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Quadratic two-parameter eigenvalue problem

@ Quadratic two-parameter eigenvalue problem:
Wi(x,p)
(A1 + ABy + uCy + N2Dy + MuEy + p*Fi)x =0
Wa(A,) (QMEP)

(A2 + ABy + pCy + )\zDz + ApEy + LLZFz)y =0
where A;, B;, C;, D;, E;, F; are n; X n; matrices, \, i € C, x € C™,
ye Cm.
e Eigenvalue: a pair (\, ;1) which satisfies (QMEP) for nonzero x and y.

@ Equivalent problem in generic case:
finding common zeros of polynomials p(\, ;1) = det(W; (A, 1)) and
p2(A, ) = det(Wa (A, ).

e number of eigenvalues in generic case is 41,1,
o Goal: compute all eigenvalues (\, 1)
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Linearization for QMEP

@ Possible linearization for QMEP:

A (1) c()
—_——
Ay B o b 1 o 1B R
0 1 O +X|—1 0 o |+trl|o 0 0 wy = 0
0 0 I 0 0 0 —1 0 0
A(Z) 3(2) C(2>
—_——
Ay By G o b Ip o lp m
0 I O +X|—1 0 0| +rlo 0 0 wy = 0,
0 0 1 0 0 0 —1 0 0

blocks in row i are n; X n; complex matrices. Linearizations are of the
dimension 3n; X 3n;.

@ this is standard two-parameter eigenvalue problem

@ problem is singular
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Two parameter eigenvalue problem

@ Two parameter eigenvalue problem:

(A(l) +ABW uC(1)> wi =0

(MEP)
(A(z) +AB? + uc<2>> wy =0

e Eigenvalue: a pair (\, ;) which satisfies (MEP) for nonzero w and w-.

e Eigenvector: the tensor product w; & w».
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Tensor product approach

@ We define A; matrices on the space C¥1>3"2

Ay = BYec?® - ch)gp®
A = CWeA® AW g c®
A, = AD @B B gA®,

@ MEP is nonsingular <= some combination of A; (usually Ag) is
nonsingular.

@ MEP is eiquivalent to coupled GEP
Az = Moz

Arz = 11z,
where z = w; ® ws.

° AO_IA] and AO_IAZ commute.
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Singular two-parameter eigenvalue problem

@ every combination of A; is singular
@ pencils AAg — Ay and Ay — A, are singular

@ cigenvalue w is a finite regular eigenvalue of matrix pencil AB — A if
and only if

rank(wB — A) < max rank(sB — A) = n,.
se

@ Model updating (Cottin 2001, Cottin and Reetz 2006): finite element
models of multibody systems are updated to match the measured
input-output data.

@ Spectrum of delay-differential equations (Jahrlebring 2008)

QMEP
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Finite regular eigenvalue of two pencils

Definition
Pair (), ;1) is a finite regular eigenvalue of pencils AAg — A and pAg — A,,
if and only if

@ ) is a finite regular eigenvalue of A\Ay — Ay,

@ /s a finite regular eigenvalue of pAg — Ay,

@ there exists common proper eigenvector z in the intersection of regular
parts of pencils AAg — Ay, pAg — A, for which

(AAO - AI)Z = 07
(MAQ = AZ)Z = 0.
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Kronecker canonical form

Definition

Let AB — A € C"™*" be a matrix pencil. There exist nonsingular matrices
P € C"™™ and Q € C"*", such that

P~'(B—)A)Q = B— M = diag(B; — M, ..., B, — M\,)
is the Kronecker canonical form, where B; — \A; is one of regular blocks

a — A 1 1 —A

Ji(e) = - E , N =

or one of singular blocks

NI P P
I A -
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Kronecker canonical structure for QMEP

Studying block structure of matrices Ay, A and A, we prove the following
theorem.

Theorem

Kronecker canonical form of pencils AAg — A and pAg — A; has nyn, Ly,
nin, Lg , 2n1n, N; blocks and the finite regular part of size 472,7,in generic

case.

@ Agis of rank 67271,, A and A, are of rank 81,1,

@ common kernel of Ag and A is of the dimension 77,

e common kernel of Al and AT is of the dimension 77,

e pencil AAT — AT has at least 271, first root vectors for the eigenvalue
00
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Eigenvalues for QMEP

Theorem

The eigenvalues of QMEP are common regular eigenvalues of matrix pencils
)\Ao — A] and )\AO — Az.

e Eigenvector of the form

X y
7= | x| ® | Ay
px|  {py

is the eigenvector for (\, /1), which we get from linearization.
@ Vector z has nonzero first block component.
@ Vectors in the kernels of A; and A, have zero first block component.
@ Rank decreases: rank(AAg — A1) < 8nyny, rank(ulg — Ay) < 8nyn,.
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QMEP is singular problem

Iwas

Every combination of matrices 4, is such that

0 0 0 0 0 0
(AT +a AT+ AT [ a [x| @ |y +b |x| ® |y| +c|0] ® |0] | =0,
X y 0 0 X y

where a = ajan, b = oz% — ayap, and ¢ = a% — oo,

Our problem is therefore singular.
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Kronecker canonical like form

Definition
Possible Kronecker canonical like form for the matrix pencil AB — A is the
following
AB, — A,
" _ X ABo — A
& ()\B A)Q - X X )\Bf — Af
X X X )\B€ — Ae

Pencils AB, — A, ABoc — Ao, A\Bf — Ay, and AB. — A, contain the left
singular structure, the infinite regular structure, the finite regular structure,
and the right singular structure, respectively. Matrices P and Q are
orthogonal.

4

We are interested in finite regular structure contained in lower block together
with right singular part.
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Row collumn compression

Dy = Ao, Dy = Ay
Repeat,

@ O Matrix Dy has size m x n and row rank r.
@ If matrix Dy has full row rank, exit and return Dy, D;.

X
0 |-

{ :] ] and compress it to full

© Compute row compression of matrix Dy, UsDy = " [

n

Compute block H of UsD, = '
m

—r

column rank ¢ with V.

N r X B r X B
We get U (ADg — Dy)Vi = m—r { 0 00 ]_ m—r |: X 01 ]

© Assign Dy = 507 D, = ﬁl and proceed to 1.
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Collumn row compression

Dy = Ag, Dy = A
Repeat,

@ © Matrix Dy has size m x n and column rank r.
@ If matrix Dy has full column rank, exit and return Dy, D;.

© Compute column compression of matrix Dy,

Dy =DyVy=m [ x 0 ] Compute block H of

DiVo=m | x H |andcompress it to the full row rank r with U;.

, x 0 r XX
We get Uf(ADg —=D1)Vo = " {Bo 0 }m [Bl 0 }

Q@ Assign Dy = lA)o7 D, = ﬁl and proceed to 1.
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Algorithm for the extraction of the common regular part

P=1,, 0=1, Aqisof the sizem x n
@ Separate infinite and finite part.
(a) Apply algorithm Row collumn compression on AP*A¢Q — P*A;Q and
uP*AoQ — P*AxQ. We get Py, Q1 and P, Q>.
(b) Join the spaces.
Compute orthogonal matrix Q such that @ = Q; N Q; and orthogonal
matrix P such that P = P; U P,.
(c) If @ = Q return P, Q and proceed to 2. Otherwise proceed to (a).
@ Separate the finite regular part from the right singular part.
(a) Apply algorithm Collumn row compression on AP*A¢Q — P*A;Q and
uP*AoQ — P*A,Q. We get Py, Q1 and P2, Q>.
(b) Join the spaces.
Compute orthogonal matrix Q such that @ = Q; U Q5 and orthogonal
matrix P such that P = P, N Ps.
(c) If Q@ = Q; return P, Q and exit. Otherwise proceed to (a).
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Hypotesis
Algorithm returns &) = P*Ay0, & = P*A0Q, Kz = P*A;0Q, such that

PRy PR
Ay Ajand Ay A, commute.

@ Hypotesis holds for QMEP in generic case.
1~

el e —1— — e ——
Ao A1Ay Aoz=duz=2A¢ ANy Agz

@ We can solve coupled GEP in a standard way.
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Model updating

Some results about special symmetric singular problems can be found in
(Cottin 2001).

o All A; matrices are symmetric and Im(A; ), Im(A;) C Im(Ay).

@ One can use a generalised inverse of A to obtain matrices Ag’ Ay,
AO+A1, and A(J{Al.

@ Matrices are of the form

m k
m | X O
k 0 o0
where k is the dimension of ker A.

@ We continue with m x m submatrices Ay = I,,,, Ay, and A,.

@ When all eigenvalues are semisimple, matrices A; and A, commute.
This is only a special case of our algorithm for extraction of common
regular part.
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Conclusions

@ Solution for QMEP in the generic case.
@ We proposed an algorithm for solving SMEP.

@ We are able to prove that our algorithm works in some special cases.

Work in progress: SMEP
@ Regular eigenvalues for SMEP?

@ How to do extraction algorithm simultaneously?

@ Prove that our algorithm works in general.
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Numerical example

(T P e R G B

§ e A I G IS R v L e L D PR

We multiply matrices in both equation with arbitrary orthogonal
matrices and get a problem with known solutions.

@ Matrices Ay, Ay, A, obtained from linearization are of the size
36 x 36.

Using our algorithm we obtain matrices &), 31, ﬁz of the size 16 x 16.
Matrices 50_ 151 and 50_ 152 commute.

We get exactly 16 common regular eigenvalues.
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The discrete spectrum of two-parameter linear polynomial
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