α2

2 − α1α2.
Our problem is therefore singular.
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Kronecker canonical like form

Definition
Possible Kronecker canonical like form for the matrix pencil λB− A is the
following

P∗(λB− A)Q =


λBµ − Aµ
× λB∞ − A∞
× × λBf − Af

× × × λBε − Aε

.
Pencils λBµ − Aµ, λB∞ − A∞, λBf − Af , and λBε − Aε contain the left
singular structure, the infinite regular structure, the finite regular structure,
and the right singular structure, respectively. Matrices P and Q are
orthogonal.

We are interested in finite regular structure contained in lower block together
with right singular part.
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Row collumn compression

D0 = ∆0, D1 = ∆1
Repeat,

1 1 Matrix D0 has size m× n and row rank r.
2 If matrix D0 has full row rank, exit and return D0, D1.

2 Compute row compression of matrix D0, U∗0 D0 =
[ n

r ×
m−r 0

]
.

Compute block H of U∗0 D1 =
[ n

r ×
m−r H

]
and compress it to full

column rank c with V1.

We get U∗0 (λD0 − D1)V1 =
[ c n−c

r × D̂0
m−r 0 0

]
−

[ c n−c

r × D̂1
m−r × 0

]
.

3 Assign D0 = D̂0, D1 = D̂1 and proceed to 1.
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Collumn row compression

D0 = ∆0, D1 = ∆1
Repeat,

1 1 Matrix D0 has size m× n and column rank r.
2 If matrix D0 has full column rank, exit and return D0, D1.

2 Compute column compression of matrix D0,

D0 = D0V0 =
[ c n−c

m × 0
]
. Compute block H of

D1V0 =
[ c n−c

m × H
]

and compress it to the full row rank r with U1.

We get U∗1 (λD0 − D1)V0 =
[ c n−c

r × 0
m−r D̂0 0

]
−

[ c n−c

r × ×
m−r D̂1 0

]
.

3 Assign D0 = D̂0, D1 = D̂1 and proceed to 1.
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Algorithm for the extraction of the common regular part

P = Im, Q = In, ∆0 is of the size m× n
1 Separate infinite and finite part.

(a) Apply algorithm Row collumn compression on λP∗∆0Q− P∗∆1Q and
µP∗∆0Q− P∗∆2Q. We get P1,Q1 and P2,Q2.

(b) Join the spaces.
Compute orthogonal matrix Q such thatQ = Q1 ∩Q2 and orthogonal
matrix P such that P = P1 ∪ P2.

(c) IfQ = Q1 return P, Q and proceed to 2. Otherwise proceed to (a).
2 Separate the finite regular part from the right singular part.

(a) Apply algorithm Collumn row compression on λP∗∆0Q− P∗∆1Q and
µP∗∆0Q− P∗∆2Q. We get P1,Q1 and P2,Q2.

(b) Join the spaces.
Compute orthogonal matrix Q such thatQ = Q1 ∪Q2 and orthogonal
matrix P such that P = P1 ∩ P2.

(c) IfQ = Q1 return P, Q and exit. Otherwise proceed to (a).
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Hypotesis

Algorithm returns ∆̃0 = P∗∆0Q, ∆̃1 = P∗∆1Q, ∆̃2 = P∗∆2Q, such that

∆̃0
−1

∆̃1 and ∆̃0
−1

∆̃2 commute.

Hypotesis holds for QMEP in generic case.

∆̃0
−1

∆̃1∆̃0
−1

∆̃2z = λµz = ∆̃0
−1

∆̃2∆̃0
−1

∆̃1z

We can solve coupled GEP in a standard way.
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Model updating

Some results about special symmetric singular problems can be found in
(Cottin 2001).

All ∆i matrices are symmetric and Im(∆1), Im(∆2) ⊆ Im(∆0).
One can use a generalised inverse of ∆0 to obtain matrices ∆+

0 ∆0,
∆+

0 ∆1, and ∆+
0 ∆1.

Matrices are of the form

[ m k

m X 0
k 0 0

]
,

where k is the dimension of ker ∆0.

We continue with m× m submatrices ∆̂0 = Im, ∆̂1, and ∆̂2.

When all eigenvalues are semisimple, matrices ∆̂1 and ∆̂2 commute.
This is only a special case of our algorithm for extraction of common
regular part.
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Conclusions

Solution for QMEP in the generic case.
We proposed an algorithm for solving SMEP.
We are able to prove that our algorithm works in some special cases.

Work in progress: SMEP

Regular eigenvalues for SMEP?
How to do extraction algorithm simultaneously?
Prove that our algorithm works in general.
...
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Numerical example

([
−3

−1

]
+ λ

[
7

1

]
+ µ

[
4

4

]
+ λ

2
[

6
2

]
+ λµ

[
10

1

]
+ µ

2
[

4
−3

])
x = 0,

([
−1

−1

]
+ λ

[
−1

2

]
+ µ

[
2

−1

]
+ λ

2
[

2
3

]
+ λµ

[
7

7

]
+ µ

2
[

3
2

])
y = 0.

We multiply matrices in both equation with arbitrary orthogonal
matrices and get a problem with known solutions.
Matrices ∆0, ∆1, ∆2 obtained from linearization are of the size
36× 36.
Using our algorithm we obtain matrices ∆̃0, ∆̃1, ∆̃2 of the size 16× 16.
Matrices ∆̃−1

0 ∆̃1 and ∆̃−1
0 ∆̃2 commute.

We get exactly 16 common regular eigenvalues.
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The discrete spectrum of two-parameter linear polynomial
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