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1 IntroductionIn this paper we study the asymptotic convergence of the method establishedin 1960 by S. Falk and P. Langemeyer in [2]. Their method solves generalizedeigenvalue problem Ax = �Bx ; x 6= 0; (1)where A and B are real symmetric matrices of order n such that the pair(A;B) is de�nite. By de�nition the pair (A;B) is de�nite if the matrices Aand B are hermitian or real symmetric and there exist real constants a andb such that the matrix aA+ bB is positive de�nite.The Falk{Langemeyer method is the most commonly used Jacobi{typemethod for solving problem (1). Its advantages over other methods of solvingproblem (1) are that it applies to problem (1) for the widest class of startingpairs. Although it is not, in general, the fastest method for solving the givenproblem, in some cases it is the most appropriate. The QR method [11] isusually several times faster, at least on conventional computers, but it solvesproblem (1) only if matrix B is positive de�nite (or positive de�nitizing shiftfor the pair is known in advance) and if matrix B is well conditioned forCholesky decomposition. The Falk{Langemeyer method is superior to theQR method in terms of numerical stability if matrix B is badly conditionedfor Cholesky decomposition. It is also superior to the QR method if ap-proximate eigenvectors are known, i.e. if the matrices A and B are almostdiagonal. This happens in the course of modeling the parameters of a systemwhere a sequence of matrix pairs di�ering only slightly from each other has tobe reduced. This also happens in various subspace iteration techniques (see[11]). Another reason why Jacobi{type methods have attracted attentionrecently is that they are adaptable for parallel processing (see [12], [10]).The Jacobi{type method for solving problem (1) recently proposed byVeseli�c in [15] is somewhere in between previously mentioned methods inboth, speed and requirements. Although Veseli�c's method works for de�-nite matrix pairs, a linear combination �A � �B which is reasonably wellconditioned for J{symmetric Cholesky decomposition must be known in ad-vance. This method is one of the implicit methods, i.e. it works only on theeigenvectors matrix, and is therefore approximately two times faster than theFalk{Langemeyer method.The Jacobi{type method considered by Zimmerman in [19] is closely re-2



lated to the Falk{Langemeyer method (this is briey described in Section3) but requires positive de�nite matrix B. In [19] the convergence of thismethod is proved under the assumption that the starting matrices are al-most diagonal. The same conclusion holds for the Falk{Langemeyer methodas we shall show in this paper.In [4] Hari studied the asymptotic convergence of complex extension ofZimmerman's method (also for positive de�nite B). He showed that hismethod converges quadratically under the cyclic pivot strategies if the eigen-values of the problem are simple, while in the case of multiple eigenvaluesthe method can be modi�ed so that the quadratic convergence persists. Weare interested only in cyclic pivot strategies since some of them are amenablefor parallel processing.These results, the informal analysis of the convergence properties of theFalk{Langemeyer method performed by Hari in [7], and the numerical inves-tigation suggested that the Falk{Langemeyer method behaves in the similarfashion. In this paper we prove that the Falk{Langemeyer method is quadrat-ically convergent if the eigenvalues of the problem are simple and the pivotstrategy is cyclic. The technique of the proof, originally established by thelate J. H. Wilkinson in [16] (cf. [6]), is similar to that used in [4] .Two main problems that had to be solved are that neither of the matricesA and B has to be positive de�nite and that the transformation matrices arenot orthogonal and therefore di�cult to estimate. Both problems were solvedusing the results about almost diagonal de�nite matrix pairs from [7].The paper is organized as follows. In Section 2 we state the known re-sults about almost diagonal de�nite matrix pairs from [7] to the extent nec-essary for understanding the rest of the paper. In Section 3 we describethe Falk{Langemeyer method, show that it always works for de�nite ma-trix pairs (without use of de�nitizing shifts), and give its algorithm. Wealso briey describe Zimmerman method from [19] and [4] and relate it tothe Falk{Langemeyer method. Section 4 is the central section of the paper.We �rst state the known result about the quadratic convergence of Zimmer-man method from [4] and show to what extent can this result be applied tothe Falk{Langemeyer method. We introduce measure e"k which we use forde�ning and proving quadratic convergence. Then we prove the quadraticconvergence of the Falk{Langemeyer method under the assumptions that theeigenvalues of the problem are simple, the pivot strategy is arbitrary cyclicand the matrices A and B are almost diagonal. At the end we show that the3



quadratic convergence implies the convergence of Falk{Langemeyer method.In Section 5 we give the quadratic convergence results for parallel and serialstrategies, briey explain the possible modi�cation of the Falk{Langemeyermethod in case of multiple eigenvalues, and briey discuss numerical exper-iments.Most of the results presented in the paper are part of an M. S. thesis [13]done under the supervision of professor V. Hari.We would like to thank professor K. Veseli�c from Fernuniversit�at Hagenfor his helpful suggestions. We would also like to thank both reviewers fortheir comments which helped us clarify some important parts of the paper.2 Almost Diagonal De�nite Matrix PairsHere we consider the structure of almost diagonal de�nite matrix pair. We�rst state some properties of de�nite matrix pairs. Then we introduce chordalmetric for measuring distance between eigenvalues of de�nite matrix pairs.We de�ne the measures for the almost diagonality of the square matrix and ofthe pair of square matrices. At the end we state an important theorem from[7]. The theorem and its corollary reveal the structure of almost diagonalde�nite matrix pairs. All results are given for the general case of hermitianmatrices even though in the rest of the paper we shall consider only the caseof real symmetric matrices.De�nite matrix pair (A;B) has some important properties:a) There exists a nonsingular matrix F such thatF �AF = diag (a1; : : : ; an) = DAF �BF = diag (b1; : : : ; bn) = DB: (2)The ratios ai=bi ; i = 1; : : : ; n; of real numbers ai; bi are the eigenvalues of thepair (A;B) and are unique to the ordering. If [f1; :::; fn] denotes the partitionby columns of F , vectors fi ; i = 1; :::; n, are the corresponding eigenvectors.Matrices DA and DB are not uniquely determined by the pair (A;B). In thereal symmetric case F � can be changed to F T in the relation (2).b) The Crawford constant c(A;B),c(A;B) = inffj x�(A+ iB)x j ; x 2 Cn; k x k= 1g (3)4



is positive. Therefore, A and B share no common nul{subspace and jaij +jbij > 0; i = 1; : : : ; n; independently of the choice of F . Note that the choicex = ei (the i-th coordinate vector) in the relation (3) for i = 1; : : : ; n impliesdi = 4q(aii)2 + (bii)2 > 0 ; i = 1; : : : ; n ; (4)where A = (aij) and B = (bij). Hence the matrixD = diag ( 1d1 ; : : : ; 1dn ) ; (5)is positive de�nite. In the real symmetric case for n 6= 2 only real vectors xcan be taken in the relation (3).c) There exists a real number ', such that the matrix B' from the pair(A'; B'), A' = A cos' � B sin'B' = A sin' + B cos' ; (6)is positive de�nite. The matrices A and B can be simultaneously diagonal-ized if and only if the same holds for the matrices A' and B'.The proofs of the above properties are simple (see [14]). If some fi isa vector from the nul{subspace of B, the eigenvalue �i is in�nite. Sucheigenvalues are not badly posed because they are zero eigenvalues of the pair(B;A) counting their multiplicities. Hence, it is better to de�ne eigenvaluesas pairs of numbers �i = [ai; bi]; i = 1; : : : ; n. It is also necessary to choosea �nite metric for measuring the distance between eigenvalues. Such is thechordal metric.Let R2 = R � R and R20 = R2 n f[0; 0]g, where R is the set of realnumbers. We say that the pairs [a; b]; [c; d] 2 R20 are equivalent if ad� bc = 0and write [a; b] � [c; d]. It is easily seen that � is an equivalence relation onR20. Let R20 j� be the set of equivalence classes. Let �; � 2 R20 j� and let[a; b]; [c; d] be their representatives, respectively. Chordal distance between[a; b] and [c; d] is de�ned with the formula�([a; b]; [c; d]) = j ad� bc jpa2 + b2 pc2 + d2 :5



It is easily seen that � is constant when [a; b] and [c; d] vary over � and�, respectively. This de�nes metric e� : R20 j� �R20 j�! R by e�(�; �) =�([a; b]; [c; d]) where [a; b] and [c; d] are any representatives of � and �, re-spectively. However, for the sake of simplicity we shall use � for the bothfunctions � and e�. We see that �(�; �) � 1 for all �; � 2 R20 j�. The proof ofthese and some other properties of the chordal metric can be found in [11],[14] and [13].From now on, let n denote the order of the matrices A and B and letp denote the number of distinct eigenvalues of the pair (A;B). We assumethat n � 3 ; p � 2 ;and that the pair (A;B) is de�nite. Note that if p = 1 then A = �B, so�1 = �2 = � � � = �n = � and all vectors are eigenvectors of the pair (A;B).The o�{norm of the square matrix A is the quantityS(A) = vuuut nXi;j=1i6=j j aij j2 = k A� diag (A) k ;where k � k denotes the Euclidean matrix norm.The o�{norm of the pair (A;B) is the quantity"(A;B) = qS2(A) + S2(B) : (7)Where no misunderstanding can arise, " shall be used instead of "(A;B). Let�1 = : : : = �t1 ; �t1+1 = : : : = �t2 ; : : : ; �tp�1+1 = : : : = �tp ; (8)where �ti = [si; ci] ; s2i + c2i = 1 ; i = 1; : : : ; p ; (9)be all eigenvalues of the pair (A;B). Thus, we assume that the pair (A;B)has p distinct eigenvalues �t1 ; : : : ; �tp with the appropriate multiplicitiesni = ti � ti�1 ; i = 1; : : : ; p ; t0 = 0 ; (10)and the representatives which behave as sine and cosine are chosen. Sincep > 2 we can de�ne quantities�i = 13 min1�j�pj 6=i �(�ti; �tj ) ; � = min1�i�p �i : (11)6



Note that � > 0.In the analysis we shall need matrices eA and eB de�ned aseA = DAD ; eB = DBD ; (12)where matrix D is de�ned with relations (5) and (4). Since D is positivede�nite, the matrices eA and eB are congruent to the matrices A and B,respectively. Let us partition the matrices eA and eB,eA = 2664 eA11 � � � eA1p... ...eAp1 � � � eApp 3775 ; eB = 2664 eB11 � � � eB1p... ...eBp1 � � � eBpp 3775 ; (13)where eAii and eBii are diagonal blocks of order ni ; i = 1; : : : ; p, and ni's arede�ned with relation (10). The relation (13) shall be written as eA = ( eAij)and eB = ( eBij).Let the matrices A and B be partitioned according to the relation (13).Departure from the block{diagonal form of the pair (A;B) is the quantity� (A;B) = q� 2(A) + � 2(B) ;where � 2(A) = pXi=1 pXj=1j 6=i k Aij k2 ; � 2(B) = pXi=1 pXj=1j 6=i k Bij k2 :Theorem 1 Let (A;B) be a de�nite pair and let the matrices eA and eB bede�ned by the relations (12), (5) and (4). If"( eA; eB) < � ; (14)then there exists a permutation matrix P such that for matrices eA0 = P T eAPand eB0 = P T eBP , partitioned according to the relation (13), holdsk ci eA0ii � si eB0ii k � 1�i pXj=1j 6=i k cifA0ij � si eB0ij k2 ; i = 1; : : : ; p : (15)On the both sides of the inequalities (15) the Euclidean matrix norm can besubstituted with the spectral norm. 7



Proof: The proof of this theorem is found in [7]. Q.E.D.Corollary 2 Let the relation (14) hold for the de�nite pair (A;B). Thenthere exists a permutation matrix P such that for the matrices fA0 = P T eAP =(ea0ij) , fB0 = P T eBP = (eb0ij), A0 = P TAP = (a0ij) and B 0 = P TBP = (b0ij),partitioned according to the relation (13), holdspXi=1 k ci eA0ii � si eB0ii k2 � � 4(fA0; fB0)2�2 ; (16)pXi=1 tiXj=ti�1+1�2([si; ci]; [a0jj; b0jj]) = pXi=1 tiXj=ti�1+1 j ciea0jj � sieb0jj j2� � 4(fA0; fB0)2�2 ; (17)�([si; ci]; [a0jj; b0jj]) = j ciea0jj � sieb0jj j � � 2(fA0; fB0)2� ;j = ti�1 + 1; : : : ; ti ; i = 1; : : : ; p : (18)Proof: By Theorem 1 there exists a permutation matrix P such that the re-lation (15) holds for the matrices eA0 and eB0. The Cauchy{Schwarz inequalityimplies k ci eA0ij � si eB0ij k2 � (j ci jk eA0ij k + j si jk eB0ij k)2� k eA0ij k2 + k eB0ij k2 ; i 6= j : (19)From the relations (15) and (19), the de�nition of � (fA0; fB0) , and the sym-metry of matrices fA0 and fB0 followsk ci eA0ii � si eB0ii k � 1�i pXj=1j 6=i(k eA0ij k2 + k eB0ij k2)� 12�� 2( eA0; eB0) ; i = 1; : : : ; p : (20)Finally, the relations (15), (19) and (20) and the de�nition of � (fA0; fB0)implypXi=1 k ci eA0ii � si eB0ii k2 � 12� � 2( eA0; eB0) pXi=1 pXj=1j 6=i 1�i (k eA0ij k2 + k eB0ij k2)8



� 12�2 � 4( eA0; eB0) ;which completes the proof of the relation (16).The equalities in the relations (17) and (18) follow from the de�nition ofthe chordal metric and the fact that it does not depend upon the choice ofthe representatives. Inequality in the relation (17) now follows from the re-lation (16) and inequality in the relation (18) from the relation (20). Q.E.D.Theorem 1 and Corollary 2 reveal the structure of almost diagonal de�nitematrix pairs in both the hermitian and the real symmetric case. The relation(18) implies that for i = 1; : : : ; p, pairs [a0jj; b0jj] ; j 2 fti�1 + 1; : : : ; tig ap-proximate the eigenvalues �ti with an error of order of magnitude � 2( eA0; eB0)in the chordal metric. The relation (16) implies that the blocks eA0ii and eB0ii,i = 1; : : : ; p, are proportional with the proportionality constants being �tialso with the error of order � 2( eA0; eB0). This proportionality becomes appar-ent when � ( eA0; eB0) is small enough compared to �. Note that the relations(15) and (18) do not imply that the o�-diagonal elements of blocks eA0ii andeB0ii tend to zero together with � ( eA0; eB0). The relation (15) shows that for�xed i the proportionality of the blocks eA0ii and eB0ii depends on the localseparation �i of the eigenvalue �ti from other eigenvalues and on quantitiesk ci eA0ij � si eB0ij k2 ; j = 1; : : : ; p ; j 6= i:�3 The Falk{Langemeyer methodIn this section we de�ne the Falk{Langemeyer method, show that it alwaysworks for de�nite matrix pairs, and give its algorithm. At the end of the sec-tion we briey describe the method of Zimmermann from [4] and [19], becauseit is closely related with the Falk{Langemeyer method. This relationship isalso described.The Falk{Langemeyer method solves problem (1) by constructing a se-quence of \congruent" matrix pairs(A(1); B(1)); (A(2); B(2)); : : : (21)where A(1) = A ; B(1) = B ;9



A(k+1) = F Tk A(k)Fk ; B(k+1) = F Tk B(k)Fk ; k � 1 : (22)Note that the transformation (22) with nonsingular matrix Fk preserves theeigenvalues of the pair (A(k); B(k)). This is a Jacobi{type method, hence thetransformation matrices are chosen as nonsingular elementary plane matrices.An elementary plane matrix F = (fij) di�ers from the identity matrix onlyat the positions (l; l); (l;m); (m; l) and (m;m), where 1 � l < m � n. Thematrix bF = " fll flmfml fmm #is called (l;m){restriction of the square matrix F = (fij).For each k � 1, the (l;m){restriction of the matrix Fk has the formbFk = " 1 �k��k 1 # ; (23)where real parameters �k and �k are chosen to satisfy the conditiona(k+1)lm = 0 ; b(k+1)lm = 0 : (24)Here A(k) = (a(k)ij ) and B(k) = (b(k)ij ). Indices l and m are called pivot indicesand the pair (l;m) is called pivot pair. As k varies the pivot pair also varies,hence l = l(k) and m = m(k). The transition from the pair (A(k); B(k)) tothe pair (A(k+1); B(k+1)) is called the k{th step of the method. The mannerin which we choose elements which are to be annihilated in the k{th step (orjust the indices (l;m) of these elements) is called pivot strategy. The pivotstrategy is cyclic if every sequence of N = n(n� 1)=2 successive pairs (l;m)contains all pairs (i; j); 1 � i < j � n. A sequence of N successive stepsis referred to as a cycle. Two most common cyclic pivot strategies are thecolumn{cyclic strategy and the row{cyclic strategy. The former is de�ned bythe sequence of pairs(1; 2); (1; 3); (2; 3); (1; 4); (2; 4); (3; 4); : : : ; (1; n); (2; n); : : : ; (n� 1; n);and the latt er by the sequence of pairs(1; 2); (1; 3); : : : ; (1; n); (2; 3); (2; 4); : : : ; (2; n); (3; 4); : : : ; (n� 1; n):These two strategies are also called serial strategies. Parallel cyclic strategiesare cyclic strategies which enable simultaneous execution of approximately10



n=2 steps on parallel computers. These strategies have recently attractedconsiderable attention (see [12], [10]). We state the quadratic convergenceresults for serial and parallel strategies in Section 5.Note that if the eigenvectors are needed, we must calculate the sequenceof matrices F (1); F (2); : : : , whereF (1) = I ; F (k+1) = F (k)Fk ; k � 1 : (25)From the relations (22) and (25) we obtain for k � 2F (k) = F1 � � �Fk�1A(k) = (F (k))TA(1)F (k) ; B(k) = (F (k))TB(1)F (k) :We shall now derive one step of the algorithm. Note that only (l;m){restrictions of the involved matrices are needed. Since (22) is the congruencetransformation, the pairs (A(k); B(k)) are de�nite for every k � 1 and thepairs of the corresponding (l;m){restrictions are de�nite as well.Let (index k is omitted for the sake of simplicity)bF T bA bF = bA0 ; bF T bB bF = bB0 ;or respectively" 1 ��� 1 # " all almalm amm # " 1 ��� 1 # = " a0ll a0lma0lm a0mm # ;" 1 ��� 1 # " bll blmblm bmm # " 1 ��� 1 # = " b0ll b0lmb0lm b0mm # : (26)Condition (24) now reads a0lm = b0lm = 0. From the relation (26) the systemin unknowns � and � is obtaineda0lm = �all + (1 � ��)alm � �amm = 0 ;b0lm = �bll + (1 � ��)blm � �bmm = 0 : (27)Eliminating nonlinear terms in both equations we obtain� = =m� ; � = =l� ; (28)11



where � is solution of the equation�2 �=lm� �=l=m = 0 (29)and =l = allblm � bllalm ;=m = ammblm � bmmalm ;=lm = allbmm � ammbll : (30)De�ning = = (=lm)2 + 4=l=m (31)we obtain �� = 12 sgn (=lm)(j =lm j �p=) :The algorithm is more stable if � and � are smaller in modulus, so we take� = �+ = 12 sgn (=lm)(j =lm j +p=) : (32)From the above fromula we see that the necessary condition for carrying outthis step is = � 0. Let us show that this condition is ful�lled in each stepdue to the de�nitness of the pairs ((A(k);(k) ); k � 1).Proposition 3 Let the pair (A;B) be de�nite. Then the following holds:(i) = � 0 ;(ii) The following statments are equivalent:(a) = = 0 ;(b) =lm = =l = =m = 0 ;(c) There exist real constants s and t, jsj+ jtj � 0, such thats bA+ t bB = O :Proof: The proof can be found in [4] and [13] but for the completeness ofexposition we present it below. 12



Using the relation (6) we can de�ne the pair (A'; B') such that the matrixB' is positive de�nite. Let us calculate the quantities (=lm)'; (=l)'; (=m)'and (=)' from the pair (A'; B') using the relations (30) and (31). It is easyto verify that =l = (=l)'; =m = (=m)';=lm = (=lm)'; = = (=)':Therefore, without loss of generality, we can assume that the matrix B fromthe pair (A;B) is positive de�nite. The statement (c) is now equivalent tothe statement bA = c bB, c 2 R .(i) With the notationx = allsbmmbll ; y = amms bllbmm ; z = blmpbllbmm ;the following identity holds:= = bllbmm[(x� y)2 + 4(xz � alm)(yz � alm)]:Since the right side of the above relation is the square polynomial in alm, wehave = = bllbmmP2(alm) � bllbmmP2 �x+ y2 z�= bllbmm(x� y)2(1 � z2) = =2lm  1� b2lmbllbmm! � 0 : (33)In the last inequality we have used the assumption that the matrix B, andtherefore the matrix bB, is positive de�nite.(ii) Let (a) hold. The relation (33) implies that =lm = 0. Matrix B isby the assumption positive de�nite. Therefore bll > 0; bmm > 0, and theequality =lm = 0 can be written asbmmbll all = amm:Using this relation we can write=m = ammblm � bmmalm = bmmbll (allblm � bllalm) = bmmbll =l ;13



or bll=m = bmm=l. From the de�nition of =, since =lm = 0, we conclude that=l = =m = 0. This gives (b).Let (b) hold. Thenamm = bmmallbll ; alm = blmallbll :Therefore, bA = c bB, where c = allbll = ammbmm ;and (c) holds.Let (c) hold. Then obviously (b) holds, and if (b) holds, then (a) holds.Q.E.D.Now we see that the Falk{Langemeyer method can be applied to all def-inite matrix pairs. Note that de�nitizing shifts are not used and need not tobe known.We have two special cases in the algorithm. If = = 0, then the matricesbA and bB are proportional as shown in Proposition 3. Therefore, the twoequations in the system (27) are linearly dependent and the system has aparametric solution in one of the following forms:(�; �) =  c bmm � blmbll � c blm ; c! ; (�; �) = �c amm � almall � c alm ; c� ;(�; �) =  c; c bll + blmbmm + c blm! ; (�; �) = �c; c all + almamm + c alm� ;where c is real. For every c at least one of the quotients is well de�ned dueto the de�niteness of the pair ( bA; bB). It is best to set c = 0 to ensure that�k and �k tend to zero together with "(A(k); B(k)) as k ! 1 (see step (5a)in Algorithm 4). Setting c = 0 also reduces the operation count. This choiceyields four possibilities for (�; �):(�blmbll ; 0) ; (�almall ; 0) ; (34)(0 ; blmbmm ) ; (0 ; almamm ) : (35)14



Due to the de�niteness of the pair (A;B), we havejaiij+ jbiij > 0; i = 1; : : : ; n ; (36)so at least one quotient is de�ned in each of the relations (34) and (35). Inorder to obtain better condition of the transformation matrix, we choose therelation in which the de�ned quotient has smaller absolute value. If bothquotients in the chosen relation are de�ned, then they are equal, and fornumerical reasons it is better to choose one in which the sum of squares ofthe numerator and the denominator is greater.The second special case is when = > 0 and =lm = 0 . This means thatdiagonals of the matrices bA and bB are proportional, while the matricesthemselves are not. Then sgn (=lm) is not de�ned. Since =l=m > 0, wehave sgn (=l) = sgn (=m) . Substituting sgn (=lm) with sgn (=l) in theequation (32) gives � = sgn (=l)q=l=m :Inserting this in the equation (28) gives, after simple calculation,� = sbmmbll = sammall ; � = 1� : (37)The relation (36) implies that at least one of the quotients bmm=bll andamm=all is de�ned and di�erent from zero. If both quotients are de�ned thenthey are equal and it is better to choose one in which the sum of squares ofthe numerator and the denominator is greater.We can now de�ne an algorithm of the method:Algorithm 4 De�nite matrix pair (A;B) is given.(1) Set k = 1, A(1) = A, B(1) = B, F (1) = I and choose the pivotstrategy.(2) Choose the pivot pair (l;m) = (l(k);m(k)) according to the strategy.(3) If a(k)lm = b(k)lm = 0 , then set k = k + 1; A(k+1) = A(k); B(k+1) = B(k);F (k+1) = F (k) and go to step (2). Otherwise go to step (4).15



(4) Calculate the quantities =(k)l ; =(k)m ; =(k)lm and =(k) from formulas=(k)l = a(k)ll b(k)lm � b(k)ll a(k)lm ; =(k)m = a(k)mmb(k)lm � b(k)mma(k)lm ;=(k)lm = a(k)ll b(k)mm � a(k)mmb(k)ll ; =(k) = (=(k)lm )2 + 4=(k)l =(k)m :(5) (a) If =(k) = 0 perform the following steps: If j b(k)ll j � j a(k)ll j ,then set �k = �b(k)lm=b(k)ll ;otherwise set �k = �a(k)lm=a(k)ll .If j b(k)mm j � j a(k)mm j , then set �k = b(k)lm=b(k)mm ;otherwise set �k = a(k)lm=a(k)mm .Finally, if j �k j � j �k j , then set �k = 0 ; otherwise set�k = 0 .(b) If =(k) > 0 perform the following steps:(i) If =(k)lm 6= 0 , then calculate�k = 12 sgn (=(k)lm )(j =(k)lm j +p=(k));�k = =(k)m�k ; �k = =(k)l�k :(ii) If =(k)lm = 0 , then, according to the relation (37), calculate�k = vuutb(k)mmb(k)ll = vuuta(k)mma(k)ll ; �k = 1�k :If both quotients for �k are de�ned, then choose one in whichthe sum of squares of the numarator and the denominator isgreater. 16



(6) Perform the transformationA(k+1) = F Tk A(k)Fk; B(k+1) = F Tk B(k)Fk ; (38)F (k+1) = F (k)Fk : (39)(7) Set k = k + 1 and move to step (2).Since matrices A(k); B(k); A(k+1) and B(k+1) are symmetric, it is enoughto store and to transform only upper triangles. In the transformation (38)only l�th and m�th row and column of the matrices A(k) and B(k) arechanged and in the transformation (39) only l�th and m�th columns of thematrix F (k) are changed. Note that the eigenvalues can be found withoutcalculating the matrices F (k) ; k � 1 , and therefore the trasformation (39)can be omitted. This reduces the operational count about �fty percent.Stopping criteria of the in�nite iterative procedure de�ned with this al-gorithm are described in Section 5.From now on, the term \Falk{Langemeyer method" denotes the methoddescribed by Algorithm 4.The Zimmerman method. We shall now relate the Falk{Langemeyermethod with another method for solving the generalized eigenvalue problem.This method is due to K. Zimmermann who roughly described it in her the-sis [19]. Later on, in his thesis [4], Hari derived its algorithm and proved itsquadratic convergence.The Zimmermann method is de�ned for symmetric matrix pairs (A;B)where matrix B is positive de�nite. We shall denote this fact as B > 0. Atthe beginning of the iterative procedure the initial pair (A;B) is normalizedsuch that A(1) = DAD ; B(1) = DBD ;where D = diag ( 1pb11 ; : : : ; 1pbnn ) :Therefore, b(1)ii = 1; i = 1; : : : ; n. The Zimmerman method constructs asequence of pairs ((A(k); B(k)); k � 1) by the ruleA(k+1) = ZTk A(k)Zk ; B(k+1) = ZTk B(k)Zk ; k � 1 :17



The nonsingular matrices Zk are chosen to preserve the units on the diagonalof B(k+1) (automatic normalization at each step) and to annihilate the pivotelements. In [4] it is shown that for k � 1 holdsbZk = 1r1� (b(k)lm )2 " cos'k sin'k� sin k cos k # ;where cos'k = cos �k + �k(sin �k � �k cos �k) ;sin'k = sin �k � �k(cos �k + �k sin �k) ;cos k = cos �k � �k(sin �k + �k cos �k) ;sin k = sin �k + �k(cos �k � �k sin �k) ;�k = b(k)lmq1 + b(k)lm +q1 � b(k)lm ;�k = b(k)lm(1 +q1 + b(k)lm )(1 +q1� b(k)lm ) ;tan 2�k = 2a(k)lm � (a(k)ll + a(k)mm)b(k)lm(a(k)mm � a(k)ll )r1� (b(k)lm )2 ;��4 � �k � �4 :If a(k)lm = b(k)lm = 0 we set �k = 0. If the (l;m){restrictions of A(k) and B(k)are proportional and a(k)lm and b(k)lm are not both equal to zero, we set �k = �4 .If the matrix B is not positive de�nite but the pair (A;B) is, then thereexists a de�nitizing shift � such that the matrix A� �B is positive de�nite.If this shift is known in advance, then the Zimmermann method can beapplied to the pair (A;B) in the sense that each Zk is computed from thepair (B(k); A(k) � �B(k)).Although the Zimmermann method seems quite di�erent from the Falk{Langemeyer method, the two methods are closely related. The followingtheorem gives precise formulation of this relationship. For this occasion only18



we assume that in step (5a) of Algorithm 4 (that is when =(k) = 0), parame-ters �k and �k are computed according to the formulae (37). For this versionof the Falk{Langemeyer method holds:Theorem 5 Let A and B be symmetric matrices of order n and let B be pos-itive de�nite. Let the sequences ((A(k); B(k)); k � 1) and ((A(k)0; B(k)0); k � 1)be generated from the starting pair (A;B) with the Falk{Langemeyer and theZimmermann method, respectively. If the corresponding pivot strategies arethe same, thenA(k)0 = D(k)A(k)D(k); B(k)0 = D(k)B(k)D(k); k � 1 ;where D(k) = diag ( 1qb(k)11 ; : : : ; 1qb(k)nn ) ; k � 1 :Proof: The proof of this theorem is found in [4] Section 2.3. Q.E.D.Let us suppose again that the matrix B is not positive de�nite whilethe pair (A;B) is, and that a positive de�nitizing shift � is known in ad-vance. Let us apply to the pair (A;B) the Zimmermann method in the sencementioned above and the version of the Falk{Langemeyer method whichwe used in Theorem 5. It is easy to see that the parameters �k and �kfrom the Falk{Langemeyer method are invariant under the transformations(A;B) ! (B;A � �B). Therefore, Theorem 5 holds in this case, as well,withD(k) = diag 0@ 1qa(k)11 � � b(k)11 ; : : : ; 1qa(k)nn � � b(k)nn 1A ; k � 1 :We can conclude that if the starting pair is positive de�nite or the de�ni-tizing shift is known in advance, then the Falk{Langemmeyer (Zimmermann)method is the fast scaled (normalized) version of the Zimmermann (Falk{Langemmeyer) method. 19



4 Quadratic convergenceIn this section we prove that the Falk{Langemeyer method is quadraticallyconvergent if the starting de�nite pair has simple eigenvalues and the pivotstrategy is cyclic. De�nitizing shifts are not used and need not to be known.We �rst state the result about the quadratic convergence of the Zimmer-mann's method, and show to what extent can this result be applied to theFalk{Langemeyer method if the matrixB is positive de�nite. Then we de�nethe quadratic convergence for the Falk{Langemeyer method. In Subsection4.1 we prove preliminary results which we use in the proof of the quadraticconvergence of the Falk{Langemeyer method in Subsection 4.2.The result about the quadratic convergence of Zimmermann method canbe summarized as follows. Let the sequence ((A(k); B(k)); k � 1) be generatedby the Zimmerman method from the pair (A;B), B > 0, and let "k ="(A(k); B(k)), where " is de�ned with the relation (7). Note that "k is naturalmeasure for convergence of the Zimmerman method since each matrix B(k)has units along the diagonal.We say that the Zimmerman method is quadratically convergent on thepair (A;B) if "k ! 0 as k ! 1 and there exist a constant c0 > 0 and aninteger r0 such that for r � r0 holds"(r+1)N+1 � c0 "2rN+1 :Hence of special importance are conditions under which the above relationholds for r = 1. We call them asymptotic assumptions. Let� = spr (A;B) = max1�i�n j�ij ; � = 13 mini6=j j �i � �j j :Theorem 6 Let the sequence ((A(k); B(k); k � 1) be generated by the Zim-merman method from the starting pair (A;B), B > 0, and let the asymptoticassumptions S(B(1)) � 12N ; 2p1 + �2 "1 < � ; (40)hold. If the eigenvalues of the pair (A;B) are simple and the pivot strategyis cyclic, then "N+1 � qN(1 + �2) "21� : (41)20



Proof: The proof of this theorem is found in [4] Section 3.3. Q.E.D.In Theorem 6 the term � appears in the assumption (40) and in theassertion (41) because matrix B is not diagonal and matrix A is not normal-ized. From Theorem 5 we see that Theorem 6 holds for the Falk{Langemeyermethod provided that the step (5a) of Algorithm 4 is appropriately changed,the matrix B is positive de�nite, and the pairs (A(k); B(k)) generated by theFalk{Langemeyer method are normalized so that b(k)ii = 1; i = 1 : : : n; k � 1.In the rest of this section we prove that the Falk{Langemeyer methodde�ned with Algorithm 4 is quadratically convergent on de�nite matrix pairswith simple eigenvalues if the pivot strategy is cyclic. We �rst have to de�nethe measure for the quadratic convergence.Let (A;B) be a de�nite pair. We shall use the measure e" = e"(A;B)de�ned by e"(A;B) = "( eA; eB);where eA and eB are given by the relations (12),(5) and (4). The measure e"enables us to use results of Corollary 2 and it takes into account the diagonalelements of matrices A and B. Note that the measure "(A;B) is generallynot the proper measure for almost diagonality of the pair (A;B) since it takesno account of the diagonals of matrices A and B.Let the sequence of pairs(A(1); B(1)); (A(2); B(2)); : : : (42)be generated by the Falk{Langemeyer method from the starting de�nite pair(A;B). For k � 1 we sete"k = e"(A(k); B(k)) = "( eA(k); eB(k)) ; (43)eA(k) = DkA(k)Dk ; eB(k) = DkB(k)Dk ; (44)Dk = diag ( 1d(k)1 ; : : : ; 1d(k)n ) ; (45)d(k)i = 4q(a(k)ii )2 + (b(k)ii )2 ; i = 1; : : : ; n : (46)From the relations (44), (45) and (46) we see that the pairs ( eA(k); eB(k))are normalized in the sence that(ea(k)ii )2 + (eb(k)ii )2 = 1 ; i = 1; : : : ; n : (47)21



Definition 7 The Falk-Langemeyer method is quadratically convergent onthe pair (A;B) if e"k ! 0 as k ! 1 and there exist a constant c0 > 0 andan integer r0 such that for r � r0 holdse"(r+1)N+1 � c0e"2rN+1: (48)From De�nition 7 we see that ultimately e"k decreases quadratically percycle. At the end of Subsection 4.2 we shall show that the quadratic con-vergence implies the convergence of the sequence (42) towards the pair ofdiagonal matrices (DA;DB), whereDA = diag (a1; : : : ; an); DB = diag (b1; : : : ; bn) : (49)Here �i = [ai; bi]; i = 1; : : : ; n, are the eigenvalues of the pair (A;B). Finally,we shall show that ultimately the quadratic reduction of e"rN+1 implies thequadratic reduction of "rN+1 and vice versa1.In order to be able to observe the measure e" we must solve one moreproblem. The transformation matrices Fk are calculated from unnormalizedpairs (A(k); B(k)) and are therefore di�cult to estimate. To solve this problemwe shall observe the sequence obtained from the pair (A;B) with followingprocess:normalization, step of the method, normalization, step of themethod,...This sequence reads( eA(1); eB(1)); (A(2); B(2)); ( eA(2); eB(2)); (A(3); B(3)); ( eA(3); eB(3)); : : : ; (50)where ( eA(1); eB(1)) = ( eA(1); eB(1)) ; (51)and for k � 1 holdsA(k+1) = eFTk eA(k) eF k ; B(k+1) = eFTk eB(k) eF k ; (52)1Here "k measures o�{diagonal elements of the pairs from sequence (42) and shouldnot be confused with the quantity used in connection with Zimmerman method.22



eA(k+1) = Dk+1A(k+1)Dk+1 ; eB(k+1) = Dk+1B(k+1)Dk+1 ; (53)Dk+1 = diag ( 1d(k+1)1 ; : : : ; 1d(k+1)n ) ; (54)d(k+1)i = 4r(a(k+1)ii )2 + (b(k+1)ii )2 ; i = 1; : : : ; n : (55)Of course, the sequences (42) and (50) are generated using the same pivotstrategy. The matrices eF k are calculated according to Algorithm 4, butfrom the pairs ( eA(k); eB(k)). Since in the transition from ( eA(k); eB(k)) to(A(k+1); B(k+1)) of all diagonal elements only those at positions (l; l) and(m;m) are being changed, we conclude thatd(k+1)i = 4r(a(k+1)ii )2 + (b(k+1)ii )2 = 4q(ea(k)ii )2 + (eb(k)ii )2 = 1; i = 1; : : : ; n; i 6= l;m :(56)We will now show that the operations of normalization and of carryingout one step of the algorithm commute. This is equivalent to showing thateA(k) = eA(k) and eB(k) = eB(k) for k � 1.Let eFk be the transformation matrices obtained according to Algorithm4 from the pairs ( eA(k); eB(k)); k � 1. The following proposition shows thatthe matrices Fk and eFk are simply related.Proposition 8 For k � 1 holds eFk = D�1k FkDk.Proof: Because of the relations (44), (45) and (46) we havebeA(k) = 266664 a(k)ll(d(k)l )2 a(k)lmd(k)l d(k)ma(k)lmd(k)l d(k)m a(k)mm(d(k)m )2 377775 ; beB(k) = 266664 b(k)ll(d(k)l )2 b(k)lmd(k)l d(k)mb(k)lmd(k)l d(k)m b(k)mm(d(k)m )2 377775 : (57)The assertion is now obtained by simply using the relation (57) in Algorithm4 and calculating the matrix eFk. Q.E.D.Proposition 9 For k � 1 the following holds:(i) ( eA(k); eB(k)) = ( eA(k); eB(k)) ;23



(ii) Dk = D1D2D3 � � �Dk :Proof: The proof is by induction in respect to k.(i) For k = 1 the assertion holds due to the relation (51). Suppose thatthe assertion holds for some k � 1. This means thateA(k) = eA(k) ; eB(k) = eB(k) ; eF k = eFk : (58)From the relation (52) it follows that A(k+1) = eFTk eA(k) eF k , which, becauseof the relation (58), implies that A(k+1) = eF Tk eA(k) eFk. Since the relation (44)and Proposition 8 implyA(k+1) = DkF Tk D�1k DkA(k)DkD�1k FkDk = DkF Tk A(k)FkDk= DkA(k+1)Dk ; (59)we conclude that normalizations of the matrices A(k+1) and A(k+1) give thesame matrix. Now we use the same argument to show that eB(k+1) = eB(k+1)for k � 1 and to prove (i).(ii) For k = 1 the assertion is trivially ful�lled. Let the assertion holdfor some k � 1 . From the relations (59), (53) and the assertion (i) we obtainDk+1DkA(k+1)DkDk+1 = Dk+1A(k+1)Dk+1 == eA(k+1) = eA(k+1) = Dk+1A(k+1)Dk+1 :It is obvious that Dk+1 = DkDk+1 and inserting the induction assumptionwe conclude that (ii) holds. Q.E.D.From Proposition 9 we see that the relations (50), (52) and (53) can bewritten as( eA(1); eB(1)); (A(2); B(2)); ( eA(2); eB(2)); (A(3); B(3)); ( eA(3); eB(3)); : : : (60)A(k+1) = eF Tk eA(k) eFk ; B(k+1) = eF Tk eB(k) eFk ; (61)eA(k+1) = Dk+1A(k+1)Dk+1 ; eB(k+1) = Dk+1B(k+1)Dk+1 : (62)The relations (60), (61), (62), (54) and (55) de�ne the normalized Falk{Langemeyer method. We use the normalized method only as an aid to obtaininformation about the quantity e"k. �24



4.1 PreliminariesHere we de�ne asymptotic assumptions and prove several lemmas which areused later in the proof of the quadratic convergence of the Falk{Langemeyermethod. The quadratic convergence proof is based on the idea of Wilkinson(see [18]) which consists in estimating the growth of already annihilated ele-ments in the current cycle. To this end we must estimate the transformationparametars e�k and e�k and also the growth of all o�-diagonal elements in thecurrent cycle. These two tasks are solved in Lemma 11, Lemma 13, Lemma14 and Lemma 15. Lemma 10 gives us two numeric relations which are usedin the proof. Lemma 11 and Lemma 12 estimate the transformation param-etars e�k and e�k, and the measure e"k in one step. Lemma 13, Lemma 14 andLemma 15 estimate the growth of e�k, e�k and e"k during N consecutive steps.Lemma 15 is the most important for the proof of the quadratic convergence.In this subsection we do not assume that the pivot strategy is cyclic. There-fore the results of this subsection hold for any pivot strategy. However, if thepivot strategy is cyclic, then Lemma 13, Lemma 14 and Lemma 15 explainthe behaviour of e�k, e�k and e"k during one cycle.As we said in Section 1, the quadratic convergence can always be ex-pected if the eigenvalues of problem (1) are simple. We will therefore usetwo quadratic convergence assumptions:(A1) The eigenvalues of the pair (A;B) are simple, i. e.p = n � 3 :(A2) The pair (A;B) is almost diagonal, i. e.e"1� < 12N :Asymptotic assumption (A2) is similar to the assumptions used in Theorem6 and in convergence results of some other Jacobi{type methods (see [4], [1]).Assumption (A1) implies N � 3 (63)and "k = �k ; e"k = e�k ; k � 1 ; (64)25



where �k = � (A(k); B(k)) and e�k = � ( eA(k); eB(k)). We shall use the notationeak = jea(k)lm j ; ebk = jeb(k)lm j ; k � 1 : (65)Lemma 10 Let r be an integer such that r � 3 and let x be a nonnegativereal number satis�ying 2xr < 1. Then the following inequalities hold:(1� x)�r � 1 + 127 � r � x ; (1 + x)r � 1 + 43 � r � x :Proof: The proof of this lemma is elementary and can be found in [4].Q.E.D.The following lemma shows how are the transformation parameters e�kand e�k from matrices eFk bounded with e�k.Lemma 11 Let the assumption (A1) hold. If for some k � 1 holdse"k < 23N � ; (66)then maxfje�kj; j e�kjg � 0:34 � q(eak)2 + (ebk)2� : (67)Proof: Suppose that for some k � 1 the relation (66) holds. Then Theorem1 and Corollary 2 hold for the pair ( eA(k); eB(k)) as well. The assumption (A1)and the relations (63), (64) and (18) imply that there exists an ordering ofthe eigenvalues of the pair (A;B)2 such that�(�i; [ea(k)ii ; eb(k)ii ]) � e"2k2� < 4�29N2 � 12� < 281 � � < 0:025 � � ;i = 1; : : : ; n : (68)Applying twice the triangle inequality and using the de�nition (11) and therelation (68), we obtainj e=(k)lm j = j ea(k)ll ebk)mm � ea(k)mmeb(k)ll j = �([ea(k)ll ; eb(k)ll ]; [ea(k)mm; eb(k)mm])� �(�l; �m)� �(�l; [ea(k)ll ; eb(k)ll ]) � �(�m; [ea(k)mm; eb(k)mm])> 3 � � � 2 � 0:025 � � = 2:95 � � : (69)2Since p = n, the eigenvalues can be ordered so that the matrix P from Theorem 1and Corollary 2 is identity matrix. 26



It is obvious that je=(k)lm j 6= 0. This excludes cases (5a) and (5bii) of Algorithm3. Therefore, we havemaxfje�kj; j e�kjg � 2je=(k)lm j+qe=(k) �maxfje=(k)l j ; je=(k)m jg : (70)From the Cauchy{Schwarz inequality and the relations (47) and (65) we haveje=(k)l j = jea(k)ll eb(k)lm � eb(k)ll ea(k)lm j � q(ea(k)ll )2 + (eb(k)ll )2q(ea(k)lm )2 + (eb(k)lm )2= q(eak)2 + (ebk)2 :The same estimate holds for e=(k)m and thereforemaxfje=(k)l j ; je=(k)m jg � q(eak)2 + (ebk)2 : (71)Since (eak)2 + (ebk)2 � 12 � e"2k ; (72)the relations (69), (71),and (72) implyqe=(k) = q(e=(k)lm )2 + 4 e=(k)l e=(k)m � s(2:95 �)2 � 4 � e"2k2� s(2:95 �)2 � 2 � 49N2 �2 � 2:933 � :The assertion (67) now follows from the relations (70), (69), (71) and theabove relation. Q.E.D.The following Lemma gives the relation between e"k and e"k+1. It is usedlater in the proof of of Lemma 15.Lemma 12 Let the assumption (A1) hold. If for some k � 1 the relation(66) holds, then e"2k+1 � 1 + 0:494 � e"k�1� 0:077 � e"k� [e"2k � 2 (ea2k + eb2k)] ; (73)27



Proof: Suppose that the relation (66) holds for some k � 1. The relation(62), together with the de�nition of e"k , impliese"2k+1 = S2(Dk+1A(k+1)Dk+1) + S2(Dk+1B(k+1)Dk+1) : (74)If mk+1 = minfd(k+1)1 ; : : : ; d(k+1)n g ;then the relation (74) impliese"2k+1 � S2( 1(mk+1)2A(k+1)) + S2( 1(mk+1)2B(k+1)) = 1(mk+1)4 � "2k+1 : (75)Let us de�ne vectorseal = (ea(k)l;1 ; ea(k)l;2 ; : : : ; ea(k)l;l�1; ea(k)l;l+1; : : : ; ea(k)l;m�1; ea(k)l;m+1; : : : ; ea(k)l;n ) ;eam = (ea(k)m;1; ea(k)m;2; : : : ; ea(k)m;l�1; ea(k)m;l+1; : : : ; ea(k)m;m�1; ea(k)m;m+1; : : : ; ea(k)m;n) ;eaTl = (ea(k)1;l ; ea(k)2;l ; : : : ; ea(k)l�1;l; ea(k)l+1;l; : : : ; ea(k)m�1;l; ea(k)m+1;l; : : : ; ea(k)n;l ) ;eaTm = (ea(k)1;m; ea(k)2;m; : : : ; ea(k)l�1;m; ea(k)l+1;m; : : : ; ea(k)m�1;m; ea(k)m+1;m; : : : ; ea(k)n;m) ;where generally aT denotes the transposed vector a. Let al; am; al and ambe row and column vectors de�ned in the same way, but from elements ofthe matrix A(k+1). Relation (61) implies that" alam # = beFTk " ealeam # ; [al; am] = [eal; eam] beF k :Therefore," alam #2 � k beFTk k22 " ealeam #2 ; k [al; am] k2 � k beF k k22 k [eal; eam] k2 :The o�{diagonal elements of the matrix eA(k) which are changed in the trans-formation (61), are exactly the elements of vectors eal; eam; eal and eam with theexception of ea(k)lm and ea(k)ml which are annihilated. Since k beFTk k2= k beF k k2,we conclude thatS2(A(k+1)) � S2( eA(k))+(k beF k k22 �1)(k eal k2 + k eam k2 + k eal k2 + k eam k2)�2ea2k :28



Since k beF k k2� 1 (see further in the proof), we conclude thatS2(A(k+1)) � k beF k k22 (S2( eA(k))� 2ea2k) :By applying the similar analysis to matrix eB(k), we obtainS2(B(k+1)) � k beF k k22 (S2( eB(k))� 2eb2k) :Adding two previous inequalities and using the de�nitions of "k+1 and e"k,gives "2k+1 � k beF k k22 [e"2k � 2(ea2k + eb2k)] :Inserting this inequality into relation (75), we obtaine"2k+1 � k beF k k22(mk+1)4 � [e"2k � 2(ea2k + eb2k)] : (76)To complete the proof we must �nd the upper bound for k beF k k22 and thelower bound for mk+1.The relation (56) implies thatmk+1 = minf1; d(k+1)l ; d(k+1)m g : (77)Relation (61) implies thata(k+1)ll = ea(k)ll � 2 e�kea(k)lm + e�2k ea(k)mm ; b(k+1)ll = eb(k)ll � 2 e�keb(k)lm + e�2k eb(k)mm ;a(k+1)mm = e�2k ea(k)ll + 2e�kea(k)lm + ea(k)mm ; b(k+1)mm = e�2k eb(k)ll + 2e�keb(k)lm + eb(k)mm :Therefore(d(k+1)l )4 = (a(k+1)ll )2 + (b(k+1)ll )2 = 1 + 4�2k [(ea(k)lm )2 + (eb(k)lm )2] ++ e�4k � 4 e�k(ea(k)ll ea(k)lm + eb(k)ll eb(k)lm )� 4 e�3k(ea(k)mmea(k)lm + eb(k)mmeb(k)lm ) ++ 2 e�2k(ea(k)ll ea(k)mm + eb(k)ll eb(k)mm)� 1� 4 j e�k jj ea(k)ll ea(k)lm + eb(k)ll eb(k)lm j �4 j e�k j3 j ea(k)mmea(k)lm + eb(k)mmeb(k)lm j �� 2 e�2k j ea(k)ll ea(k)mm + eb(k)ll eb(k)mm j : (78)29



Using the relation (47) and the Cauchy{Schwarz inequality in the relation(78), we obtain(d(k+1)l )4 � 1 � 4 j e�k j (1+ j e�k j2)q(ea(k)lm )2 + (eb(k)lm )2 � 2 e�2k : (79)Using similar argument we obtain(d(k+1)m )4 � 1� 4 j e�k j (1+ j e�k j2)q(ea(k)lm )2 + (eb(k)lm )2 � 2e�2k : (80)Relations (77), (79), (80), (72) and Lemma 11 now implym4k+1 � 1�4 � 0:34p2 � e"k� �24 1 +  0:34p2 � e"k� !235 � e"kp2 �2 � 0:34p2 � e"k� !2 : (81)Since � is chordal metric, from the relation (11) we see that � � 1=3. Therelations (66) and (63) therefore implye"k < 29N < 227 : (82)Inserting the relation (82) and the assumption (66) into the relation (81) weobtainm4k+1 > 1� 0:34p2 � e"k� 24 4 � 0@1 +  0:34p2 � 23N !21A � 227p2 + 0:34 � p2 � 23N 35 :Finally, taking into account that N � 3 we obtainm4k+1 � 1 � 0:077 � e"k� (83)We shall now estimate k beF k k22. Sincek beF k k22�k beF k k1 � k beF k k1 ;where kAk1 = maxj Pi jaijj, kAk1 = maxiPj jaijj for A = (aij), we obtaink beF k k22� (1 + maxfje�kj; j e�kjg)2 :30



Lemma 11 and the relation (66) now implyk beF k k22 �  1 + 0:34p2 e"k� !2 � 1 + 0:34p2 e"k�  2 + 0:34p2 23N !� 1 + 0:494 e"k� : (84)The relation (73) now follows from the relations (76), (83) and (84).Q.E.D.�We shall now prove that if the assumptions (A1) and (A2) hold, thenLemma 11 and Lemma 12 hold during N consecutive steps.Lemma 13 Let the asymptotic assumptions (A1) and (A2) hold. Then foreach k 2 f1; : : : ; Ng holdse"k � 11 � 0:3 � (k � 1)e"1� � e"1 ; e"k� < 23N :Proof: The proof is by induction. For k = 1 lemma is trivially ful�lled.Suppose that lemma holds for some k 2 f1; : : : ; N � 1g. From the secondinequality in the induction assumption we conclude that, for the chosen k,Lemma 11 and Lemma 12 hold. From Lemma 12 it follows thate"2k+1 � 1 + 0:494 � e"k�1 � 0:077 � e"k� � e"2k � 1(1� 0:494e"k� )(1 � 0:077e"k� ) e"2k� 1(1� 0:3e"k� )2 e"2k : (85)Hence e"k+1 � 11 � 0:3 � e"k� � e"k :Inserting the induction assumption in this inequality we obtaine"k+1 � 11 � 0:3 11�0:3(k�1)e"1� e"1� � 11 � 0:3(k � 1)e"1� � e"1� 11 � 0:3(k � 1)e"1� � 0:3e"1� � e"1 = 11 � 0:3 � k � e"1� � e"1 ;31



and the �rst assertion of the lemma is proved. From this assertion for k +1,because of the asymptotic assumption (A2), we now havee"k+1� � 11 � 0:3 � k � e"1� � e"1� < 11� 0:3 (N � 1) 12N � 12N = 12� 0:3 � 1N < 23Nwhich completes the proof. Q.E.D.Lemma 14 If the asymptotic assumptions (A1) and (A2) hold, then the as-sertions (67) and (73) of Lemma 11 and Lemma 12 hold for every k 2f1; : : : ; Ng.Proof: The assertion follows imidiately from second assertion of Lemma13. Q.E.D.The next lemma explains behaviour of S( eA(k)), S( eB(k)) and e"k, and ofthe transformation parameters e�k and e�k during N consecutive steps. Letus de�ne the quantity cN = 1 + 0:494 � 23N1� 0:077 � 23N : (86)Lemma 15 Let the asymptotic assumptions (A1) and (A2) hold. Then:(i) For k = 1; : : : ; N holds264 S2( eA(k+1))S2( eB(k+1))e"2k+1 375 � (cN)k 264 S2( eA(1))S2( eB(1))e"21 375 � 1:566264 S2( eA(1))S2( eB(1))e"21 375 :(ii) For any choice e!k 2 fe�k; e�kg; 1 � k � N , holdsNXk=1 e!2k � 0:426 � e"21�2 :32



Proof: (i) Because of Lemma 12 and Lemma 14, for k = 1; : : : ; N holdse"2k+1 � cN (e"2k � 2 (ea2k + eb2k))� cNfcN [ e"2k�1 � 2 (ea2k�1 + eb2k�1)]� 2 (ea2k + eb2k)g� : : : � (cN )k e"21 � 2 kXj=1(cN)k�j+1(ea2j + eb2j) : (87)From the relation (87) immediately followse"2k+1 � (cN )k e"21 � (cN)N e"21 ; k = 1; : : : ; N : (88)Using Lemma 10 we obtain(cN)N < (1 + 43 � 0:494 � 23N �N)(1 + 127 � 0:077 � 23N �N) < 1:566 : (89)Inserting this inequality into relation (88), we obtaine"2k+1 � 1:566 � e"21 ; k = 1; : : : ; N :From the proof of Lemma 12 we se that the above estimates hold for thequantities S2( eA(k+1)) and S2( eB(k+1)), as well. Therefore (i) is proved.(ii) Since cN > 1 , from the relation (87) for k = N we havee"2N+1 � (cN)N e"21 � 2 NXk=1(ea2k + eb2k) :Since e"2N+1 � 0, this inequality impliesNXk=1(ea2k + eb2k) � 12 � (cN )N e"21 � 0:783 � e"21 :The above inequality together with Lemma 11 and Lemma 14 implyNXk=1 e!2k � NXk=1maxfe�2k; e�2kg � NXk=1 0:342 � (ea2k + eb2k) � 1�2� 0:1156 � 0:783 � e"21�2 � 0:091 � e"21�2and the lemma is proved. Q.E.D.33



4.2 The proofHere we prove that the Falk{Langemeyer method is quadratically convergentif the assumptions (A1) and (A2) are ful�lled and the pivot strategy is cyclic.Then we prove that the quadratic convergence implies the convergence of thesequence of pairs (42) towards the pair of diagonal matrices. At the end weprove that the measures e"k and "k are equivalent in the sense that ultimatelythe quadratic reduction of e"kN+1 implies the quadratic reduction of "kN+1and vice versa.We can now prove our paper's central theorem.Theorem 16 Let the asymptotic assumptions (A1) and (A2) hold and letthe sequence ((A(k); B(k)); k � 1) be generated with the Falk{Langemeyermethod from the pair (A;B). Then for any cyclic strategy holdse"N+1 � pN � e"21� :Proof: Let us �x some k 2 f1; : : : ; Ng. Then the pivot pair (l;m) is also�xed. We want to know what happens with the element on this positiontill the end of cycle. Therefore, we will observe the elements ea(r)lm; r = k +1; : : : ; N . We know that ea(k+1)lm = 0 and that the elements ea(r)lm actuallychange at most 2(n � 2) times. Let r1; : : : ; rs; s � 2n � 4, denote thosevalues of r for which ea(r)lm changes in the r{th step. Let us introduce thenotation: zi = a(ri+1)lm ; ezi = ea(ri+1)lm ;d(i)j = 4r(a(ri+1)jj )2 + b(ri+1)jj )2 ; j 2 fl;mg ;m(i)lm = minfd(i)l ; d(i)m g ; dN = s1 � 0:077 � 23N : (90)Performing the r1{th step according to Algorithm 4, givesz1 = (0 � 1 � ea(r1)e!r1) ;34



where e!r1 2 fe�r1; e�r1g and ea(r1) is some o�{diagonal element of the matrixeA(r1). Since ezi = zid(i)l d(i)m ; i = 1; : : : ; s ; (91)from the relations (90), (83) and Lemma 12 follows thatj ez1 j � 1(m(i)lm)2 j ea(r1) jj e!r1 j � 1dN j ea(r1) jj e!r1 j : (92)Further, in the r2{th step, we havez2 = (1 � ez1 � ea(r2)e!r2) ; (93)where e!r2 2 fe�r2; e�r2g, and ea(r2) is some o�{diagonal element of the matrixeA(r2). The relations (93), (92) and (91) implyj ez2 j � 1dN � ( 1dN j ea(r1) jj e!r1 j + j ea(r2) jj e!r2 j) :By induction we obtainj ezj j � jXi=1 1(dN)j�i+1 j ea(ri) jj e!ri j ; j = 1; : : : ; s : (94)For k = 1; : : : ; N + 1 following notation is introduced:eA(k) = fD(k)A + eE(k) ; fD(k)A = diag (ea(k)ii ) : (95)Matrix eE(N+1) obviously consists of elements which have undergone themaximal number of changes. If s(i; j) denotes the number of changes of theelement on position (i; j), thens(i; j) � 2n� 4 ; i; j 2 f1; : : : ; ng; i 6= j :The quantity s(i; j) depends upon (i; j) and the pivot strategy. Elementsof the matrix eE(N+1) can therefore be denoted as ezs(i;j).Having in mind relation (94), we can now writej eE(N+1) j � 1(dN )2n�4 (j eP (2) jj e!2 j + j eP (3) jj e!3 j + : : :+ j eP (N) jj e!N j) :(96)35



Here the notation j C j= (j cij j) for C = (cij) is used. Matrix eP (k) consistsprecisely of those elements of l(k){th and m(k){th row and column of thematrix eE(k) which already were pivot elements3, i. e. of elements whichcontribute to the �nal estimate. All other elements of the matrix eP (k) arezeros.Assertion (i) of Lemma 15 gives usk j eP (k) j k=k eP (k) k� S( eA(k)) � p1:566 � S( eA(1)) ; k = 2; : : : ; N :(97)From the relations (96) and (97), Lemma 15 and the Cauchy{Schwarz in-equality we obtainS( eA(N+1)) =k eE(N+1) k = k j eE(N+1) j k� 1(dN )2n�4p1:566 � S( eA(1)) NXk=2 j e!k j� 1:252(dN )2n�4 � S( eA(1)) � [(N � 1) NXk=2 e!2k] 12 � 1:252(dN )2n�4 � S( eA(1)) � [N NXk=1 e!2k] 12 :(98)Since N � 3, from Lemma 10 follows that1(dN )2n�4 = 1(1 � 0:077 23N )n�2 < 1 + 127 � 0:077 � 23N (n� 2)� 1 + 127 � 0:077 � 43 � 1n � 1:059 :Finally, inserting this inequality and assertion (ii) of Lemma 15 into relation(98), we obtain S( eA(N+1)) � 0:4 � S( eA(1))pN � e"1� :Applying a similar analysis to matrices eB(k) yieldsS( eB(N+1)) � 0:4 � S( eB(1))pN � e"1� :From the last two inequalities and the de�nitions of e"N+1 and e"1 followse"N+1 � 0:4 � pN � e"21� ;3Here (l(k);m(k)) denotes pivot pair in the k{th step so this k should not be confusedwith the k that was �xed at the beginning of the proof.36



and the theorem is proved. Q.E.D.Note that in the proof of Theorem 16 it is not necessary to assume thatthe a�liation is preserved, i.e. that the pairs [a(k)ii ; b(k)ii ] approximate theeigenvalues �i for i = 1; : : : ; n, k = 1; : : : ; N . However, for large enough kthis fact follows from Theorem 17.� From Theorem 16 and the assumptions (A1) and (A2) follows thate"N+1 < pN � 12N � e"1 = 12pN � e"1 < 0:3 � e"1 : (99)Applying inductively the relation (99) we obtaine"rN+1 � (0:3)r � e"1 ; r � 1 : (100)Therefore, limr!1 e"rN+1 = 0 : (101)From the relation (101) and the assertion (i) of Lemma 15 we conclude thatlimk!1 e"k = 0 : (102)The relation (102) and Theorem 16 imply the quadratic conver-gence of the Falk{Langemeyer method according to De�nition 7if the eigenvalues are simple and the pivot strategy is cyclic.Next we prove that under assumptions of Theorem 16 the sequences ofmatrices (A(k); k � 1) and (B(k); k � 1), generated by the Falk{Langemeyermethod, converge towards diagonal matrices.Theorem 17 Let the assumptions of Theorem 16 hold. Thenlimk!1A(k) = DA ; limk!1B(k) = DB ;where DA and DB are diagonal matrices.Proof. The relation (44) implies thatA(k) = (Dk)�1 eA(k)(Dk)�1 ; B(k) = (Dk)�1 eB(k)(Dk)�1 ; (103)37



where diagonal matrices Dk are de�ned with the relations (45) and (46). Itis therefore su�cient to proove that the sequences ( eA(k); k � 1) , ( eB(k); k �1) and ((Dk)�1; k � 1) converge towards diagonal matrices. The relation(102) implies that the o�-diagonal elements of matrices eA(k) and eB(k) tendto zero as k !1. Therefore, it remains to proove that for i = 1; : : : ; n thesequences (ea(k)ii ; k � 1) and (eb(k)ii ; k � 1) converge. The relation (18) andthe assumption (A1) imply that for each k � 1 there exists an ordering ofthe eigenvalues �i = [si; ci]; i = 1; : : : ; n, such thatj ciea(k)ii � sieb(k)ii j � e"2k2� ; i = 1; : : : ; n : (104)Let us consider unit vectors [si; ci]T and [ea(k)ii ; eb(k)ii ]T in R2. The left-hand sideof the inequality (104) is j sin'(k)i j where '(k)i is the angle between these twovectors. The relations (102) and (104) implylimk!1 sin'(k)i = 0 ; i =; 1 : : : ; n :Hence, for each i the sequence of vectors ([ea(k)ii ; eb(k)ii ]T ; k � 1) has only �nitenumber of accumulation points in R2. Therefore, it su�ces to show that forlarge enough k the changes in ea(k)ii and eb(k)ii are arbitrary small. From therelation (102) and Lemma 11 we see that e�k ! 0 and e�k ! 0 as k ! 1.Therefore, the changes in ea(k)ii and eb(k)ii tend to zero as k !1. This proovesthat for each i 2 f1; : : : ; ng limits limk!1 ea(k)ii and limk!1 eb(k)ii exist.We shall now prove that ((Dk)�1; k � 1) is a convergent sequence. Look-ing at the de�nition of Dk (relation (45)) we see that it su�ces to prove thatfor each i 2 f1; : : : ; ng the sequence (d(k)i ; k � 1); converges to a nonzeronumber. From Proposition 9 we haved(k)i = d(1)i d(2)i � � � d(k)i ; i = 1; : : : ; n ; k � 2 :From the de�niteness of pairs (A(1); B(1)) and (A(k); B(k)) we conclude thatd(1)i and d(k)i are di�erent from zero for all i and k. Hence it su�ces to provethat the in�nite product Q1k=2 d(k)i converges4. This product converges if andonly if the product Q1k=2 (d(k)i )4 converges. Therefore, it su�ces to show that4Since all factors in the product are nonzero the limit, if exists, is also nonzero.38



the later product is absolutely convergent. From the relation (78) we see thatfor i 2 f1; : : : ; ng and k � 2 we can write (d(k)i )4 = 1 + u(k)i , so it su�ces toshow that the seriesP1k=2 u(k)i are absolutely convergent for all i 2 f1; : : : ; ng.The relation (83) of of Lemma 12 implies that(d(k+1)i )4 � 1 � 0:077 � e"k� ; 1 = 1; : : : ; n ; k � 1 :Looking for upper bound instead of lower bound in the relation (78) andmaking similar estimates as in the relation (83), we obtain(d(k+1)i )4 � 1 + 0:077 � e"k� ; 1 = 1; : : : ; n ; k � 1 :Therefore,j u(k+1)i j = j (d(k+1)i )4 � 1 j � 0:077 � e"k� ; 1 = 1; : : : ; n ; k � 1 :Hence it su�ces to show that the seriesP1k=1 e"k converges. From the assertion(i) of Lemma 15 we havee"rN+i � 1:3 � e"rN+1 ; 1 � i � N ; r � 1 ;hence it su�ces to prove the convergence of the sequence P1r=1 e"rN+1. Fromthe relation (100) we see that the later series is majorized by the conver-gent series P1r=1(0:3)r � e"1. This proves the absolute convergence of the seriesP1k=2 u(k)i for i 2 f1; : : : ; ng and therefore the convergence of the sequence((Dk)�1; k � 1). Q.E.D.Note that the global convergence (i.e. the convergence for all de�nitepairs (A;B) ) of the Falk{Langemeyer method in the case of cyclic pivotstrategies is not yet proved.We end this section by showing that our asymptotic assumptions alsoimply ultimate quadratic reduction of "rN+1. Indeed, for r � 1 the relation(103) implies"rN+1 � (d(rN+1)max )2 � e"rN+1 ; e"rN+1 � 1(d(rN+1)min )2 "rN+1 ;39



where d(rN+1)max = maxfd(rN+1)1 ; : : : ; d(rN+1)n g ;d(rN+1)min = minfd(rN+1)1 ; : : : ; d(rN+1)n g :Theorem 16 implies"(r+1)N+1 � (d((r+1)N+1)max )2e"(r+1)N+1 � (d((r+1)N+1)max )2pN� e"2rN+1� "d((r+1)N+1)max(d(rN+1)min )2 #2pN� "2rN+1 � c � pN� "2rN+1 ; r � 1 ;where c is an upper bound of the convergent sequence ([d((r+1)N+1)max =(d(rN+1)min )2]2,r � 1). In a similar way one can prove that quadratic reduction of "rN+1ultimately implies quadratic reduction of e"rN+1.The techniques described in this section can be used for studying asymp-totic convergence properties of various di�erent Jacobi{type algorithms.5 Concluding remarksIn Algorithm 4 only (l;m)�restrictions of the pair (A(k); B(k)) are used ineach step. Therefore, parallel strategies are in fact cyclic (see [10]) andTheorem 16 and Theorem 17 hold for them as well.In [13] it is proved that if the assumptions of Theorem 16 hold and thepivot strategy is serial, then e"N+1 � e"21� :Modi�ed method. If the problem (1) has multiple eigenvalues, the methodcan fail to be quadratically convergent. This failure occurs because whenpairs [a(k)ll ; b(k)ll ] and [a(k)mm; b(k)mm] (here (l;m) is the pivot pair in the k{th step)approximate the same eigenvalue, then parameters e�k and e�k can be of orderO(1) and, therefore, some previously annihilated elements can become of or-der O(e"k) again. This situation is described in detail in [7] and [13]. Simple40



omitting of these critical steps does not yield to the quadratic convergence,even though the measure e�k = � ( eA(k); eB(k)); k � 1 ; from Corollary 2 tendsto zero. The relation (16) does not imply that the o�-diagonal elements ofdiagonal blocks tend to zero together with e�k, but merely that the diagonalblocks become more and more proportional. Therefore, e"k does not have totend to zero at all and the convergence of e�k can considerably slow down. Ifwe modify the method so that in such cases we use triangular transformationmatrices similar to the matrix from step (5a) of Algorithm 4, the quadraticconvergence persists.Modi�cation of the Falk{Langemeyer method and the proof of quadraticconvergence of the modi�ed method will be topics of our subsequent paper.Numerical results. Our test program is written in FORTRAN in dou-ble precision. Test pairs were generated in the manner that A = GTDAGand B = GTDBG, where diagonal matrices DA and DB are being read andG is random. For elements of matrix G only numbers which are sums of thepowers of 2 were used, so the test pairs were stored as accurately as possible.The iterative process is terminated when, after some cycle r, inequality"rN+1 < eps �q kAk2 + kBk2 � 2Nis ful�lled, where eps is machine precision. After the end of the process, themaximal error of the residualmax1�i�n 8<: k b0iAf 0i � a0iBf 0i kmaxq(a0i)2 + (b0i)2qk Af 0i k2 + k Bf 0i k29=; ;is calculated. Here [a0i; b0i] are the calculated eigenvalues of the pair (A;B)and f 0i are the corresponding eigenvectors. Also the maximal absolute valuesof the o�-diagonal elements of matrices (F 0)TAF 0 and (F 0)TBF 0 are calcu-lated. Those three quantities were usually of order. In�nite eigenvalues wererepresented with numbers of order of magnitude O(1=machine precision).We observed the convergence of both measures "k and e"k. Observationscon�rmed all theoretical results. For starting pairs that were not almost diag-onal, convergence was in the beginning linear and several cycles were neededbefore quadratic convergence started. The asymptotic assumption (A2) ap-pears to be very adequate because in almost all cases quadratic convergence41



started after it was ful�lled. Algorithm behaved very regularly in the sensethat the condition =(k) � 0; k � 1; (see assertion (i) of Proposition 3) wasalways ful�lled for de�nite starting pairs. This condition was ful�lled evenin some cases when the starting pair was semide�nite, or slightly inde�nite.Average number of cycles for smaller matrices (n � 15) was around tenand for larger matrices (n � 100) around �fteen. Last cycles were usuallyempty, i.e. not all N steps were executed. For orientation, the approximateduration of the process is �ve minutes for n = 40 and one and a half hour forn = 100 on IBM PC/AT with a coprocessor, and about thirty times shorteron IBM 4371.In the presence of very close eigenvalues several additional cycles wereusually needed because the quadratic convergence was delayed. The exis-tance of additional cycles does not disagree with theoretical results since thequantity � from the asymptotic assumption (A2) is in this case very small.We observed that the results are generally better if increasing or decreas-ing order of numbers de�ned with diagonal pairs [a(k)ii ; b(k)ii ] is preserved byinterchanging pivot rows and columns if necessary. However, interchangingmust be stopped after the asymptotic assumption (A2) is ful�lled. Other-wise some o�{diagonal element which was not yet annihilated can \run away"from annihilation and therefore terminate quadratic convergence.� Example. We give an example of the pair of order 10 generated inthe previously described manner. Elements of the matrices DA and DB are�2; 1; 10; 0; �0:001; 10; 1; 5; 5; 4and �1; 0:1; �1; �100; �100; 0; �1; 0:1; 1; 1;respectively, so the exact eigenvalues of the problem are2; 10; �10; 0; 0:00001; 1; �1; 50; 5; 4 :Elements of the matrixG are uniformly distributed integers from the interval[�10; 10]. Note that both matrices A and B are inde�nite, while the pair(A;B) itself is de�nite (for example A � 3B > 0). In order to increase thestability of the computation, the process started from the normalized pair( eA; eB).Only upper triangles of the matrices A and B are displayed. Each rowbegins with the diagonal element. Asymptotic convergence is described as42



follows: in column CYC is the number of cycle; in column ROT is the numberof rotations performed in the cycle; columns SUMA, SUMB, SUM and SUMTdisplay values of S(A(k)); S(B(k)); "k and e"k after the cycle, respectively.ORDER OF MATRICES N = 10COLUMN CYCLIC PIVOT STRATEGYSTOPPING CRITERION: SUM(K) < .49D-13MATRIX AROW1 .21350D+04 .41900D+03 .11600D+03 -.11430D+04 -.10490D+04.44002D+03 -.13750D+04 .20027D+02 .51903D+03 -.60802D+032 .14310D+04 -.32700D+03 -.34200D+03 -.26100D+03 -.10390D+04-.29600D+03 -.43200D+03 .50000D+03 -.13100D+033 .18320D+04 .28000D+03 .93300D+03 .64100D+03 -.91000D+03-.38500D+03 -.74500D+03 -.58200D+034 .11860D+04 .85799D+03 .34099D+03 .56100D+03 -.40001D+03-.49101D+03 .57401D+035 .99295D+03 .68695D+03 .22402D+03 -.53006D+03 -.69606D+03-.90965D+026 .13360D+04 -.57298D+03 -.43106D+03 -.97606D+03 .43035D+027 .13470D+04 .29703D+03 .10027D+02 .67399D+038 .87292D+03 .32992D+03 -.49550D+019 .88792D+03 .40105D+0310 .82798D+03
43



MATRIX BROW1 -.72420D+04 -.81550D+04 .40130D+04 -.20630D+04 -.39800D+03.31460D+04 -.73170D+04 .83650D+04 .27080D+04 -.78930D+042 -.99425D+04 .50853D+04 -.28814D+04 -.28007D+04 .93320D+03-.79655D+04 .68774D+04 -.11530D+03 -.79841D+043 -.26020D+04 .14878D+04 .14297D+04 -.63790D+03 .39712D+04-.34409D+04 -.16500D+02 .39654D+044 -.10848D+04 -.15558D+04 -.55260D+03 -.20896D+04 .11306D+04-.83980D+03 -.18888D+045 -.59091D+04 -.46836D+04 -.23130D+03 -.41948D+04 -.61837D+04.10755D+046 -.50607D+04 .28013D+04 -.69463D+04 -.62826D+04 .43479D+047 -.72920D+04 .82531D+04 .26803D+04 -.78484D+048 -.12938D+05 -.81476D+04 .10050D+059 -.82005D+04 .46091D+0410 -.88056D+04A S Y M P T O T I C C O N V E R G E N C ECYC ROT SUMA SUMB SUM SUMT1 45 .60D+00 .35D+01 .35D+01 .18D+012 45 .72D+00 .32D+00 .79D+00 .12D+013 45 .57D+00 .28D+00 .64D+00 .72D+004 45 .31D+00 .21D+00 .38D+00 .24D+005 45 .18D-01 .23D-01 .30D-01 .25D-016 45 .39D-02 .13D-01 .13D-01 .93D-027 45 .56D-04 .15D-03 .16D-03 .92D-048 44 .18D-09 .61D-09 .63D-09 .19D-099 29 .26D-20 .19D-20 .32D-20 .93D-20TOTAL NO. OF ROTATIONS 388 TIME(sec) 5.68
44
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