▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Quadratic two-parameter eigenvalue problem

Andrej Muhič

Institute of Mathematics, Physics and Mechanics, Ljubljana

IWASEP 7, Dubrovnik, June 9-12, 2008

This is joint work with B. Plestenjak.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

3 Algorithm for the extraction of the common regular part

Quadratic two-parameter eigenvalue problem

• Quadratic two-parameter eigenvalue problem:

$$\overbrace{(A_{1} + \lambda B_{1} + \mu C_{1} + \lambda^{2} D_{1} + \lambda \mu E_{1} + \mu^{2} F_{1})}^{W_{1}(\lambda,\mu)} x = 0$$

$$\overbrace{(A_{2} + \lambda B_{2} + \mu C_{2} + \lambda^{2} D_{2} + \lambda \mu E_{2} + \mu^{2} F_{2})}^{W_{2}(\lambda,\mu)} y = 0$$
(QMEP)

where $A_i, B_i, C_i, D_i, E_i, F_i$ are $n_i \times n_i$ matrices, $\lambda, \mu \in \mathbb{C}, x \in \mathbb{C}^{n_1}$, $y \in \mathbb{C}^{n_2}$.

- Eigenvalue: a pair (λ, μ) which satisfies (QMEP) for nonzero x and y.
- Equivalent problem in generic case: finding common zeros of polynomials $p_1(\lambda, \mu) = \det(W_1(\lambda, \mu))$ and $p_2(\lambda, \mu) = \det(W_2(\lambda, \mu))$.
- number of eigenvalues in generic case is $4n_1n_2$
- Goal: compute all eigenvalues (λ, μ)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Linearization for QMEP

• Possible linearization for QMEP:

$$\begin{pmatrix} A^{(1)} & B^{(1)} & C^{(1)} \\ \begin{bmatrix} A_1 & B_1 & C_1 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} + \lambda \overbrace{\begin{bmatrix} 0 & D_1 & \frac{1}{2}E_1 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}^{B^{(1)}} + \mu \overbrace{\begin{bmatrix} 0 & \frac{1}{2}E_1 & F_1 \\ 0 & 0 & 0 \\ -I & 0 & 0 \end{bmatrix}}^{C^{(1)}} \\ \begin{pmatrix} A^{(2)} & B^{(2)} & C^{(2)} \\ \begin{bmatrix} A_2 & B_2 & C_2 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} + \lambda \overbrace{\begin{bmatrix} 0 & D_2 & \frac{1}{2}E_2 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}^{C^{(2)}} + \mu \overbrace{\begin{bmatrix} 0 & \frac{1}{2}E_2 & F_2 \\ 0 & \frac{1}{2}E_2 & F_2 \\ 0 & 0 & 0 \\ -I & 0 & 0 \end{bmatrix}}^{W_2} = 0,$$

blocks in row *i* are $n_i \times n_i$ complex matrices. Linearizations are of the dimension $3n_i \times 3n_i$.

- this is standard two-parameter eigenvalue problem
- problem is singular

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Two parameter eigenvalue problem

• Two parameter eigenvalue problem:

$$\begin{pmatrix} A^{(1)} + \lambda B^{(1)} + \mu C^{(1)} \end{pmatrix} w_1 = 0 \begin{pmatrix} A^{(2)} + \lambda B^{(2)} + \mu C^{(2)} \end{pmatrix} w_2 = 0$$
 (MEP)

- Eigenvalue: a pair (λ, μ) which satisfies (MEP) for nonzero w_1 and w_2 .
- Eigenvector: the tensor product $w_1 \otimes w_2$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Tensor product approach

• We define Δ_i matrices on the space $\mathbb{C}^{3n_1 \times 3n_2}$

$$\begin{array}{rcl} \Delta_0 & = & B^{(1)} \otimes C^{(2)} - C^{(1)} \otimes B^{(2)} \\ \Delta_1 & = & C^{(1)} \otimes A^{(2)} - A^{(1)} \otimes C^{(2)} \\ \Delta_2 & = & A^{(1)} \otimes B^{(2)} - B^{(1)} \otimes A^{(2)}. \end{array}$$

- MEP is nonsingular \iff some combination of Δ_i (usually Δ_0) is nonsingular.
- MEP is eiquivalent to coupled GEP

$$\Delta_1 z = \lambda \Delta_0 z \tag{\Delta}$$
$$\Delta_2 z = \mu \Delta_0 z, \tag{\Delta}$$

where $z = w_1 \otimes w_2$.

• $\Delta_0^{-1}\Delta_1$ and $\Delta_0^{-1}\Delta_2$ commute.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Singular two-parameter eigenvalue problem

- every combination of Δ_i is singular
- pencils $\lambda \Delta_0 \Delta_1$ and $\mu \Delta_0 \Delta_2$ are singular
- eigenvalue ω is a finite regular eigenvalue of matrix pencil $\lambda B A$ if and only if

$$\operatorname{rank}(\omega B - A) < \max_{s \in \mathbb{C}} \operatorname{rank}(sB - A) = n_r.$$

- Model updating (Cottin 2001, Cottin and Reetz 2006): finite element models of multibody systems are updated to match the measured input-output data.
- Spectrum of delay-differential equations (Jahrlebring 2008)
- QMEP

▲□▶▲□▶▲□▶▲□▶ □ のQで

Finite regular eigenvalue of two pencils

Definition

Pair (λ, μ) is a finite regular eigenvalue of pencils $\lambda \Delta_0 - \Delta_1$ and $\mu \Delta_0 - \Delta_2$, if and only if

- λ is a finite regular eigenvalue of $\lambda \Delta_0 \Delta_1$,
- μ is a finite regular eigenvalue of $\mu\Delta_0 \Delta_2$,
- Solution there exists common proper eigenvector z in the intersection of regular parts of pencils λΔ₀ Δ₁, μΔ₀ Δ₂ for which

$$\begin{aligned} &(\lambda \Delta_0 - \Delta_1)z &= 0, \\ &(\mu \Delta_0 - \Delta_2)z &= 0. \end{aligned}$$

イロト 不得 トイヨト イヨト

Kronecker canonical form

Definition

Let $\lambda B - A \in \mathbb{C}^{m \times n}$ be a matrix pencil. There exist nonsingular matrices $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$, such that

$$P^{-1}(B - \lambda A)Q = \widetilde{B} - \lambda \widetilde{A} = \operatorname{diag}(B_1 - \lambda A_1, \dots, B_b - \lambda A_b)$$

is the Kronecker canonical form, where $B_i - \lambda A_i$ is one of regular blocks

$$J_j(\alpha) = \begin{bmatrix} \alpha - \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & \\ & & & \ddots & 1 \\ & & & & \alpha - \lambda \end{bmatrix}, \quad N_j = \begin{bmatrix} 1 & -\lambda & & \\ & \ddots & \ddots & \\ & & \ddots & & \\ & & & \ddots & -\lambda \\ & & & & 1 \end{bmatrix},$$

or one of singular blocks

$$L_j = \begin{bmatrix} -\lambda & 1 & & \\ & \ddots & \ddots & \\ & & -\lambda & 1 \end{bmatrix}, \quad L_j^T = \begin{bmatrix} -\lambda & & \\ 1 & \ddots & \\ & \ddots & -\lambda \\ & & \ddots & -\lambda \\ & & 1 \end{bmatrix}.$$

Iwasep 7, Dubrovnik, 2008

Kronecker canonical structure for QMEP

Studying block structure of matrices Δ_0 , Δ_1 and Δ_2 we prove the following theorem.

Theorem

Kronecker canonical form of pencils $\lambda \Delta_0 - \Delta_1$ and $\mu \Delta_0 - \Delta_2$ has $n_1 n_2 L_0$, $n_1 n_2 L_0^T$, $2n_1 n_2 N_2$ blocks and the finite regular part of size $4n_1 n_2$ in generic case.

- Δ_0 is of rank $6n_1n_2$, Δ_1 and Δ_2 are of rank $8n_1n_2$
- common kernel of Δ_0 and Δ_1 is of the dimension n_1n_2
- common kernel of Δ_0^T and Δ_1^T is of the dimension $n_1 n_2$
- pencil $\lambda \Delta_0^T \Delta_1^T$ has at least $2n_1n_2$ first root vectors for the eigenvalue ∞

Eigenvalues for QMEP

Theorem

The eigenvalues of QMEP are common regular eigenvalues of matrix pencils $\lambda\Delta_0 - \Delta_1$ and $\lambda\Delta_0 - \Delta_2$.

• Eigenvector of the form

$$z = \begin{bmatrix} x \\ \lambda x \\ \mu x \end{bmatrix} \otimes \begin{bmatrix} y \\ \lambda y \\ \mu y \end{bmatrix}$$

is the eigenvector for (λ, μ) , which we get from linearization.

- Vector *z* has nonzero first block component.
- Vectors in the kernels of Δ_1 and Δ_2 have zero first block component.
- Rank decreases: rank $(\lambda \Delta_0 \Delta_1) < 8n_1n_2$, rank $(\mu \Delta_0 \Delta_2) < 8n_1n_2$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QMEP is singular problem

Every combination of matrices Δ_i is such that

$$(\alpha_0 \Delta_0^T + \alpha_1 \Delta_1^T + \alpha_2 \Delta_2^T) \left(a \begin{bmatrix} 0 \\ x \\ x \end{bmatrix} \otimes \begin{bmatrix} 0 \\ y \\ y \end{bmatrix} + b \begin{bmatrix} 0 \\ x \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ y \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ x \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \\ y \end{bmatrix} \right) = 0,$$

where $a = \alpha_1 \alpha_2$, $b = \alpha_1^2 - \alpha_1 \alpha_2$, and $c = \alpha_2^2 - \alpha_1 \alpha_2$. Our problem is therefore singular.

Kronecker canonical like form

Definition

Possible Kronecker canonical like form for the matrix pencil $\lambda B - A$ is the following

$$P^*(\lambda B - A)Q = \begin{bmatrix} \frac{\lambda B_{\mu} - A_{\mu}}{\times & \lambda B_{\infty} - A_{\infty}} \\ \frac{\times & \lambda B_{\infty} - A_{\infty}}{\times & \times & \lambda B_f - A_f} \\ \times & \times & \times & \lambda B_{\epsilon} - A_{\epsilon} \end{bmatrix}$$

Pencils $\lambda B_{\mu} - A_{\mu}$, $\lambda B_{\infty} - A_{\infty}$, $\lambda B_f - A_f$, and $\lambda B_{\epsilon} - A_{\epsilon}$ contain the left singular structure, the infinite regular structure, the finite regular structure, and the right singular structure, respectively. Matrices *P* and *Q* are orthogonal.

We are interested in finite regular structure contained in lower block together with right singular part.

Iwasep 7, Dubrovnik, 2008

12

Row collumn compression

$$D_0 = \Delta_0, D_1 = \Delta_1$$

Repeat,

- **1** Matrix D_0 has size $m \times n$ and row rank r.
 - **2** If matrix D_0 has full row rank, exit and return D_0 , D_1 .

• Compute row compression of matrix
$$D_0$$
, $U_0^* D_0 = \frac{r}{m-r} \begin{bmatrix} x \\ 0 \end{bmatrix}$.

Compute block *H* of
$$U_0^* D_1 = \frac{r}{m-r} \begin{bmatrix} \times \\ H \end{bmatrix}$$
 and compress it to full column rank *c* with V_1 .

n

We get
$$U_0^*(\lambda D_0 - D_1)V_1 = \frac{r}{m-r} \begin{bmatrix} c & n-c \\ X & \widehat{D}_0 \\ 0 & 0 \end{bmatrix} - \frac{r}{m-r} \begin{bmatrix} c & n-c \\ X & \widehat{D}_1 \\ X & 0 \end{bmatrix}$$

Assign $D_0 = \widehat{D}_0, D_1 = \widehat{D}_1$ and proceed to 1.

3

Collumn row compression

$$D_0 = \Delta_0, D_1 = \Delta_1$$

Repeat

Repeat,

- Matrix D_0 has size $m \times n$ and column rank r.
 - **2** If matrix D_0 has full column rank, exit and return D_0 , D_1 .
- **2** Compute column compression of matrix D_0 ,

$$D_{0} = D_{0}V_{0} = m \begin{bmatrix} x & 0 \end{bmatrix}. \text{ Compute block } H \text{ of}$$

$$D_{1}V_{0} = m \begin{bmatrix} x & H \end{bmatrix} \text{ and compress it to the full row rank } r \text{ with } U_{1}.$$
We get $U_{1}^{*}(\lambda D_{0} - D_{1})V_{0} = \frac{r}{m-r} \begin{bmatrix} x & 0 \\ \widehat{D}_{0} & 0 \end{bmatrix} - \frac{r}{m-r} \begin{bmatrix} x & x \\ \widehat{D}_{1} & 0 \end{bmatrix}.$
Assign $D_{0} = \widehat{D}_{0}, D_{1} = \widehat{D}_{1}$ and proceed to 1.

3

(日)

Algorithm for the extraction of the common regular part

$$P = I_m, Q = I_n, \Delta_0$$
 is of the size $m \times n$

• Separate infinite and finite part.

- (a) Apply algorithm Row collumn compression on $\lambda P^* \Delta_0 Q P^* \Delta_1 Q$ and $\mu P^* \Delta_0 Q P^* \Delta_2 Q$. We get P_1, Q_1 and P_2, Q_2 .
- (b) Join the spaces.

Compute orthogonal matrix Q such that $Q = Q_1 \cap Q_2$ and orthogonal matrix P such that $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$.

- (c) If $Q = Q_1$ return *P*, *Q* and proceed to 2. Otherwise proceed to (a).
- Separate the finite regular part from the right singular part.
 - (a) Apply algorithm Collumn row compression on $\lambda P^* \Delta_0 Q P^* \Delta_1 Q$ and $\mu P^* \Delta_0 Q P^* \Delta_2 Q$. We get P_1, Q_1 and P_2, Q_2 .
 - (b) Join the spaces.

Compute orthogonal matrix Q such that $Q = Q_1 \cup Q_2$ and orthogonal matrix P such that $P = P_1 \cap P_2$.

(c) If $Q = Q_1$ return P, Q and exit. Otherwise proceed to (a).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Hypotesis

Algorithm returns $\widetilde{\Delta_0} = P^* \Delta_0 Q$, $\widetilde{\Delta_1} = P^* \Delta_1 Q$, $\widetilde{\Delta_2} = P^* \Delta_2 Q$, such that $\widetilde{\Delta_0}^{-1} \widetilde{\Delta_1}$ and $\widetilde{\Delta_0}^{-1} \widetilde{\Delta_2}$ commute.

• Hypotesis holds for QMEP in generic case.

$$\widetilde{\Delta_0}^{-1} \widetilde{\Delta_1} \widetilde{\Delta_0}^{-1} \widetilde{\Delta_2} z = \lambda \mu z = \widetilde{\Delta_0}^{-1} \widetilde{\Delta_2} \widetilde{\Delta_0}^{-1} \widetilde{\Delta_1} z$$

• We can solve coupled GEP in a standard way.

Model updating

Some results about special symmetric singular problems can be found in (Cottin 2001).

- All Δ_i matrices are symmetric and $\operatorname{Im}(\Delta_1), \operatorname{Im}(\Delta_2) \subseteq \operatorname{Im}(\Delta_0)$.
- One can use a generalised inverse of Δ_0 to obtain matrices $\Delta_0^+ \Delta_0$, $\Delta_0^+ \Delta_1$, and $\Delta_0^+ \Delta_1$.
- Matrices are of the form

$$\begin{smallmatrix} m & k \\ m & \begin{bmatrix} X & 0 \\ 0 & 0 \end{bmatrix},$$

where k is the dimension of ker Δ_0 .

- We continue with $m \times m$ submatrices $\widehat{\Delta_0} = I_m$, $\widehat{\Delta_1}$, and $\widehat{\Delta_2}$.
- When all eigenvalues are semisimple, matrices $\widehat{\Delta}_1$ and $\widehat{\Delta}_2$ commute. This is only a special case of our algorithm for extraction of common regular part.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Conclusions

- Solution for QMEP in the generic case.
- We proposed an algorithm for solving SMEP.
- We are able to prove that our algorithm works in some special cases.

Work in progress: SMEP

- Regular eigenvalues for SMEP?
- How to do extraction algorithm simultaneously?
- Prove that our algorithm works in general.

• :

Numerical example

۲

 $\begin{pmatrix} \begin{bmatrix} -3 & \\ & -1 \end{bmatrix} + \lambda \begin{bmatrix} 7 & \\ & 1 \end{bmatrix} + \mu \begin{bmatrix} 4 & \\ & 4 \end{bmatrix} + \lambda^2 \begin{bmatrix} 6 & \\ & 2 \end{bmatrix} + \lambda \mu \begin{bmatrix} 10 & \\ & 1 \end{bmatrix} + \mu^2 \begin{bmatrix} 4 & \\ & -3 \end{bmatrix} \end{pmatrix} x = 0,$ $\begin{pmatrix} \begin{bmatrix} -1 & \\ & -1 \end{bmatrix} + \lambda \begin{bmatrix} -1 & \\ & 2 \end{bmatrix} + \mu \begin{bmatrix} 2 & \\ & -1 \end{bmatrix} + \lambda^2 \begin{bmatrix} 2 & \\ & 3 \end{bmatrix} + \lambda \mu \begin{bmatrix} 7 & \\ & 7 \end{bmatrix} + \mu^2 \begin{bmatrix} 3 & \\ & 2 \end{bmatrix} \end{pmatrix} y = 0.$

We multiply matrices in both equation with arbitrary orthogonal matrices and get a problem with known solutions.

- Matrices Δ_0 , Δ_1 , Δ_2 obtained from linearization are of the size 36×36 .
- Using our algorithm we obtain matrices $\widetilde{\Delta}_0, \widetilde{\Delta}_1, \widetilde{\Delta}_2$ of the size 16×16 .
- Matrices $\widetilde{\Delta}_0^{-1}\widetilde{\Delta}_1$ and $\widetilde{\Delta}_0^{-1}\widetilde{\Delta}_2$ commute.
- We get exactly 16 common regular eigenvalues.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The discrete spectrum of two-parameter linear polynomial

For Further Reading

- P. VAN DOOREN, The Computation of Kronecker's Canonical Form of a Singular Pencil, Lin. Alg. Appl., 27 (1979), pp. 103-141.
- F. GANTMACHER, The Theory of Matrices, Vol. I and II (transl.), Chelsea, New York, (1959).
- 📎 В. KÅGSTRÖM Singular Matrix Pencils. In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van der Vorst, editors, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, pages 260–277. SIAM Publications, Philadelphia, (2000).

- N. COTTIN, Dynamic model updating a multiparameter eigenvalue 📎 problem, Mech. Syst. Signal Pr., 15 (2001), pp. 649-665.
 - E. JAHRLEBRING, The Spectrum of delay-differential equations: numerical methods, stability and pertubation, (2008).
 - Talk by M. HOCHSTENBACH.