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Floating{point perturbations of Hermitian matricesKre�simir Veseli�c�Ivan Slapni�car�December 29, 1995AbstractWe consider the perturbation properties of the eigensolution of Her-mitian matrices. For the matrix entries and the eigenvalues we use therealistic "oating-point" error measure j�a=aj. Recently, Demmel andVeseli�c considered the same problem for a positive de�nite matrix Hshowing that the oating-point perturbation theory holds with con-stants depending on the condition number of the matrix A = DHD,where Aii = 1 and D is a diagonal scaling. We study the generalHermitian case along the same lines thus obtaining new classes of well-behaved matrices and matrix pairs. Our theory is applicable to thealready known class of scaled diagonally dominant matrices as well asto matrices given by factors - like those in symmetric inde�nite de-compositions. We also obtain norm{estimates for the perturbationsof the eigenprojections, and show that some of our techniques extendto non{hermitian matrices. However, unlike in the positive de�nitecase, we are still unable to simply describe the set of all well behavedHermitian matrices.Key words. Hermitian matrix, perturbation theory.AMS(MOS) subject classi�cation. 65F15, 65F30�1 Introduction and preliminariesThe standard perturbation result for the eigenvalue problem of a Hermitianmatrix H of order n, Hx = �x, reads [5]j��ij � k�Hk2 ; (1.1)where �1 � �2 � : : : � �n ;�01 = �1 + ��1 � : : :� �0n = �n + ��n ;�Fernuniversit�at Hagen, Lehrgebiet Math. Physik, Postfach 940, 5800 Hagen 1,Germany. e-mail MA704@DHAFEU11.BITNET, MA703@DHAFEU11.BITNET2



are the eigenvalues of H and H+�H , respectively. The perturbation matrix�H is again Hermitian, and k � k2 is the spectral norm. The backward erroranalysis of various eigenvalue algorithms initiated by Wilkinson [11] followsthe same pattern, i.e. the round{o� error estimates are given in terms ofnorms. A more realistic perturbation theory starts from the fact that boththe input entries of the matrix H and the output eigenvalues are given inthe oating point form. Thus, a desirable estimate would readmaxi ������i�i ���� � C maxi;j ������HijHij ����� ; (1.2)where we de�ne 0=0 = 0. Colloquially, "oating-point" perturbations arethose with j�Hijj � "jHij j, " small. Similarly, we call a matrix "well{behaved" if (1.2) holds with a "reasonable" C, i.e. if the small relativechanges in the matrix elements cause small relative changes in the eigen-values. Now (1.1) implies (1.2) with C = n � �(H) � n � kHk2kH�1k2, andthis bound is nearly attainable. This is illustrated by the positive de�nitematrix H = " 1 11 1 + " # ; 0 < "� 1 :The small eigenvalue of H is very sensitive to small relative changes in thematrix elements.Our results generalize the results obtained in [3, 1, 4]. Demmel andVeseli�c [4] showed that for a positive de�nite matrix H (1.2) holds withC = n�min(A) ;where A = (diag (H))�1=2H(diag (H))�1=2 (1.3)is the standard scaled matrix. The condition of A can be much smaller andis never much larger than that of H . Indeed, since Aii = 1 it follows1�min(A) � �(A) � n�min(A) ;whereas van der Sluis [10] proved that�(A) � n � �(H) : (1.4)Similar results hold for the singular value problem [4].The aim of this paper is to extend the above result to general non{singular Hermitian matrices. The nature of the estimate (1.2) shows thatthe non-singularity is a natural condition to require. We show (Th. 2.13)that (1.2) holds for a non{singular Hermitian matrix H withC = kjAjk2k bA�1k2 ;3



where H = DAD ; bA = D�1HD�1 :Here D is any scaling matrix, i.e. a positive de�nite diagonal matrix, andj � j, � denote the two kinds of absolute value functions, "pointwise" and"spectral": jAjij = jAij j ; H = pH2 ;respectively. Note that kAk2 � kjAjk2 � pnkAk2 holds for any matrixA. The scaling D is typically, but not necessarily of the standard formD = (diag H )1=2. This result is stated and proved in a more general setting,namely that of a matrix pair H;K with K positive de�nite, thus properlygeneralizing corresponding results of [1, 4]. Our eigenvector result, statedin Subsect. 2.1, concerns the case of a single non{singular Hermitian matrixand it essentially generalizes the norm{estimates from [1, 4]. An unpleasantpoint of our theory is that the matrix H , which has to be scaled, is noteasy to compute. Moreover, the set of well-behaved inde�nite Hermitianmatrices is not scaling-invariant.Barlow and Demmel [1] showed that for matrices of the typeH = D(E +N)D ; (1.5)where D;E are diagonal, E2 = I , diag(N) = 0 and kNk2 < 1, (1.2) holdswith C = n1� kNk2 : (1.6)The matrices (1.5) are called scaled diagonally dominant (s.d.d.). We showthat for a s.d.d. matrixkjAjk2k bA�1k2 � n1 + kjN jk21� kNk2 :Although this does not reproduce the constant C in (1.6) (there is an extrafactor 1 + kjN jk2 � 1+pn), we see that s.d.d. matrices are included in ourtheory.In the positive de�nite case the only well{behaved matrices are thosewhich can be well scaled, i.e. for which the scaled matrix A from (1.3) is"reasonably" conditioned. More precisely, if (1.2) holds for su�ciently small�H , then �min(A) � 2=(1+C) for A from (1.3). This, rather sharp result isproved in Lemma 2.20 and Cor. 2.23 below. It improves a related result of[4] and also yields a slight improvement of the van der Sluis estimate (1.4).In contrast to this, the choice of well{behaved inde�nite matrices is, ina sense, richer. Writing H = GJG�with G�G positive de�nite (G need not be square) and J non-singular, theeigenvalue problem Hx = �x converts into the problembHy = �J�1y ; bH = G�G : (1.7)4



In Sect. 3 we prove the estimate of the type (1.2) for the problem (1.7) underthe perturbations of the factor j�Gij j � "jGij j. The latter is a generalizationof the singular value problem known as hyperbolic singular value problem[8]. The estimates again depend on the condition number of the matrixobtained by scaling G�G. As an amazing application we obtain oating-point perturbation estimates for matrices of the typeH = " H11 H12H�12 0 # ; (1.8)where H12H�12 is positive de�nite. Note that this H may be singular. Ascould be expected, the only well-behaved singular matrices are those wherethe rank defect can be read-o� from the zero pattern.Although our paper deals with Hermitian matrices, some of our tech-niques can be used to investigate the eigenvalues of general matrices. As anexample we prove a oating{point version of the known Bauer{Fike theorem.Another approach to the matrices of the type (1.8) is to convert theproblem Hx = �x into the quadratic eigenvalue problem(�2I � �H11 �H12H�12)x = 0for which a good minimax theory is available [6]. As a consequence, in Sect.4 we obtain a perturbation result which is di�erent from that of Sect. 3. Allthis shows that we are still not in a position to give a simple description ofthe set of all "well-behaved" Hermitian matrices.Similarly as in [1], [4] we note the remarkable fact that our eigenvalueestimates are independent of the condition number of the correspondingeigenvector matrices - in generalized Hermitian eigenvalue problems theyare not unitary and there is no upper bound for their condition. This phe-nomenon seems to be typical for the "oating-point" perturbation theory.Acknowledgement. We would like to thank E. Pietzsch, Hagen, and J.Barlow, University Park, PA, for helpful discussions. We also thank thereferee for many detailed and valuable comments, and, in particular, forcorrecting our proof of Lemma 2.43.�2 Well{conditioned scalingsIn this section we present perturbation results which are natural extensionsof those from [1] and [4]. We �rst give a general perturbation result for theeigenvalues of the pair H;K with K positive de�nite. (An eigenvalue of thepair H;K is a scalar � for which det (H � �K) = 0.) For this purpose weintroduce a new absolute value of H relative to K denoted by H K . We thenapply our general perturbation result to the oating{point perturbations ofthe matrices H and K. Theorems 2.13 and 2.16 give two simpli�cationsof the perturbation bounds and Th. 2.17 gives bounds for another, more5



general, type of perturbation where perturbing the zero elements is alsoallowed. Our theory applied to a single positive de�nite matrix slightlyimproves the corresponding results of [4]. It also improves the van derSluis estimate (1.4) in some cases. Then we apply our theory to a singlenon{singular inde�nite matrix. We prove that our theory includes scaleddiagonally dominant matrices [1]. We also characterize the class of matriceswith the best perturbation bounds. At the end we give some examples,and also consider some singular matrices. In Subsect. 2.1 we consider theperturbation of the eigenvectors of a single non{singular matrix H .Theorem 2.1 Let H, K be Hermitian and K positive de�nite. Set K =ZZ� and H K = Z Z�1HZ��Z� : (2.2)H K is independent of the freedom of choice in Z.1 Let �H, �K be Hermitianperturbations such that for all x 2 Cnjx��Hxj � �Hx�H Kx ; jx��Kxj � �Kx�Kx ; �H ; �K < 1(2.3)holds. Let �i and �0i be the increasingly ordered eigenvalues of the matrixpairs H;K and H 0 � H + �H;K 0 � K + �K, respectively. Then �0i = 0 ifand only if �i = 0, and for non{vanishing �i's we have1� �H1 + �K � �0i�i � 1 + �H1� �K : (2.4)Proof. Let K = ZZ� = FF �. Then Z = FU , where U is a unitarymatrix, andZ Z�1HZ��Z� = FU U�F�1HF��U U�F � = F F�1HF�� F � :Thus, H K is independent of the freedom of choice in Z. From (2.3) itfollows x�(H � �HH K)x � x�(H + �H)x � x�(H + �HH K)x ; (2.5)(1� �K)x�Kx � x�(K + �K)x � (1 + �K)x�Kx : (2.6)Now note that the pair H��HH K ; K has the same eigenvectors as the pairH;K with the (again increasingly ordered) eigenvalues �i � �H j�ij. Let b�ibe the increasingly ordered eigenvalues of the pair H 0; K. The monotonicityproperty of the eigenvalues together with (2.5) yields immediately1� �H � b�i�i � 1 + �H : (2.7)1For H positive de�nite we obviously have H K = H.6



It is also clear that H and H 0 have the same inertia.2 The transition formH 0; K to H 0; K 0 is similar. Note that both pairs have again the same inertia.If e.g. b�i � 0, then �0i � 0 and (2.6) impliesminSi maxx2Si x�H 0x(1� �K)x�Kx � minSi maxx2Si x�H 0xx�K 0x � minSi maxx2Si x�H 0x(1 + �K)x�Kx;where Si is any i�dimensional subspace of Cn. In other words,b�i1� �K � �0i � b�i1 + �K : (2.8)Similarly, if b�i � 0, then �0i � 0, and we obtainb�i1 + �K � �0i � b�i1� �K : (2.9)Now (2.8) and (2.9) combined with (2.7) give (2.4). Q.E.D.We now apply this result to the oating{point perturbations of matrixentries. Set eC(H;K) = supx6=0 jxjT jH jjxjx�H Kxand eC(H) = eC(H; I) :Obviously, eC(H;K) is de�ned and �nite if and only if H is non{singular.For every H;K with K positive de�nite, we haveeC(H;K) � 1 : (2.10)Indeed, if eC(H;K) were less than one, then the matrices H , K, �H = �Hand �K = 0 would satisfy the assumptions of Th. 2.1 and this would, inturn, imply that H + �H is non{singular | a contradiction.Theorem 2.11 Let H;K be Hermitian matrices with H non{singular andK positive de�nite. Let Hermitian perturbations �H and �K satisfyj�Hij j � "jHij j ; j�Kij j � "jKij j ; (2.12)such that �H = " eC(H;K) < 1 ; �K = " eC(K) < 1 :Then the assumption (2.3) of Th. 2.1 is ful�lled, hence its assertion holds.Proof. We havejx��Hxj � jxjT j�H jjxj � "jxjT jH jjxj � " eC(H;K)x�H Kx ;2In fact, H and H 0 have the same null{spaces.7



and similarly jx��Kxj � " eC(K)x�Kx : Q.E.D.Th. 2.1 is a signi�cant improvement over Lemma 1 and Th. 4 from [1]which require a more restrictive conditionjx��Hxj � �H jx�Hxjwhich has non{trivial applications only for positive de�nite H .The values eC(H;K) and eC(K) are not readily computable and we nowexhibit a chain of simpler upper bounds for them.Theorem 2.13 Let H;K be as in Th. 2.11, and let A, bA and B be de�nedby H = DAD ; H K = D bAD ; K = D1BD1 ; (2.14)where D and D1 are scaling matrices. TheneC(H;K) � kjAjk2k bA�1k2 � C(A; bA) ;eC(K) � kjBjk2kB�1k2 � C(B) ; (2.15)and �H = "C(A; bA) < 1, �K = "C(B) < 1 implies the assertion of Th. 2.1.Proof. We havejxjT jH jjxj = jxjTDjAjDjxj � kjAjk2x�D2x� C(A; bA)x�D bADx = C(A; bA)x�H Kx ;and similarly jxjT jKjjxj � C(B)x�D1BD1x = C(B)x�Kx : Q.E.D.The constant C(A; bA) cannot be uniformly improved. Indeed, take Has diagonal with H2 = I and let H 0 = H + �H be obtained by setting tozero any of the diagonal elements of H . Then the assertion of the abovetheorem, applied to the pair H;K = I with �K = 0, is obviously not trueand we have �H = 1, �K = 0.Of course, all this does not mean that Th. 2.13 covers all well behavedmatrices. Next sections will show the contrary.The constants C(A; bA), C(B) are further estimated as follows:Theorem 2.16 Let H;K be as in Th. 2.11, and let A, bA and B be de�nedby (2.14), where D, D1 are scalings. ThenC(A; bA) � Tr bAk bA�1k2 ; C(B) � Tr BkB�1k2 ;and �H = "Tr bAk bA�1k2 < 1, �K = "Tr BkB�1k2 < 1 implies the assertionof Th. 2.1. 8



Proof. Let Z�1HZ�� = U�U�be an eigenvalue decomposition of Z�1HZ�� with U unitary and � diagonal.Then Z�1HZ�� = U j�jU� and from (2.2) it followsH K = ZU j�jU�Z� = GG� ;where G = ZUpj�j. Furthermore,H = Z(Z�1HZ��)Z� = ZU�U�Z� = GJG� ;where J is diagonal with �1's on the diagonal. Setting F = D�1G for somepositive de�nite diagonal D and using the obvious estimatej(FJF �)ij j � q(FF �)ii(FF �)jj ;we obtain jAij j2 � bAii bAjj , and hence kjAjk2 � Tr bA. Similarly, kjBjk2 �Tr B, and the theorem now follows from the de�nitions of C(A; bA) andC(B). Q.E.D.For the standard scalings D = (diag H K)1=2, D1 = (diag K)1=2, Th.2.16 yields C(A; bA) � nk bA�1k2 ; C(B) � nkB�1k2 :In addition, the above upper bounds can accomodate another class of per-turbations where perturbing the zero elements is also allowed.Theorem 2.17 Let H;K be Hermitian matrices with H non{singular andK positive de�nite. Let Hermitian perturbations �H and �K satisfyj�Hijj � "DiiDjj ; j�Kij j � "D1;iiD1;jj ; (2.18)such that �H = "nk bA�1k2 < 1 ; �K = "nkB�1k2 < 1 :Then the assumption (2.3) of Th. 2.1 is ful�lled, hence its assertion holds.Proof. Let us de�ne the matrix E with Eij = 1. We havejx��Hxj � jxjT j�H jjxj � "jxjTDEDjxj � "kEk2x�D2x � "nk bA�1k2x�H Kx ;and similarly jx��Kxj � "nkB�1k2x�Kx : Q.E.D.� 9



Remark 2.1 Note that for the standard scaling the bounds of Theorems2.13 and 2.17 di�er by at most a factor n. Therefore, the relative errorbounds which use C(A; bA) and C(B) actually allow both kinds of perturba-tions, (2.12) and (2.18), which makes them inappropriate in some cases (seeRem. 2.2 below).We now apply our general theory to a single positive de�nite matrix H(K = I). Th. 2.16 reproduces the main oating-point perturbation result ofTh. 2.3 from [4], while Th. 2.11 is even sharper. The perturbations allowedby Th. 2.17 are of the formj�Hij j � "qHiiHjj : (2.19)The following lemma and its corollary tell us that the only well-behavedpositive de�nite matrices are those which are well-scaled. A similar resultwas proved in [4], but our constants are better.Lemma 2.20 Let H be positive de�nite, and let � > 0 be such that forevery Hermitian perturbation �H with j�Hij j � �jHij j the matrix H + �His positive de�nite. Then � < 1 and forA = D�1HD�1 ; D = (diag H)1=2 (2.21)we have kA�1k2 < � + 12� : (2.22)Proof. SetA� = (1 + �)A � 2�I ; H� = DA�D = H + �H :Then �H = �(H � 2D2), which implies j�Hij j = �jHij j. By the assumptionon H + �H we have � < 1 and A� is positive de�nite for every �. Hence�min(A�) = (1 + �)�min(A)� 2� > 0 ;and (2.22) follows. Q.E.D.Corollary 2.23 Let H be positive de�nite, and let M > 0 be such that forevery " < 1=M and every Hermitian perturbation �H with j�Hij j � "jHij jthe eigenvalues �i and �0i of H and H + �H, respectively, satisfy1� "M � �0i�i � 1 + "M : (2.24)Then the matrix A from (2.21) satis�eskA�1k2 < 1 +M2 : (2.25)10



Lemma 2.20 and Cor. 2.23 hold for the perturbations of the type (2.12),so they also hold for the more general perturbations of the type (2.19).In Th. 2.11 we can take M as eC(H) and obtain a lower boundeC(H) � 2kA�1k2 � 1 : (2.26)Taking any positive de�nite diagonal matrix D1 and setting H1 = D1A1D1and D = D�11 D, the estimates (2.26) and (2.15) yield�(A)n � kA�1k2 � 1 + kDjAjDk2kD�1A�1D�1k22 : (2.27)This is an estimate of the same type as the van der Sluis' estimate (1.4).These two estimates are generally incomparable. So, forA with non-negativeelements (A = jAj) we obtain�(A) � nkA�1k2 � n1 + �(DAD)2 ; (2.28)which is slightly sharper than (1.4).We now turn to the case of the single non-singular inde�nite matrixH . We �rst prove that the class of matrices H with well-behaved C(A; bA)includes the already known class of scaled diagonally dominant matrices.We haveTheorem 2.29 Let H = DAD ; A = E +N ;with E = E� = E�1, ED = DE, and kNk2 < 1. If bA is de�ned byH = D bAD, then C(A; bA) � n1 + kjN jk21� kNk2 : (2.30)Proof. Since D commutes with E, there exists a unitary matrix U whichsimultaneously diagonalizes D and E, i.e.U�DU = � ; U�EU = diag (�1) :Since � is only a permuted version of the matrix D, there exists a permu-tation matrix P such that � = PDPT . Setting V = UP , we haveV �DV = D ; V �EV = E1 ;where E1 is diagonal with �1's on the diagonal. Now perform the unitarytransformationH1 = V �HV = D(V �EV + V �NV )D = D(E1 + N1)D :Here we used the fact that D and V commute, and kN1k2 = kNk2.11



By Lemma 3 of [1] for any eigenpair �; y of H1 we have(1� kN1k2)kDyk22 � j�jkyk22 � (1 + kN1k2)kDyk22 : (2.31)Note that formally [1] needs that N1 have a zero diagonal. It is easily seenthat this condition is not necessary. For any eigenpair �; y of H , (2.31)implies (1� kNk2)kDyk22 � j�jkyk22 � (1 + kNk2)kDyk22 : (2.32)Now let H = Y �Y �, Y �Y = I , � = diag (�1; � � � ; �n), be an eigenvaluedecomposition of H . Then H = Y j�jY � andbA�1 = DH �1D = DY j�j�1=2j�j�1=2Y �D :Therefore,k bA�1k2 = kDY j�j�1=2k22 � nmaxi kDyik22 1j�ij � n1� kNk2 :Here we have set Y = [y1; � � � ; yn] and used (2.32) for every pair �i; yi. Thetheorem now follows from3kjAjk2 � kI + jN jk2 � 1 + kjN jk2 : Q.E.D.The s.d.d. matrices are a special case of the matrices considered in Th.2.29, i.e. we do not require the diagonality of E. Note that the argumentof [1] leading to the estimate (1.6) can be easily modi�ed to hold under theconditions of Th. 2.29 as well.Even though we could only bound our measure C(A; bA) by (2.30) whichis somewhat weaker than (1.6), we expect that C(A; bA) is actually muchbetter. The following example illustrates the power of our theory. SetbA = 264 1 0:9 0:90:9 1 0:90:9 0:9 1 375 ; D = 264 1 d d2 375 ; d � 1 :Then k bA�1k2 = 10. For d = 102 the spectrum of H = D bAD is, properlyrounded, 1:47 � 10�1, 1:90 � 103, 1:00 � 108. Now H is obtained from H byjust turning the smallest eigenvalue into its negative. We obtainH = 264 0:705 9:00 � 101 9:00 � 1039:00 � 101 1:00 � 104 9:00 � 1059:00 � 103 9:00 � 105 1:00 � 108 3753The case of the pair H;K of s.d.d. matrices is not covered by this result (cf. asimilar claim in [1]), although it seems highly probable that such a generalizationholds. 12



with A = 264 0:705 0:9 0:90:9 1 0:90:9 0:9 1 375 ; kAk � 3 :Thus, C(A; bA) � 30 and H is far from being s.d.d.A natural question is to ask which matrix pairs or single non-singularmatrices have the smallest �H , �K in Th. 2.13. Obviously, C(B) � 1 andthe equality is attained, if and only if K is diagonal. In this case we cantake K = I and the whole problem reduces to the case of the single matrixH . We �rst derive some useful inequalities. Set x = K�1=2y = D�1z. Thenjx�Hxj = jy�K�1=2HK�1=2yj � y�K�1=2HK�1=2 y = x�H Kx ; (2.33)and thus jz�Azj � z� bAz : (2.34)Similarly, jx�H�1xj � x�H �1K x, andjz�A�1zj � z� bA�1z : (2.35)Now we have kA�1k2 � k bA�1k2, andC(A; bA) � kAk2k bA�1k2 � kAk2kA�1k2 � 1 : (2.36)Theorem 2.37 Let H = DAD be Hermitian and non-singular and let H =D bAD. Then C(A; bA) = kjAjk2k bA�1k2 = 1 (2.38)if and only if A is proportional to P diag (A1; � � � ; Ap)PT , where each of theblocks Ai has one of the forms1 ; � 1 ; " 0 ei'e�i' 0 # ;A and D commute, and P is a permutation matrix.Proof. If H has the form described above, then H = D2A = D2, i.e.bA = I and (2.38) holds.Conversely, if (2.38) holds, then all inequalities in (2.36) go into equali-ties. Without loss of generality we can assume thatbA11 = 1 : (2.39)Now the equality kAk2kA�1k2 = 1 means thatA = cV ; c > 0 ; V = V �1 = V � : (2.40)13



From H 2 = H2 it follows thatc2V D2V = bAD2 bA : (2.41)This is equivalent to the unitarity of the matrixW = cD�1 bA�1V D :This, in turn, implies that W is similar to c bA�1=2V bA�1=2. Since the lattermatrix is also Hermitian, it must be unitary, i.e.c2 bA�1=2V bA�1V bA�1=2 = I :This is equivalent to V  bAc !�1 V = bAc : (2.42)We now use kAk2k bA�1k2 = k( bA=c)�1k2 = 1 which, together with (2.42),implies k bA=ck2 = 1. We conclude that bA=c is unitary, which, together withits hermiticity and positive de�niteness, implies bA=c = I . Hence, (2.39)implies bA = I and c = 1. Now we can write (2.41) as D2A = AD2, i.e. Aand D commute. Finally, we use kjAjk2k bA�1k2 = kjAjk2 = 1. By c = 1, therelation (2.40) gives A = A�1 = A� :Here we need the followingLemma 2.43 Let U�U = I and kjU jk2 = 1. Then jU jT jU j = I, i.e. eachrow of U contains at most one non{vanishing element. If, in addition,U is square, then U is a (one sided) permutation of a diagonal matrix.Conversely, jU jT jU j = I implies U�U = I and kjU jk2 = 1.Proof. From U�U = I it follows (jU jT jU j)ii � 1. If aij = (jU jT jU j)ij 6= 0for some pair i 6= j, then the submatrix" 1 aijaij 1 #of jU jT jU j has an eigenvalue greater than one { a contradiction to the as-sumption kjU jk2 = 1. The rest of the assertion is trivial. Q.E.D.To �nish the proof of the theorem just use the lemma above and thehermiticity of A. Thus, up to a simultaneous permutation of rows andcolumns, A is a direct sum ofAi 2 (1;�1; " 0 ei'e�i' 0 #) ; i = 1; � � � ; p : Q.E.D.� The simple upper bounds in Th. 2.16 take their minimum n on amuch larger class of matrices, namely those with A unitary and commutingwith D. Indeed, from the proof of Th. 2.37 we immediately obtain14



Corollary 2.44 Let H, D, A, and bA be as in Th. 2.37 such that bA11 = 1.Then the following assertions are equivalent:(i) Tr bAk bA�1k2 = n,(ii) bA = I,(iii) A is unitary and commutes with D.An example of such matrix is given byA = 264 c s 0s �c 00 0 1 375 ; D = 264 d1 d1 d3 375 ;where s2+ c2 = 1 and d1; d3 > 0. Note that Th. 2.29 concerns a certain sortof small perturbations of such matrices. Also note that the only positivede�nite matrices satisfying Cor. 2.44 are again diagonal ones.The next natural question is: how good are the matrices H = DAD withA unitary, but not necessarily commuting with D? As an example take thematrix H = DAD withA = 12 26664 1 �1 �1 �1�1 1 �1 �1�1 �1 1 �1�1 �1 �1 1 37775 ; D = 26664 d 1 1 d 37775 ; (2.45)where d > 0. Here A is unitary, but it does not commute with D. The eigen-values of H are �1 = d2, �2 = d, �3 = �d, �4 = 1, and the correspondingeigenvectors are U = 26664 1=p2 1=2 1=2 00 �1=2 1=2 1=p20 �1=2 1=2 �1=p2�1=p2 1=2 1=2 0 37775 :If we choose a relative perturbation of the form�H = "d2wwT ; w = h 1 0 0 1 iT ;and set H 0 = H + �H , we have j�Hij j � 2"jHijj andUTH 0U = diag (d2; d;�d; 1)+"d2UTwwTU = 26664 d2 0 0 00 d+ "d2 "d2 00 "d2 �d+ "d2 00 0 0 1 37775 :15



Therefore, �02 = d("d + p1 + "2d2) and j��2j=j�2j > "d, so H is not well{behaved for large d. Since the matrixHA = 12 26664 d2 + d 0 0 �d2 + d0 d+ 1 d� 1 00 d� 1 d+ 1 0�d2 + d 0 0 d2 + d 37775is symmetric and positive de�nite, we conclude that H = HA. For x =h 1 0 0 1 iT we have jxjT jH jjxjx�H x = d ;and thus eC(H) ! 1 as d ! 1. This example shows that the propertiesof the matrix A alone are in general not enough for the good behaviour ofthe inde�nite matrix H = DAD. In other words, contrary to the positivede�nite case, an additional scaling H1 = D1HD1 of a well{behaved H neednot produce a well{behaved H1.Remark 2.2 For the inde�nite matrices we do not have the equivalent ofLemma 2.20 telling us that the matrix behaves well under the perturbationsof the type (2.12) if and only if eC(H) is small. Moreover, estimating eC(H)with C(A; bA) is in some cases not appropriate. For example, matrices of thetype (1.8) behave well under the perturbations of the type (2.12) (see thefollowing sections), but are very sensitive to the perturbations of the type(2.18) for the standard scaling. Therefore, �H from Th. 2.17 and then, inturn, �H from Th. 2.16 must neccessarily be large and some other kind ofanalysis is required.Remark 2.3 (Some singular matrices). Although Th. 2.1 does not requirethe non{singularity of the unperturbed matrix H , the subsequent theory, asit stands, cannot handle singular matrices. However, for a single matrix ofthe type H = " eH 00 0 # ; eH non{singular ; (2.46)the condition j�Hij j � "jHij j obviously preserves the zero structure and theproblem trivially reduces to the perturbation of eH to which our theory canbe applied. For a pair H;K with H as above and K positive de�nite of theform K = " K11 K�12K12 K22 #we proceed as follows: from the proof of Th. 2.11 we see that the pertur-bation on K does not need the non{singularity of H . Furthermore, thenon{zero eigenvalues of the pair H;K coincide with the eigenvalues of thepair eH;fK, where fK = K11 �K12K�122 K�12. Thus, in perturbing H the zero16



eigenvalues do not change and we can apply Th. 2.11 to the pair eH;fK. Weobtain the full assertion of Th. 2.11 with eC( eH;fK) instead of eC(H;K).Similarly, Th. 2.13 holds where A, bA and B are obtained by scaling eH ,eH eK and K, respectively. If, in addition, H is positive semide�nite, theneH eK = eH and Th. 2.13 and the subsequent theory hold with A = bA andB obtained by scaling eH and K, respectively.It is readily seen that (2.46) is the only form (up to a permutation)of a positive semide�nite matrix whose eigenvalues behave well under theoating{point perturbations. As we shall see later, the inde�nite case ismore complicated in this aspect.�2.1 Perturbation of the eigenvectorsIn this subsection we consider the behaviour of the eigenvectors under theperturbations as in Th. 2.1. We consider the case of a single non{singularHermitian matrix H (i.e. K = I , �K = 0). Like in [1, 4], this behaviouris inuenced by a relative gap between the neighbouring eigenvalues. Ourde�nition of relative gap is similar but not identical with the ones from [1, 4]which makes an exact comparison of (actually similar) results di�cult. Ourapproach { in contrast to the one from [1, 4] { is that of [7] which dealswith the norm{estimates of the spectral projections and thus allows thetreatment of multiple and clustered eigenvalues. We also expect our boundsto be better than those of [1, 4], since they do not depend on n.We now de�ne the relative gap, rg(�), for the possibly multiple eigen-value � of H . To simplify the notation, as well as the statement and theproof of the following theorem, we shall assume that � is positive. Negativeeigenvalues of H are considered as the positive eigenvalues of the matrix�H . By �L and �R we denote the left and the right neighbour of � in thespectrum �(H) of H , respectively. We setrg(�) = 8>>>><>>>>: min(p� �p�Lp� ; p�R � p�p�R ) if �L > 0 ;min�2(p2� 1); �R � ��R + �� otherwise : (2.47)Theorem 2.48 Let � be a positive (possibly multiple) eigenvalue of a non{singular Hermitian matrix H, and letP = 12�i Z�R�d� ; R� = (�I �H)�1 ; (2.49)be the corresponding eigenprojection. Here � is a curve around � whichseparates � from the rest of the spectrum. Let P + �P be the corresponding17



spectral projection of the matrix H + �H with jx��Hxj � �x�H x. Thenk�Pk2 � 8>>>>>><>>>>>>: �rg(�) � 11� (1 + 1rg(�))� for �L > 0; 2p� �p�L < p�R ;�rg(�) � 11� �rg(�) otherwise ; (2.50)provided that the right hand side is positive.Proof. By setting� = H �1=2�HH �1=2; z� = R�H 1=2; w� = H 1=2R�H 1=2;we obtain k�k2 � � and�P = 12�i Z� z�� 1Xk=0(w��)kz�d� :Choosing � as a circle around � with the radius r, we obtaink�Pk2 � rz2� 11� w�with z2 = max�2� kz�k22 = max�2� max�2�(H) j�jj�� �j2w = max�2� kw�k2 = max�2� max�2�(H) j�jj�� �j ;provided that � < 1=w. We obviously havez2 = max� j�Lj(�� r � �L)2 ; �r2 ; �R(�R � � � r)2�w = max� j�Lj�� r � �L ; �r ; �R�R � �� r� : (2.51)We �rst consider the case �L > 0. If 2p��p�L < p�R, then by settingr = p�(p� �p�L) (2.52)we obtain z2 = 1(p� �p�L)2 ; w � p�p�� p�L + 1 :Here we used our assumption and the fact that both rightmost terms in(2.51) are decreasing functions of �R. Therefore,k�Pk2 � p�p� �p�L � 11� �1 + p�p��p�L� � ;18



and (2.50) holds. Positivity of the right hand side of (2.50) justi�es, in turn,our choice of the same � in the de�nitions of P and P + �P as follows: theperturbation theorem for the eigenvalues implies that �L can increase to atmost �L(1 + �), �R can decrease to at least �R(1� �), and the eigenvaluesof H + �H which correspond to � remain in the interval [�(1 � �); �(1 +�)]. Positivity of the right hand side of (2.50) always implies rg(�) > �.This, together with our choice of r, implies that � contains no points ofthe spectrum of H + �H and that the interior of � contains exactly thoseeigenvalues of H + �H which correspond to �. This remark holds for thesubsequent cases, as well.If 2p�� p�L � p�R, then by settingr = p�(p�R � p�)we obtain z2 = 1(p�R � p�)2 ; w = p�Rp�R � p� :Here we used our assumption and the fact that both leftmost terms in theright hand side of (2.51) are increasing functions of �L > 0. Therefore,k�Pk2 � p�p�R � p�� 11� p�Rp�R�p�� ;and (2.50) holds. If � is the largest positive eigenvalue (i.e. �R does notexist), then by setting r as in (2.52) we obtainz2 = 1(p� �p�L)2 ; w = p�p�� p�L ;and (2.50) holds again.If �L < 0 or if �L does not exist, we proceed as follows: if rg(�) =2(p2� 1) (if �R exists, this implies �(4p2 + 5) � �R), then by settingr = 2(p2� 1)�we obtain z2 = 14(p2� 1)2� ; w = 12(p2� 1) ;so (2.50) holds. Finally, if rg(�) = (�R � �)=(�R + �), then by settingr = ��R � ��R + �we obtain z2 = 1� ��R + ��R � ��2 ; w = �R + ��R � � ;and (2.50) holds again. Q.E.D.� 19



3 Perturbations by factorsIn this section we consider perturbations of the eigenvalues of a single Her-mitian matrix H given in a factorized formH = GJG� ; (3.1)where G need not to be square but must have full column rank, whereas Jis Hermitian and non-singular. A typical J isJ1 = " I 00 �I # : (3.2)Here the unit blocks need not have the same dimension and one of themmay be void. Such factorization is obtained e.g. by the inde�nite symmetricdecomposition of H [2, 9]. We consider the change of the eigenvalues ofH under perturbation of G while J remains unchanged. Here it is naturalto use the one{sided scaling G = BD. The behaviour of the eigenvectorsdoes not seem to be as easy to follow as in Subsect. 2.1, and we have nocorresponding results as yet.For J = I the problem reduces to considering singular values of G.We reproduce the result of [4] with somewhat better constants. The sametechnique allows an interesting oating{point estimate for the eigenvaluesof G (which is non{Hermitian).The section is organized as follows. Th. 3.3 gives a general perturbationtheory, while Th. 3.9 applies this theory to the oating{point perturbations.In the following discussion we simplify the perturbation bounds analogouslyto the previous section. As an application we derive oating{point perturba-tion estimates for some classes of matrices not covered by Sect. 2. Finally,Th. 3.16 and 3.17 show that good behaviour of the singular values oftenimplies the same for the eigenvalues, if the matrix is not positive de�nite,or even non{hermitian. Th. 3.17 is in fact a "oating{point version" of theknown Bauer{Fike result.Theorem 3.3 Let H = GJG� be as above and let H 0 = G0JG0� withG0 = G+ �G ; k�Gxk2 � �kGxk2 ; (3.4)for all x 2 Cn and some � < 1. Then H and H 0 have the same inertia andtheir non{vanishing eigenvalues �k, �0k, respectively, satisfy the inequalities(1� �)2 � �0k�k � (1 + �)2 : (3.5)Proof. We �rst show that the non{vanishing eigenvalues of H coincidewith the eigenvalues of the pair G�G; J�1. Indeed, since G�G is positivede�nite, there exists a non{singular F such thatF �G�GF =  (3.6)20



and F �J�1F = J1 (3.7)are diagonal matrices, and J1 is from (3.2). Then the eigenvalues of the pairG�G; J�1 are found on the diagonal of J1 = J1. Set U = GF�1=2. By(3.6) we have U�U = I (but not necessarily UU� = I). Using (3.6) and(3.7) we obtainHU = GJG�GF�1=2 = GJF��F �G�GF�1=2= GJF��1=2 = GFF�1JF��1=2= GF (F �J�1F )�11=2 = UJ1 :Thus, the columns of U are eigenvectors of H and the eigenvalues of Hcoincide with those of G�G; J�1. Furthermore, U�x = 0 implies Hx = 0, sothe eigenvalues of G�G; J�1 are exactly all non{vanishing eigenvalues of H .By (3.4) we have(1� �)kGxk2 � kG0xk2 � (1 + �)kGxk2 ; (3.8)so that everything said for H holds for H 0 as well. In particular, H andH 0 have the same inertia. Now square (3.8), use the monotonicity propertyfrom the proof of Th. 2.1 for the pairs J�1; G�G and J�1; G0�G0, and takereciprocals in (2.8) and (2.9). Q.E.D.We now consider oating{point perturbations and scalings.Theorem 3.9 Let H = GJG� be as in (3.1) and (3.2). Let H 0 = G0JG0�where G0 = G+ �G, and for all i; j and some " > 0 holdsj�Gijj � "jGij j : (3.10)Set � � "kjBjk2�min(B) ;where B = GD�1, D is diagonal and positive de�nite, and �min(B) is thesmallest singular value of B. If � < 1 then the assumptions of Th. 3.3 areful�lled, hence its assertion holds.Proof. For x 2 Cn we havek�Gxk2 � "kjBjDjxjk2 � "kjBjk2kDxk2� "kjBjk2kBDxk2�min(B) = "kjBjk2kGxk2�min(B) : Q.E.D.By kjBjk2 � kBk2 we havekjBjk2�min(B) � �max(B)�min(B) � 1 :21



Here both inequalities go over into equalities, if and only if B has the prop-erty B�B = 2I ;  > 0 ; kjBjk2 =  ;or, equivalently (Lemma 2.43), if and only if jBjT jBj = 2I . Similarly as inSect. 2 we can make a simplifying estimatekjBjk2�min(B) � (Tr (B�B))1=2�min(B) ;so that � = "(Tr (B�B))1=2�min(B) < 1 (3.11)again implies (3.4) and therefore (3.5). This yields a new "condition num-ber" (Tr (B�B))1=2�min(B) � pn ;where the equality is attained if and only if B�B = 2I . For the standardscaling where (B�B)ii = 1 the relation (3.5) is implied by� = "pn�min(B) < 1 : (3.12)This is a slight improvement over [4] (our constant is pn times better).� For J = I (or J = �I) we can handle the matrix H = GG� in twoways. If G has full column rank, then we apply our theory as describedin Theorems 3.3 and 3.9. If G� has full column rank, then we apply ourtheory to the matrix bH = G�G, whose non{vanishing eigenvalues are theeigenvalues of H . In the inde�nite case (J 6= �I) the situation is di�erent.The following simple example illustrates this important asymmetry. TakeG = [a; b] ; �G = [�a; �b] :Our theory cannot be applied toH = GG� = jaj2 + jbj2 ;but it works on H = G�G ;where G� = eB eD, eB = h 1=p2 1=p2 iT , eD = (jaj2 + jbj2)1=2, thus giving� = " independently of a and b. On the contrary, no theory can "save" thematrix H = G " 1 00 �1 #G� = jaj2 � jbj2since ja+ �aj2 � jb + �bj2jaj2 � jbj2 22



cannot be made small uniformly in a, b if j�a=aj and j�b=bj are su�cientlysmall.4Similarly as in Th. 2.17 we can show that a perturbation result holdsunder perturbations �G de�ned byj�Gijj � "Dj for all i; j;where D is a scaling. The above type of perturbation is less restrictive than(3.10), e.g. it allows us to change zero elements. We havek�Gxk22 = Xi;j;k �xi� �Gji�Gjkxk � n0@"Xj jDjxj j1A2� n2"2kDxk22 � n2"2kGxk22�min(B�B) ;hence (3.5) is implied by � = n"�min(B) < 1 : (3.13)Similarly one shows that the estimate (3.5) is obtained under the per-turbation �G = �BD ; � = k�Bk2�min(B) < 1 : (3.14)The following two examples show how Th. 3.9 can accomodate oating{point perturbations of some matrices which, in spite of Rem. 2.1, cannot behandled by the theory from Sect. 2. For the �rst example setH = " A F �F 0 # ;where A is of order m and m � n�m. Then H = GJG� withG = " 12A IF 0 # ; J = " 0 II 0 # ;where the unit blocks have the order m. Now the perturbation �H of Hwith jHij j � "jHij j gives rise to a perturbation �G of G with j�Gijj � "jGij j,and Th. 3.9 holds e.g. withB = " 12A IF 0 # " D�1 00 I # ;where D is the standard scalingD2ii = �14A2 + F �F�ii :4In the inde�nite case the values �k = pj�k jsign �k are called the hyperbolicsingular values [8]. 23



The requirement that G have full column rank is equivalent to the samerequirement on F . Note that this allows singular matrices H .An even simpler case is the one with A = 0. Then we can apply thetheory to H = " 0 F �F 0 # = " 0 IF 0 # " 0 II 0 # " 0 F �I 0 # ; (3.15)as well as toH = " 0 FF � 0 # = " 0 FI 0 # " 0 II 0 # " 0 IF � 0 # :In any case, the non{vanishing eigenvalues of H coincide with the singularvalues of F taken with both signs. Now j�Gijj � "jGij j means j�Fij j � "jFij jand we can apply our theory in two ways:(i) take e.g. (3.15) and use Th. 3.9 to obtain (3.5) with� = kjBjk2�min(B) ;where B = FD�1, (B�B)ii = 1, or(ii) apply Th. 3.9 to the factorized matrix FF � (with the same B) whichyields a slightly better estimate(1� �)2 � �02k�2k � (1 + �)2 :In both cases the theory from Sect. 2 would require both BB� and B�B toscale well, which is certainly a further unnecessary restriction.As a second example setH = 264 a b cb 0 0c 0 �2 375 :We can e.g. decompose H asH = 264 a=2 1 0b 0 0c 0 � 375264 0 1 01 0 00 0 1 375264 a=2 b c1 0 00 0 � 375 :Now j�Hijj � "jHij j again implies j�Gijj � "jGij j and we can apply ourtheory as in the previous example. For e.g. a = b = c = 1 we obtainkjBjk2kB�1k2 = 2 + p3, independently of �. Especially, if � is small theneven the absolutely smallest eigenvalue �2=2 +O(�4) is well de�ned by the24



matrix elements of H . On the other side, the theory from Sect. 2 applied toH , I gives nothing useful here. Indeed, as �! 0 we haveH = 13 264 5 1 11 2 21 2 2 375+O(�2) ;so that C(A; bA) = O(1=�2). Moreover, numerical experiments show thateC(H) > 1=j�j.The eigenvalues of a general Hermitian matrix coincide with the singularvalues up to the signs. Thus, if H has well-behaved singular values the sameis expected for the eigenvalues. We have5Theorem 3.16 Let H be Hermitian and non-singular and H = BD a scal-ing. Let �H be a Hermitian perturbation with j�Hij j � "jHij j and� = "C(B) < 1 :Then the eigenvalues �k, �0k of H, H 0 = H + �H satisfy1� � < �0k�k < 1 + � :Proof. As in the proof of Th. 3.9 we obtainjx��H��Hxj � �2x�H2x :By the L�owner's theorem ([7], Ch. V, x4.3) we havejx��Hxj � x� �H x � �x�H x :Now apply Th. 2.1 with K = I , �K = 0. Q.E.D.The rule "well{behaved singular values, well{behaved eigenvalues" ex-tends to many non{hermitian matrices. We present a simple oating{pointversion of the known Bauer{Fike theorem.Theorem 3.17 Let G, S be non{singular matrices withS�1GS = diag (�1; : : : ; �n) ;and let �G be a perturbation with k�Gxk2 � �kGxk2. Then the eigenvaluesof G+ �G lie in the union of disksf�; j�� �ij � rig ; ri = �j�ij�(S) ; i = 1; : : : ; n :5Although the two following theorems do not concern matrices in factorizedform, we present them here since they use results of this section.25



Proof. Let (G + �G � �I)x = 0. If � is an eigenvalue of G, then thetheorem is proved. Otherwise set z = (G� �I)�1x. Then z 6= 0 andz = �GG�1G(�I �G)�1z :Hence kzk2 � � S diag � �i�� �i�S�12 kzk2 � ��(S) j�i0 jj�� �i0 jkzk2for some i0, and j�� �i0 j � ��(S)j�i0j : Q.E.D.Here, too, the number of the eigenvalues in any component of the unionequals to the number of disks in it.Taking the perturbation j�Gij j � "jGij j Th. 3.9 gives the radiiri = "j�ijC(B)�(S)with two condition numbers: C(B) and �(S). An eigenprojection estimatesimilar to that in Subsect. 2.1 is possible here as well.�4 Quadratic pencil approachIn this section we consider once more Hermitian matrices of the typeH = " A B�B 0 # : (4.1)Here we assume A, B�B as positive de�nite of order m withm � n �m : (4.2)We develop a perturbation theory by reducing the eigenproblem for H to aquadratic eigenvalue problem.Proposition 4.3 A non{vanishing number � is an eigenvalue of H if andonly if det(�2 � �A �B�B) = 0 :Proof. Let Hx = �x, x 6= 0. With the corresponding partitioning x =(xT1 ; xT2 )T this can be written asAx1 + B�x2 = �x1Bx1 = �x2 :If � 6= 0, we have x2 = Bx1=� and(�2I � �A� B�B)x1 = 0 ; (4.4)26



where � 6= 0 implies x1 6= 0. Conversely, if (4.4) holds for some x1 6= 0, then� 6= 0, and Hx = �x with x = (xT1 ; xT1B�=�)T . Q.E.D.Thus, the perturbations of H which have the same zero structure can bereduced to the perturbations of the quadratic eigenvalue problem (4.4) forwhich a satisfactory minimax theory is available. Set C = B�B. Then theeigenvalues of the problem (�2I � �A � C)x = 0can be written as ��1 � � � � � ��m < 0 < �+m � � � � � �+1 : (4.5)Theorem 4.6 Let H be de�ned with (4.1) and (4.2). Let�H = " �A �B��B 0 #be a Hermitian perturbation with the same structure as H such thatjx��Axj � �x�Ax ; k�Bxk2 � �kBxk2 (4.7)holds for all x 2 Cm and some � < 1. Let �0�k be the non{vanishing eigen-values of H 0 ordered as in (4.5). Then H and H 0 = H + �H have the sameinertia and for the non{vanishing eigenvalues of H 0 we have1� �1 + � � �0�k��k � 1 + �1� � :Proof. Set A0 = A+ �A, B0 = B + �B. Then (4.7) implies(1� �)x�Ax � x�A0x � (1 + �)x�Ax ;(1� �)2x�B�Bx � x�B0TB0x � (1 + �)2x�B�Bx :According to [6] the following minimax formula holdsj��k j = maxSk minx2Skkxk2=1 jp�(A;C; x)j ; (4.8)where p�(A;C; x) = x�Ax �p(x�Ax)2 + 4x�Cx2 : (4.9)Here Sk is any k�dimensional subspace of Cm and the maximum in (4.8) istaken over all such subspaces. Note thatp�(A;C; x) = � 2x�Cxx�Ax+p(x�Ax)2 + 4x�Cx : (4.10)27
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