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Motivation

Known facts:

I indefinite Jacobi algorithm (HSVD) computes
eigenvalues (hyperbolic singular values) with high
relative accuracy, when possible,

I Jacobi algorithm is easy to parallelize, especially if
the one-sided strategy is used.
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Goals

Our goals are:

I development of an efficient parallel algorithm, which
locally (inside each processor) uses blocking,

I speedup on the single processor computer with
two-level memory hierarchy, and on the cluster of
processors, with multiple-level memory hierarchy.

I balance processor’s jobs and reuse data inside each
processor whenever it is possible.
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Outline of the talk

Outline of the talk:

I brief description of the different Jacobi algorithms,
I blocking algorithms, some theoretical results,
I parallelization of the algorithm,
I some implementation details,
I numerical results,
I future work.
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J–Jacobi algorithm

If Hermitian, indefinite H is given, the method consists of
the following steps:

I Factorize H using symmetric indefinite factorization
(with pivoting): H = MDM∗, D block diagonal.
Additional diagonalization of D and scaling of
columns of M yields

H = GJG∗, J = diag(j11, . . . , jnn), jii ∈ {−1, 1}.

I Note that multiplication of the eigenvalue problem

GJG∗x = λx

from the left by G∗, and notation z = JG∗x gives
generalized eigenvalue problem

G∗Gz = λJz.
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J–Jacobi algorithm (continued)

The pair (G∗G, J) is diagonalized by a sequence of
J–unitary congruences (trigonometric and hyperbolic
rotations)

I either explicitly (two-sided algorithm on A := G∗G),
I or implicitly (one-sided algorithm on G).

One-sided algorithm is equivalent to the hyperbolic SVD
of G

G = U

[
Σ
0

]
V ∗, V ∗JV = J.

Usually, we apply sequence of J–unitary congruences W1,
W2, . . . , Wz on the right-hand side of G, i.e.,

V −∗ = W1 ·W2 · · ·Wz.
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J–Jacobi algorithm (continued)

For example, if

J = diag(1,−1, 1,−1)

and we choose row–cyclic strategy, we have

two-sided alg. on G∗G: one-sided alg. on G:

0
0
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J–Jacobi algorithm (continued)

Note that:
I update of two columns in the one-sided algorithm is

independent – update routine is xROTM BLAS 1
routine,

I columns on the previous pages could be
block-columns, and we obtain a block algorithm –
update routine is BLAS 3 matrix-matrix
multiplication routine.
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One-sided or two-sided, that is the question

In practice, the answer is very simple – one-sided
algorithm.

One-sided algorithm is:

I more accurate,
I more than two times faster if vectorized routines are

used (either compiler vectorization or BLAS from
Math Kernel Library).

Note:

It is easier to describe algorithms as two-sided, and
implementation is one-sided.
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Block partitions

Suppose that G has the following block-column partition:

G = [G1, G2, . . . , Gp],

where the number of columns (block size) in Gi is ni, and
J diagonal matrix such that

J = diag(J1, J2, . . . , Jp),

where Ji is of order ni. This block partition naturally
induces a “square block” partition of A = G∗G, with
blocks

Aij = G∗iGj .
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One block step

In one step of the ordinary Jacobi algorithm, we choose a
pivot matrix

Â =
[
aii aij

a∗ij ajj

]
and annihilate the off-diagonal element aij .

In one block step, we choose a pivot block matrix

Â =
[
Aii Aij

A∗ij Ajj

]
.

and transform it as

A′ = W ∗ÂW.

The purpose is to make A′ more diagonal than Â.
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Block algorithms

We distinguish two types of algorithms/strategies.

Block–oriented algorithms

I the norm of the off-diagonal block Aij is only
reduced.

Full block algorithms

I the off-diagonal block Aij is annihilated.

We have two levels of pivot strategies:
I block level or macro strategies,
I micro level strategies inside each block.
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Cyclic block strategies
The simplest block–oriented algorithm is to rearrange one
sweep of the ordinary cyclic Jacobi in a “block aware”
manner.

For example, we can use
I the column-cyclic strategy on macro level
I and single sweep of column-cyclic strategy on micro

level (left to right, top to bottom).
This strategy belongs to the family of wave-front
orderings, which are equivalent to the column-cyclic
strategy.
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Full block algorithms

Full block algorithms annihilate the off-diagonal block Aij

in Â in each block–step.
I Annihilation of just Aij is linearly slow.
I Solution: we should diagonalize whole pivot

sub-matrices Â.
I After certain number of steps (at worst after the full

sweep) all diagonal blocks Aii will be diagonal.
I This suggests the following preprocessing step:

diagonalization of all Aii, the diagonal can be stored
in a separate vector, and updated after each sweep[

Λ′ii 0
0 Λ′jj

]
=
[
Wii Wij

Wji Wjj

]∗ [Λii Aij

A∗ij Λjj

] [
Wii Wij

Wji Wjj

]
.
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Practical tricks

Computational details:

I J in partitioned form is used, J = I ⊕ (−I),
I (normwise) column sorting of G after each sweep,

with respect to I and −I,
I fast “quadratic convergence” stopping criterion,
I threshold annihilation strategy.

15 / 24



Parallel Jacobi

S. Singer

Motivation

J–Jacobi

Basics

Block J–Jacobi
algorithm

Block
algorithms
Block–oriented
algorithms
Full block
algorithms

Parallelization

Numerical
testing

Conclusion

Theoretical results

Accuracy and convergence of block–oriented
algorithms

All algorithms are accurate in the relative sense.
Convergence:

I is easy to prove.

Accuracy and convergence of full–block algorithms

Algorithms are accurate in the relative sense.
I we believe that global convergence can be proved

(work in progress).
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Modulus pivot strategy

Blocked variant of the modulus pivot strategy is an ideal
choice as parallel pivot strategy.

Partition of G:

I complete diagonaliztion job is divided in p tasks (p
need not be the number of processors/cores – usually
p is 1.5–2 times bigger),

I columns of G are partitioned in 2p− 1 (easier to
implement, natural path is through the ring of
processors) or 2p block–columns (probably a bit
faster) such that:

I block-columns 1 and last belong to task 1,
I block-columns 2 and penultimate belong to task 2,

I
...

I one/two middle block-columns belong to task p.
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Block–oriented algorithm

Single cycle in parallel

Suppose that A has 6 block–columns divided in 3 tasks.

3

2

1
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Block–oriented algorithm

Single cycle in parallel

Suppose that A has 6 block–columns divided in 3 tasks.

1

2

3

Note that in the end of the cycle, positions of block columns
are “inverted”.

18 / 24



Parallel Jacobi

S. Singer

Motivation

J–Jacobi

Basics

Block J–Jacobi
algorithm

Block
algorithms
Block–oriented
algorithms
Full block
algorithms

Parallelization

Numerical
testing

Conclusion

Full–block algorithm

First step in parallel

Situation is similar to block–oriented algorithm, but each
task is diagonalizing its own 2× 2 block.

33

3

22

2

11

1

Note that diagonal blocks remain diagonal after the first
step of the algorithm, and no additional perprocessing is
needed. 19 / 24
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Inner (micro level) strategies

Inside each task:

I we should use the block-oriented or the full block
algorithm to obtain additional speedup.

Repartition of a local matrix

I Suppose that task k at time t is working on
block–columns Gij = [GiGj ].

I Single task is using block-oriented/full block
algorithm on Gij , i.e., Gij should be repartitioned
such that smaller block-columns fit well into the local
cache memory.
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Characteristics of the “Test computer”

18 physical PC computers connected via 100 Mbit
switch

I Intel Core 2 Duo E6300 procesor @ 1.86 GHz,
I 1 GB DDR2 memory,
I 2 MB cache memory.

Used software:

I Linux Ubuntu 7.04, 32-bit,
I Intel Fortran 9.1.043,
I Intel Math Kernel Library 9.0,
I MPI, Open MP.
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Two–level vs. three level cache

Speedup of blocked vs. non-blocked inner algorithm

Situation is similar to a single processor speedup, here 32
cores (16 processors) are used.
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Speedup 8 vs. 4 processors

Testing on Isabella cluster

Characteristics of a cluster:
I 4×AMD Opteron (dual core),
I Infiniband connection (10 Gb/s).

Only few matrices are tested (very long waiting time to
be scheduled for code execution).
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20

40

60

n

sp
ee

du
p

in
%

23 / 24



Parallel Jacobi

S. Singer

Motivation

J–Jacobi

Basics

Block J–Jacobi
algorithm

Block
algorithms
Block–oriented
algorithms
Full block
algorithms

Parallelization

Numerical
testing

Conclusion

Conclusion

Blocked algorithms are:

I more than 50% faster for suitably large dimensions,
I accurate in the relative sense.

Work in progress

I Efficient column sorting in parallel algorithms.
I Proof of asymptotic and quadratic convergence of

parallel algorithms.
I Incorporation of QR factorization in three–level

cache algorithms.
I Testing of various quasicyclic strategies.
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