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Chapter 1IntroductionThe paper considers the eigenvalue problemHx = �x ; x 6= 0 ;where H is a real symmetric matrix of order n. Our aim is the following:if the matrix is "well-behaved", that is, if small relative changes of thematrix elements cause small relative changes in the eigenvalues, then per-form the eigenreduction accurately in this sense.Small relative changes in matrix elements typically occur when the matrix is beingstored in the computer.Our work generalizes the works by Barlow and Demmel [2] who considered scaleddiagonally dominant matrices (which are described later), and by Demmel and Veseli�c[13] who considered positive de�nite matrices. Our results are, however, less de�nitethan in the positive de�nite case. This is due to the fact that the structure of the setof all well{behaved inde�nite matrices is more complicated than the structure of theset of all well{behaved positive de�nite matrices, and is not simply characterized asyet. Demmel and Veseli�c's [13] algorithm of choice was the Jacobi method. One of theversions of the algorithm that they used consists of two steps. First step is to calculatethe Cholesky decomposition of a starting positive de�nite matrix. Second step is toapply the implicit (one{sided) version of the Jacobi method to the Cholesky factoras described by Veseli�c and Hari [31]. We use the algorithm which is an immediategeneralization of this two{step algorithm, and was proposed by Veseli�c [28, 29].The algorithm consists of two steps.1. Decompose H asH = GJGT ; J = Inpos � (�Ir�npos) ; (1.1)where G is a n � r matrix of a full column rank, rank (H) = r, and nposis the number of the positive eigenvalues of H.3



This decomposition is an extension of the known symmetric inde�nite decompositionof Bunch and Parlett [6]. The eigensolutions of the matrixH and the pair GTG; J aresimply related. There always exists a matrix F which diagonalizes the pair GTG; Jsuch that F TGTGF = � ; F TJF = J :where � is diagonal and positive de�nite. The matrices for which F TJF = J arecalled J�orthogonal. The non{zero eigenvalues of H are the diagonal elements of�J , and the corresponding eigenvectors are the columns of GF��1=2.2. Apply the implicit (one{sided) J�orthogonal Jacobi method to the pairG; J to �nd the non{zero eigenvalues and the corresponding eigenvectorsof H.The implicit J�orthogonal Jacobi method consists of an iterative application of thetransformation Gm+1 = GmJm ;where G � G0 and Jm is a J�orthogonal Jacobi plane rotation. The J�orthogonalityof Jm means that Jm performs a hyperbolic rotation if 1 � i � npos < j � r, and atrigonometric rotation otherwise. Since the implicit Jacobi works only on the columnsof G, it is suitable for parallel computing. The symmetric inde�nite decomposition(1.1) is, however, not suitable for parallelization. The transition from the matrixH to the pair GTG; J is, in fact, one step of the LR algorithm and usually has adiagonalizing e�ect. This reduces the number of iterative steps in our algorithm, andmakes it faster than the standard Jacobi.The algorithm has very favourable accuracy properties. For most well{behavedmatrices we were able to prove relative error bounds for the eigenvalues and the normerror bounds for the eigenvectors similar to those in [13]. These errors are uniformlybetter than those for QR or the standard Jacobi algorithm applied directly to H.Now we present our error bounds. They depend on new perturbation theory foreigenvalues and eigenvectors, error analysis of the symmetric inde�nite decomposition,and error analysis of the J�orthogonal Jacobi methods. The statement that ouralgorithm is more accurate than QR or the standard Jacobi algorithm depends also onsome empirical observations for which we have overwhelming numerical evidence, butsomewhat weaker theoretical understanding. Our perturbation theory is an extensionof those of Barlow and Demmel [2] and Demmel and Veseli�c [13].We �rst consider known results. Let H be a real non{singular symmetric matrix.Let �H be a small symmetric perturbation of H such thatj�Hijj � "jHijj : (1.2)Let �i and �0i be the i�th eigenvalues of H and H + �H, respectively, numbered sothat �1 � � � � � �n. The standard perturbation theory [33] says that (1.2) impliesj�i � �0ij�i � k�Hk2�i � "pnkHk2 � kH�1k2 = "pn�(H) ; (1.3)4



where �(H) � kHk2 � kH�1k2 is the condition number of H. For the positive de�niteH, Demmel and Veseli�c [13] proved the following stronger result: write H = DADwhere D = (diag (H))1=2 is a scaling so that Aii = 1. Then (1.2) impliesj�i � �0ij�i � "n�min(A) � "n�(A) : (1.4)By a theorem of Van der Sluis [27]�(A) � nminD �(DHD) ; (1.5)i.e. �(A) nearly minimizes the condition number of positive de�niteH over all possiblediagonal scalings. Clearly, it is possible that �(A)� �(H) and it is always true that�(A) � n�(H), so the bound (1.4) is always at least about as good and can be muchbetter than the bound (1.3). Demmel and Veseli�c [13] showed that (1.4) also holdsunder a more general perturbation of the typej�Hijj � "(HiiHjj)1=2 ; (1.6)and that the standard Jacobi method computes the eigenvalues with nearly this ac-curacy. Barlow and Demmel [2] considered scaled diagonally dominant matrices, i.e.matrices of the form H = DAD ; A = E +M ;where D is diagonal and non{singular, E is diagonal with elements�1, diag (M) = 0,and kMk2 = � < 1. They showed that for such matrices (1.2) impliesj�i � �0ij�i � "n21 � � ; (1.7)and that a version of bisection without previous tridiagonalization computes the eigen-values with nearly this accuracy.Our perturbation bound for the non{singular but possibly inde�nite matrix H isthe following: set H = D bAD ; (1.8)where � is the spectral absolute value (H is symmetric square root of H2), andD = (diag (H ))1=2. Then j�i � �0ijj�ij � "n�min( bA) (1.9)holds under the perturbations of types (1.2) and underj�Hijj � "DiiDjj : (1.10)This bound is actually derived in the more general setting of positive de�nite Her-mitian matrix pairs. By (1.5) it is always true that �( bA) � n�(H ) = n�(H), and it5



is possible that �( bA) � �(H). Therefore, our bound (1.9) is always at least aboutas good and can be much better than the bound (1.3). If H is positive de�nite, ourbound reduces to the bound (1.4). If H is scaled diagonally dominant, our bound issimilar to the bound (1.7) (see Chap. 2).Since the implicit J�orthogonal Jacobi method works on the pair G; J , we alsoneed the perturbation theory in the case whenH is perturbed by its factors. Let �0i bethe i�th eigenvalue of a perturbed matrix (G+ �G)J(G+ �G)T . Set G = BD whereD is diagonal positive de�nite, and columns of B have unit norms. Set �G = �BD.If k�Bk � " and "=�min(B) < 1 , where �min(B) is the smallest singular value of B,then (1� "=�min(B))2 � �0i�i � (1 + "=�min(B))2 : (1.11)Here H needs not to be non{singular, but G must have full column rank.Error bounds for the eigenvalues computed by our algorithm follow from (1.9),(1.11), and the error analysis of our algorithm. Let H be non{singular. Supposethat both steps of our algorithm are performed in a 
oating{point arithmetic withprecision ". Let G; J be the output of the symmetric inde�nite decomposition. WriteG = DGBG, where DG is diagonal positive de�nite, and rows of BG have unit norms.For the matrices Gm obtained by the implicit J�orthogonal Jacobi method writeGm = BmDm, where Dm is diagonal and positive de�nite, and columns of Bm haveunit norms. Let GM ; J be the last pair obtained by the implicit Jacobi, and let GMsatisfy the stopping criterion,j(BTMBM)ijj � tol ; for all i 6= j :tol is a small constant, usually n times machine precision. This relative stoppingcriterion is a natural consequence of (1.11) and it has been used before [13, 29, 31].Let �0i be the i�th calculated eigenvalue. Thenj�i � �0ijj�ij � 272n2"�min(D�1G GJGT D�1G ) + 2"M�1Xm=0 Cm�min(Bm) + n � tol + n2" (1.12)holds with the relative error of O("). Here GJGT denotes the exact product of thecalculated factors of H, and Cm are moderate constants. Throughout the thesis theformulation "with the relative error of O(")" means that " is replaced by "(1 +K"),where 0 < K � 1=". The �rst quotient on the right hand side of (1.12) comes from(1.9) and the error analysis of the symmetric inde�nite decomposition, and the restcomes from (1.11) and the error analysis of the implicit Jacobi. The bound (1.12)has the same order of magnitude as predicted by the perturbation theory of (1.9)and (1.11) if �min(D�1G GJGT D�1G ) is not much smaller than �min( bA) of (1.9), and ifthe quantity 1=�min(Bm) does not grow much during the implicit Jacobi (note thatin exact arithmetic limm!1 �min(Bm) = 1). We have strong numerical evidence forboth these facts, but our theoretical understanding is weaker. Moreover, we haveobserved that 1=�min(B0) is usually very small. This means that:6



� the error induced by symmetric inde�nite decomposition is usually larger thanthe error induced by implicit Jacobi,� our method becomes even more accurate if the (almost) exact factor G is readilysupplied,� our algorithm is usually faster than the standard Jacobi.Similar observations were made by Demmel and Veseli�c [13] for the positive de�niteH. Moreover, since the theoretical results about the behaviour of 1=�min(Bm) areindependent of the type of rotations used, we conclude that there is no reason toavoid hyperbolic rotations. Deichm�oller [8] considered the solving of the generalizedsingular value problem with Jacobi{type methods, and obtained similar results aboutthe growth of the condition of scaled matrices and a good error analysis for non{orthogonal rotations used there.Our approach to the eigenvector perturbation theory is that of [20] which dealswith the norm{estimates of the eigenprojections and thus allows the treatment ofmultiple and clustered eigenvalues. Our error bound holds, however, only for theeigenvectors corresponding to single eigenvalues. Let, as above, H and G both benon{singular. Let vi and v0i be the eigenvectors of �i and �0i, respectively. Let �G;i bethe i�th eigenvalue of GJGT . Then, less formally stated,kv0i � vik2 � p2�rg(�i) + 4p2��rgG(�G;i) +O(n2") : (1.13)Here � is the �rst quotient of the right hand side of (1.12), and �� is approximately1.5 times the rest of the right hand side of (1.12). rg(�) and rgG(�) are two kinds ofrelative gaps between the eigenvalues, e.g. for � > 0 we setrgG(�) = min(1; �R � ��R + �; � � �L� + �L) :Here �L and �R are the left and right neighbours of � in the spectrum, and the quo-tients containing them are de�ned only if �L, �R exist and are positive, respectively.This result applied to positive de�nite or scaled diagonally dominant H is similar tothe corresponding results of [13, 2], although with a di�erent de�nition of relativegap. The bound (1.13) compares favourably to the standard eigenvector result [22]which, for the perturbation of the type (1.2), sayskv0i � vik � n"kHk2mini6=j j�i � �j j +O("2):In fact, if H has two or more tiny eigenvalues, then the above minimum is necessarilysmall for some i's, but the relative gaps may be large.7



To illustrate our theory consider the matrixH = 26664 1600 �300 14 300000�300 43:5 �4:75 �42321214 �4:75 0:1875 19800300000 �423212 19800 3207938 � 103 37775whose all elements are sums of powers of 2, and are exactly stored in IEEE singleprecision, " � 10�8. We have1�min(D�1G GJGT D�1G ) � 18 ; 1�min(B) � 1:1 ;so we expect that the single precision version of our algorithm (" � 10�8) returns sixor seven correct decimal digits. The eigenvalues of H are�1 = �54:043364�2 = �0:0283096849�3 = 1613:74866�4 = 3207938084:0105Here the digits which are common to our algorithm and the LAPACK routine DSYEVwhich implements tridiagonalization followed by QR iteration (all performed in IEEEdouble precision, " � 10�16) are displayed. Our algorithm, QR algorithm from theLAPACK routine SSYEV, and the standard Jacobi, all in single precision, computedthe following eigenvalues:OUR ALG: SSY EV JACOBI�1 �54:043369 �55:990593 �54:043369�2 �0:02830968 �0:0326757 �0:02830995�3 1613:7487 1651:6652 1613:7486�4 3207938000 3207938000 3207938000Therefore, our algorithm computed the eigenvalues with the predicted relative ac-curacy, QR has totally missed the absolutely smallest eigenvalue (and two more arevery inaccurate), and the standard Jacobi computed the absolutely smallest eigen-value somewhat less accurately than our algorithm. Note that H is far from beingscaled diagonally dominant which shows that our results are a non{trivial generaliza-tion of those of [2]. The algorithms behaved similarly on all such matrices for whichthe bound (1.12) is small and �(H) is large.To explain the loss of accuracy in QR and the standard Jacobi algorithm note thatboth algorithms do all of their work on an inde�nite matrix. LetHm be the sequence ofmatrices generated in 
oating{point arithmetic by either of those algorithms. Further,let bAm be obtained from Hm according to (1.8). In both algorithms it frequently8



happens that maxm �( bAm)� �( bA), which can, in turn, result in the loss of accuracy.In QR algorithm accuracy can be lost during the tridiagonalization, as well as duringthe iterative part. To illustrate the loss of accuracy during the tridiagonalizationconsider the matrix H = 264 1020 1 11 1 11 1 1020 375 ;for which �( bA) � 1 and �(H) � 1020. The tridiagonalization, which consists of oneGivens rotation, yields the matrixH1 = 264 1020 p2 0p2 1020 + 32 1020 � 120 1020 � 12 1020 � 12 375 ;for which �( bA1) � �(H). In 
oating{point arithmetic with precision " = 10�16 thecomputed matrixH1 is exactly singular indicating total loss of accuracy. Demmel [10]gives an example of a well{behaved tridiagonal matrix where �( bAm) almost reaches�(H) during QR iterations, which, in turn, results in the total loss of accuracy.The main di�erence between inde�nite non{singular and positive de�nite matricesis the following: for positive de�nite H the perturbations of the types (1.2) and (1.6)are equivalent in the sense that if H is insensitive to the one type, it is insensitive tothe other type, and vice versa [13]. For inde�nite H this is not the case. Indeed, letH = 264 1 1 11 0 01 0 � 375 ;where � is small (this matrix is considered in Sections 2.3, 4.3). H is obviouslyvery sensitive to perturbations of the type (1.10) so the bound (1.9) must necessarilybe large. On the other side, H is insensitive to small relative componentwise per-turbations (1.2). This shows that we are still unable to completely characterize allwell{behaved symmetric matrices. Due to large errors in the symmetric inde�nite de-composition, our algorithm computes the eigenvalues with large relative errors. Wecan, however, easily obtain an almost exact factorization of H (one way is to changethe choice of pivots in the symmetric inde�nite decomposition), and then the implicitJacobi computes the eigensolution to nearly full working accuracy. This shows thatwe have not completely reached our ideal: if the matrix is well behaved, our algorithmshould compute the eigenvalues with nearly this accuracy.The thesis is organized as follows: Chapter 2 presents the new perturbation theory.This chapter, except Subsection 2.3.1, is due to Veseli�c and Slapni�car [32]. The resultsof Veseli�c and Slapni�car are included mainly for the sake of completeness. In Chapter3 we �rst describe the J�orthogonal Jacobi method for the pair H;J , where H ispositive de�nite, and give its error analysis. Although this explicit method is rarely9



used, its error analysis is the basis for the later analysis of the implicit method. Theerror analysis consists of two steps. We �rst show that one step of J�orthogonalJacobi method satis�es the perturbation bounds of Chapter 2. Then we combineone{step error analysis with the perturbation bounds to obtain overall error boundsfor the eigensolution computed by J�orthogonal Jacobi method. In Subsection 3.2.2we give known and new results concerning the upper bound for 1=�min(Bm). Thenwe describe and analyse the implicit J�orthogonal Jacobi method, and do the samefor the implicit method with fast and fast self{scaling rotations. The latter are usedto suppress possible under
ow/over
ow when accumulating the diagonal of the fastrotations. In Chapter 4 we de�ne the symmetric inde�nite decomposition (1.1) andgive its error analysis. In Section 4.3 we combine the error analysis of the symmetricinde�nite decomposition, error analysis of the implicit J�orthogonal Jacobi method,and the perturbation bounds of Chap. 2, to obtain the �nal error bounds for thecomputed eigensolution of the real symmetric eigenvalue problem. There we alsoshortly refer to the singular case, and state some open problems. In Section 4.4 we givean interesting theoretical result saying that the condition of the scaled matrix GTG,�(BTB), is bounded by a function of n irrespective of the condition of the startingmatrix H. In Chapter 5 we present results of our numerical experiments. Maintests were performed by comparing QR algorithms from LAPACK, standard Jacobi,and our algorithms in single and double precision. We also tested the behaviour of�min(D�1G GJGT D�1G ) and �min(Bm), and compared computation times.
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Chapter 2Floating{point perturbations ofHermitian matrices12.1 Introduction and preliminariesThe standard perturbation result for the eigenvalue problem of a Hermitian matrixH of order n, Hx = �x, reads [16] j��ij � k�Hk2 ; (2.1.1)where �1 � �2 � : : : � �n ;�01 = �1 + ��1 � : : : � �0n = �n + ��n ;are the eigenvalues of H and H + �H, respectively. The perturbation matrix �H isagain Hermitian, and k�k2 is the spectral norm. The backward error analysis of variouseigenvalue algorithms initiated by Wilkinson [33] follows the same pattern, i.e. theround{o� error estimates are given in terms of norms. A more realistic perturbationtheory starts from the fact that both the input entries of the matrixH and the outputeigenvalues are given in the 
oating{point form. Thus, a desirable estimate wouldread maxi �������i�i ����� � Cmaxi;j ������HijHij ����� ; (2.1.2)where we de�ne 0=0 = 0. Colloquially, "
oating{point" perturbations are those withj�Hijj � "jHijj, " small. Similarly, we call a matrix "well{behaved" if (2.1.2) holdswith a "reasonable" C, i.e. if the small relative changes in the matrix elements causesmall relative changes in the eigenvalues. For the 
oating{point perturbations (2.1.1)1Sections 2.1, 2.2 and 2.3 of this chapter are due to Veseli�c and Slapni�car [32]. Subsection 2.3.1is new. 11



implies (2.1.2) with C = pn � �(H) � pn � kHk2kH�1k2, and this bound is almostattainable. This is illustrated by the positive de�nite matrixH = " 1 11 1 + " # ; 0 < "� 1 :The small eigenvalue of H is very sensitive to small relative changes in the matrixelements.Our results generalize the results obtained in [12, 2, 13]. Demmel and Veseli�c [13]showed that for a positive de�nite matrix H (2.1.2) holds withC = n�min(A) ;where A = (diag (H))�1=2H(diag (H))�1=2 (2.1.3)is the standard scaled matrix. The condition of A can be much smaller and is nevermuch larger than that of H. Indeed, since Aii = 1 it follows1�min(A) � �(A) � n�min(A) ;whereas (1.5) implies �(A) � n � �(H) : (2.1.4)Similar results hold for the singular value problem [13].The aim of this paper is to extend the above result to general non{singular Hermi-tian matrices. The nature of the estimate (2.1.2) shows that the non-singularity is anatural condition to require. We show (Th. 2.2.3) that (2.1.2) holds for a non{singularHermitian matrix H with C = kjAjk2k bA�1k2 ;where H = DAD ; bA = D�1HD�1 :Here D is any scaling matrix, i.e. a positive de�nite diagonal matrix, and j � j, �denote the two kinds of absolute value functions, "pointwise" and "spectral":jAjij = jAijj ; H = pH2 ;respectively. Note that kAk2 � kjAjk2 � pnkAk2 holds for any matrixA. The scalingD is typically, but not necessarily of the standard form D = (diag H )1=2. This resultis stated and proved in a more general setting, namely that of a matrix pairH;K withK positive de�nite, thus properly generalizing corresponding results of [2, 13]. Oureigenvector result, stated in Subsect. 2.2.1, concerns the case of a single non{singularHermitian matrix and it essentially generalizes the norm{estimates from [2, 13]. An12



unpleasant point of our theory is that the matrix H , which has to be scaled, is noteasy to compute. Moreover, the set of well-behaved inde�nite Hermitian matrices isnot scaling-invariant.Barlow and Demmel [2] showed that for matrices of the typeH = D(E +N)D ; (2.1.5)where D;E are diagonal, E2 = I, diag (N) = 0 and kNk2 < 1, (2.1.2) holds withC = n1� kNk2 : (2.1.6)The matrices (2.1.5) are called scaled diagonally dominant (s.d.d.). We show that fora s.d.d. matrix kjAjk2k bA�1k2 � n1 + kjN jk21� kNk2 :Although this does not reproduce the constant C in (2.1.6) (there is an extra factor1 + kjN jk2 � 1 +pn), we see that s.d.d. matrices are included in our theory.In the positive de�nite case the only well{behaved matrices are those which can bewell scaled, i.e. for which the scaled matrixA from (2.1.3) is "reasonably" conditioned.More precisely, if (2.1.2) holds for su�ciently small �H, then �min(A) � 2=(1+C) forA from (2.1.3). This, rather sharp result is proved in [32]. It improves a related resultof [13] and also yields a slight improvement of the van der Sluis estimate (2.1.4).In contrast to this, the choice of well{behaved inde�nite matrices is, in a sense,richer. Writing H = GJG�with G�G positive de�nite (G need not be square) and J non-singular, the eigenvalueproblem Hx = �x converts into the problemcHy = �J�1y ; cH = G�G : (2.1.7)In Sect. 2.3 we prove the estimate of the type (2.1.2) for the problem (2.1.7) underthe perturbations of the factor j�Gijj � "jGijj. The latter is a generalization of thesingular value problem known as hyperbolic singular value problem [21]. The estimatesagain depend on the condition number of the matrix obtained by scaling G�G. As aninteresting application, we obtain 
oating-point perturbation estimates for matricesof the type H = " H11 H12H�12 0 # ; (2.1.8)where H12H�12 is positive de�nite. Note that this H may be singular. As could beexpected, the only well-behaved singular matrices are those where the rank defectcan be read-o� from the zero pattern.Similarly as in [2], [13] we note the remarkable fact that our eigenvalue estimatesare independent of the condition number of the corresponding eigenvector matrices13



- in generalized Hermitian eigenvalue problems they are not unitary and there isno upper bound for their condition. This phenomenon seems to be typical for the"
oating-point" perturbation theory.2.2 Well{conditioned scalingsIn this section we present perturbation results which are natural extensions of thosefrom [2] and [13]. We �rst give a general perturbation result for the eigenvalues ofthe pair H;K with K positive de�nite. (An eigenvalue of the pair H;K is a scalar� for which det (H � �K) = 0.) For this purpose we introduce a new absolute valueof H relative to K denoted by H K. We then apply our general perturbation resultto the 
oating{point perturbations of the matrices H and K. Theorems 2.2.3 and2.2.4 give two simpli�cations of the perturbation bounds and Th. 2.2.5 gives boundsfor another, more general, type of perturbation where perturbing the zero elements isalso allowed. Our theory applied to a single positive de�nite matrix slightly improvesthe corresponding results of [13]. It also improves the van der Sluis estimate (2.1.4) insome cases [32]. Then we apply our theory to a single non{singular inde�nite matrix.We prove that our theory includes scaled diagonally dominant matrices [2]. We alsocharacterize the class of matrices with the best perturbation bounds. At the end wegive some examples, and also consider some singular matrices. In Subsect. 2.2.1 weconsider the perturbation of the eigenvectors of a single non{singular matrix H.Theorem 2.2.1 Let H, K be Hermitian and K positive de�nite. Set K = ZZ� andH K = Z Z�1HZ��Z� : (2.2.1)H K is independent of the freedom of choice in Z.2 Let �H, �K be Hermitian pertur-bations such that for all x 2 Cnjx��Hxj � �Hx�H Kx ; jx��Kxj � �Kx�Kx ; �H; �K < 1 (2.2.2)holds. Let �i and �0i be the increasingly ordered eigenvalues of the matrix pairs H;Kand H 0 � H + �H;K 0 � K + �K, respectively. Then �0i = 0 if and only if �i = 0, andfor non{vanishing �i's we have1� �H1 + �K � �0i�i � 1 + �H1� �K : (2.2.3)Proof. Let K = ZZ� = FF �. Then Z = FU , where U is a unitary matrix, andZ Z�1HZ�� Z� = FU U�F�1HF��U U�F � = F F�1HF��F � :2For H positive de�nite we obviously have H K = H.14



Thus, H K is independent of the freedom of choice in Z. From (2.2.2) it followsx�(H � �HH K)x � x�(H + �H)x � x�(H + �HH K)x ; (2.2.4)(1 � �K)x�Kx � x�(K + �K)x � (1 + �K)x�Kx : (2.2.5)Now note that the pairH��H H K;K has the same eigenvectors as the pairH;K withthe (again increasingly ordered) eigenvalues �i � �H j�ij. Let b�i be the increasinglyordered eigenvalues of the pair H 0;K. The monotonicity property of the eigenvaluestogether with (2.2.4) yields immediately1 � �H � b�i�i � 1 + �H : (2.2.6)It is also clear that H and H 0 have the same inertia.3 The transition form H 0;K toH 0;K 0 is similar. Note that both pairs have again the same inertia. If e.g. b�i � 0,then �0i � 0 and (2.2.5) impliesminSi maxx2Si x�H 0x(1 � �K)x�Kx � minSi maxx2Si x�H 0xx�K 0x � minSi maxx2Si x�H 0x(1 + �K)x�Kx;where Si is any i�dimensional subspace of Cn. In other words,b�i1 � �K � �0i � b�i1 + �K : (2.2.7)Similarly, if b�i � 0, then �0i � 0, and we obtainb�i1 + �K � �0i � b�i1� �K : (2.2.8)Now (2.2.7) and (2.2.8) combined with (2.2.6) give (2.2.3). Q.E.D.We now apply this result to the 
oating{point perturbations of matrix entries.Set eC(H;K) = supx6=0 jxjT jHjjxjx�H Kxand eC(H) = eC(H; I) :Obviously, eC(H;K) is �nite if and only if H is non{singular. For every H;K with Kpositive de�nite, we have eC(H;K) � 1 : (2.2.9)Indeed, if eC(H;K) were less than one, then the matrices H, K, �H = �H and�K = 0 would satisfy the assumptions of Th. 2.2.1 and this would, in turn, implythat H + �H is non{singular | a contradiction.3In fact, H and H 0 have the same null{spaces.15



Theorem 2.2.2 Let H;K be Hermitian matrices with H non{singular and K posi-tive de�nite. Let Hermitian perturbations �H and �K satisfyj�Hijj � "jHijj ; j�Kijj � "jKij j ; (2.2.10)such that �H = " eC(H;K) < 1 ; �K = " eC(K) < 1 :Then the assumption (2.2.2) of Th. 2.2.1 is ful�lled, hence its assertion holds.Proof. We havejx��Hxj � jxjT j�Hjjxj � "jxjT jHjjxj � " eC(H;K)x�H Kx ;and similarly jx��Kxj � " eC(K)x�Kx : Q.E.D.Th. 2.2.1 is a signi�cant improvement over Lemma 1 and Th. 4 from [2] whichrequire a more restrictive conditionjx��Hxj � �H jx�Hxjwhich has non{trivial applications only for positive de�nite H.The values eC(H;K) and eC(K) are not readily computable and we now exhibit achain of simpler upper bounds for them.Theorem 2.2.3 Let H;K be as in Th. 2.2.2, and let A, bA and B be de�ned byH = DAD ; H K = D bAD ; K = D1BD1 ; (2.2.11)where D and D1 are scaling matrices. TheneC(H;K) � kjAjk2k bA�1k2 � C(A; bA) ;eC(K) � kjBjk2kB�1k2 � C(B) ; (2.2.12)and �H = "C(A; bA) < 1, �K = "C(B) < 1 implies the assertion of Th. 2.2.1.Proof. We havejxjT jHjjxj = jxjTDjAjDjxj � kjAjk2x�D2x� C(A; bA)x�D bADx = C(A; bA)x�H Kx ;and similarly jxjT jKjjxj � C(B)x�D1BD1x = C(B)x�Kx : Q:E:D16



The constant C(A; bA) cannot be uniformly improved. Indeed, take H as diagonalwith H2 = I and let H 0 = H + �H be obtained by setting to zero any of the diagonalelements of H. Then the assertion of the above theorem, applied to the pair H;K = Iwith �K = 0, is obviously not true and we have �H = 1, �K = 0.Of course, all this does not mean that Th. 2.2.3 covers all well behaved matrices.Next sections will show the contrary.The constants C(A; bA), C(B) are further estimated as follows:Theorem 2.2.4 Let H;K be as in Th. 2.2.2, and let A, bA and B be de�ned by(2.2.11), where D, D1 are scalings. ThenC(A; bA) � Tr bAk bA�1k2 ; C(B) � Tr BkB�1k2 ;and �H = "Tr bAk bA�1k2 < 1, �K = "Tr BkB�1k2 < 1 implies the assertion of Th.2.2.1.Proof. Let Z�1HZ�� = U�U�be an eigenvalue decomposition of Z�1HZ�� with U unitary and � diagonal. ThenZ�1HZ�� = U j�jU� and from (2.2.1) it followsH K = ZU j�jU�Z� = GG� ;where G = ZUqj�j. Furthermore,H = Z(Z�1HZ��)Z� = ZU�U�Z� = GJG� ;where J is diagonal with �1's on the diagonal. Setting F = D�1G for some positivede�nite diagonal D and using the obvious estimatej(FJF �)ijj � q(FF �)ii(FF �)jj ;we obtain jAijj2 � bAii bAjj, and hence kjAjk2 � Tr bA. Similarly, kjBjk2 � Tr B, andthe theorem now follows from the de�nitions of C(A; bA) and C(B). Q.E.D.For the standard scalings D = (diag H K)1=2, D1 = (diag K)1=2, Th. 2.2.4 yieldsC(A; bA) � nk bA�1k2 ; C(B) � nkB�1k2 :In addition, the above upper bounds can accomodate another class of perturbationswhere perturbing the zero elements is also allowed.17



Theorem 2.2.5 Let H;K be Hermitian matrices with H non{singular and K posi-tive de�nite. Let Hermitian perturbations �H and �K satisfyj�Hijj � "DiiDjj ; j�Kijj � "D1;iiD1;jj ; (2.2.13)such that �H = "nk bA�1k2 < 1 ; �K = "nkB�1k2 < 1 :Then the assumption (2.2.2) of Th. 2.2.1 is ful�lled, hence its assertion holds.Proof. Let us de�ne the matrix E with Eij = 1. We havejx��Hxj � jxjT j�Hjjxj � "jxjTDEDjxj � "kEk2x�D2x � "nk bA�1k2x�H Kx ;and similarly jx��Kxj � "nkB�1k2x�Kx : Q.E.D.Remark 2.2.6 Note that for the standard scaling the bounds of Theorems 2.2.3 and2.2.5 di�er by at most a factor n. Therefore, the relative error bounds which useC(A; bA) and C(B) actually allow both kinds of perturbations, (2.2.10) and (2.2.13),which makes them inappropriate in some cases (see Rem. 2.2.11 below).When we apply our general theory to a single positive de�nite matrix H (K = I),Th. 2.2.4 reproduces the main 
oating-point perturbation result of Th. 2.3 from [13],while Th. 2.2.2 is even sharper. The perturbations allowed by Th. 2.2.5 are of theform j�Hijj � "qHiiHjj : (2.2.14)We now turn to the case of the single non-singular inde�nite matrix H. We �rstprove that the class of matrices H with well-behaved C(A; bA) includes the alreadyknown class of scaled diagonally dominant matrices. We haveTheorem 2.2.7 Let H = DAD ; A = E +N ;with E = E� = E�1, ED = DE, and kNk2 < 1. If bA is de�ned by H = D bAD, thenC(A; bA) � n1 + kjN jk21 � kNk2 : (2.2.15)18



Proof. Since D commutes with E, there exists a unitary matrix U which simulta-neously diagonalizes D and E, i.e.U�DU = � ; U�EU = diag (�1) :Since � is only a permuted version of the matrixD, there exists a permutation matrixP such that � = PDP T . Setting V = UP , we haveV �DV = D ; V �EV = E1 ;where E1 is diagonal with �1's on the diagonal. Now perform the unitary transfor-mation H1 = V �HV = D(V �EV + V �NV )D = D(E1 +N1)D :Here we used the fact that D and V commute. Also, kN1k2 = kNk2.By Lemma 3 of [2] for any eigenpair �; y of H1 we have(1 � kN1k2)kDyk22 � j�jkyk22 � (1 + kN1k2)kDyk22 : (2.2.16)Note that formally [2] needs that N1 have a zero diagonal. It is easily seen that thiscondition is not necessary. For any eigenpair �; y of H, (2.2.16) implies(1� kNk2)kDyk22 � j�jkyk22 � (1 + kNk2)kDyk22 : (2.2.17)Now letH = Y �Y �, Y �Y = I, � = diag (�1; � � � ; �n), be an eigenvalue decompositionof H. Then H = Y j�jY � andbA�1 = DH �1D = DY j�j�1=2j�j�1=2Y �D :Therefore, k bA�1k2 = kDY j�j�1=2k22 � nmaxi kDyik22 1j�ij � n1� kNk2 :Here we have set Y = [y1; � � � ; yn] and used (2.2.17) for every pair �i; yi. The theoremnow follows from4 kjAjk2 � kI + jN jk2 � 1 + kjN jk2 : Q.E.D.The s.d.d. matrices are a special case of the matrices considered in Th. 2.2.7, thatis, we do not require the diagonality of E. Note that the argument of [2] leading tothe estimate (2.1.6) can be easily modi�ed to hold under the conditions of Th. 2.2.7as well.4The case of the pair H;K of s.d.d. matrices is not covered by this result (cf. a similar claim in[2]), although it seems highly probable that such a generalization holds.19



Even though we could only bound our measure C(A; bA) by (2.2.15) which issomewhat weaker than (2.1.6), we expect that C(A; bA) is actually much better. Thefollowing example illustrates the power of our theory. SetbA = 264 1 0:9 0:90:9 1 0:90:9 0:9 1 375 ; D = 264 1 d d2 375 ; d � 1 :Then k bA�1k2 = 10. For d = 102 the spectrum of H = D bAD is, properly rounded,1:47 � 10�1, 1:90 � 103, 1:00 � 108. Now H is obtained from H by just turning thesmallest eigenvalue into its negative. We obtainH = 264 0:705 9:00 � 101 9:00 � 1039:00 � 101 1:00 � 104 9:00 � 1059:00 � 103 9:00 � 105 1:00 � 108 375with A = 264 0:705 0:9 0:90:9 1 0:90:9 0:9 1 375 ; kAk � 3 :Thus, C(A; bA) � 30 and H is far from being s.d.d.A natural question is to ask which matrix pairs or single non-singular matriceshave the smallest �H , �K in Th. 2.2.3. Obviously, C(B) � 1 and the equality isattained, if and only if K is diagonal. In this case we can take K = I and the wholeproblem reduces to the case of the single matrix H.We �rst derive some useful inequalities. Set x = K�1=2y = D�1z. Thenjx�Hxj = jy�K�1=2HK�1=2yj � y�K�1=2HK�1=2 y = x�H Kx ; (2.2.18)and thus jz�Azj � z� bAz : (2.2.19)Similarly, jx�H�1xj � x�H �1K x, andjz�A�1zj � z� bA�1z : (2.2.20)Now we have kA�1k2 � k bA�1k2, andC(A; bA) � kAk2k bA�1k2 � kAk2kA�1k2 � 1 : (2.2.21)Theorem 2.2.8 Let H = DAD be Hermitian and non-singular and let H = D bAD.Then C(A; bA) = kjAjk2k bA�1k2 = 1 (2.2.22)20



if and only if A is proportional to P diag (A1; � � � ; Ap)P T , where each of the blocks Aihas one of the forms 1 ; � 1 ; " 0 ei'e�i' 0 # ;A and D commute, and P is a permutation matrix.Proof. If H has the form described above, then H = D2A = D2, i.e. bA = I and(2.2.22) holds.Conversely, if (2.2.22) holds, then all inequalities in (2.2.21) go into equalities.Without loss of generality we can assume thatbA11 = 1 : (2.2.23)Now the equality kAk2kA�1k2 = 1 means thatA = cV ; c > 0 ; V = V �1 = V � : (2.2.24)From H 2 = H2 it follows that c2V D2V = bAD2 bA : (2.2.25)This is equivalent to the unitarity of the matrixW = cD�1 bA�1V D :This, in turn, implies that W is similar to c bA�1=2V bA�1=2. Since the latter matrix isalso Hermitian, it must be unitary, i.e.c2 bA�1=2V bA�1V bA�1=2 = I :This is equivalent to V  bAc !�1 V = bAc : (2.2.26)We now use kAk2k bA�1k2 = k( bA=c)�1k2 = 1 which, together with (2.2.26) and (2.2.23),implies bA = I, c = 1. Now we can write (2.2.25) as D2A = AD2, i.e. A and Dcommute. Finally, we use kjAjk2k bA�1k2 = kjAjk2 = 1. By c = 1, the relation (2.2.24)gives A = A�1 = A� :Here we need the followingLemma 2.2.9 Let U�U = I and kjU jk2 = 1. Then jU jT jU j = I, i.e. each row ofU contains at most one non{vanishing element. If, in addition, U is square, then Uis a (one sided) permutation of a diagonal matrix. Conversely, jU jT jU j = I impliesU�U = I and kjU jk2 = 1. 21



Proof. From U�U = I it follows (jU jT jU j)ii � 1. If aij = (jU jT jU j)ij 6= 0 for somepair i 6= j, then the submatrix " 1 aijaij 1 #of jU jT jU j has an eigenvalue greater than one { a contradiction to the assumptionkjU jk2 = 1. The rest of the assertion is trivial. Q.E.D.To �nish the proof of the theorem just use the lemma above and the hermiticityof A. Thus, up to a simultaneous permutation of rows and columns, A is a directsum of Ai 2 (1;�1; " 0 ei'e�i' 0 #) ; i = 1; � � � ; p : Q.E.D.The simple upper bounds in Th. 2.2.4 take their minimum n on a much largerclass of matrices, namely those with A unitary and commuting with D. Indeed, fromthe proof of Th. 2.2.8 we immediately obtainCorollary 2.2.10 Let H, D, A, and bA be as in Th. 2.2.8 such that bA11 = 1. Thenthe following assertions are equivalent:(i) Tr bAk bA�1k2 = n,(ii) bA = I,(iii) A is unitary and commutes with D.An example of such matrix is given byA = 264 c s 0s �c 00 0 1 375 ; D = 264 d1 d1 d3 375 ;where s2+ c2 = 1 and d1; d3 > 0. Note that Th. 2.2.7 concerns a certain sort of smallperturbations of such matrices. Also note that the only positive de�nite matricessatisfying Cor. 2.2.10 are again diagonal ones.The next natural question is: how good are the matrices H = DAD with Aunitary, but not necessarily commuting with D? As an example take the matrixH = DAD withA = 12 26664 1 �1 �1 �1�1 1 �1 �1�1 �1 1 �1�1 �1 �1 1 37775 ; D = 26664 d 1 1 d 37775 ; (2.2.27)22



where d > 0. Here A is unitary, but it does not commute with D. The eigenvalues ofH are �1 = d2, �2 = d, �3 = �d, �4 = 1, and the corresponding eigenvectors areU = 266664 1=p2 1=2 1=2 00 �1=2 1=2 1=p20 �1=2 1=2 �1=p2�1=p2 1=2 1=2 0 377775 :If we choose a relative perturbation of the form�H = "d2wwT ; w = h 1 0 0 1 iT ;and set H 0 = H + �H, we have j�Hijj � 2"jHij j andUTH 0U = diag (d2; d;�d; 1) + "d2UTwwTU = 26664 d2 0 0 00 d+ "d2 "d2 00 "d2 �d+ "d2 00 0 0 1 37775 :Therefore, �02 = d("d+p1 + "2d2) and j��2j=j�2j > "d, so H is not well{behaved forlarge d. Since the matrixHA = 12 26664 d2 + d 0 0 �d2 + d0 d+ 1 d � 1 00 d � 1 d+ 1 0�d2 + d 0 0 d2 + d 37775is symmetric and positive de�nite, we conclude that H = HA. For x = h 1 0 0 1 iTwe have jxjT jHjjxjx�H x = d ;and thus eC(H) ! 1 as d ! 1. This example shows that the properties of thematrix A alone are in general not enough for the good behaviour of the inde�nitematrixH = DAD. In other words, contrary to the positive de�nite case, an additionalscaling H1 = D1HD1 of a well{behaved H need not produce a well{behaved H1.Remark 2.2.11 Contrary to the positive de�nite case, for the inde�nite matrices wedo not have the result telling us that the matrix behaves well under the perturbationsof the type (2.2.10) if and only if eC(H) is small. Moreover, estimating eC(H) withC(A; bA) is in some cases not appropriate. For example, matrices of the type (2.1.8)behave well under the perturbations of the type (2.2.10) (see the following sections),but are very sensitive to the perturbations of the type (2.2.13) for the standard scaling.Therefore, �H from Th. 2.2.5 and then, in turn, �H from Th. 2.2.4 must neccessarilybe large and some other kind of analysis is required.23



Remark 2.2.12 (Some singular matrices). Although Th. 2.2.1 does not require thenon{singularity of the unperturbed matrix H, the subsequent theory, as it stands,cannot handle singular matrices. However, for a single matrix of the typeH = " fH 00 0 # ; fH non{singular ; (2.2.28)the condition j�Hijj � "jHijj obviously preserves the zero structure and the problemtrivially reduces to the perturbation of fH to which our theory can be applied. For apair H;K with H as above and K positive de�nite of the formK = " K11 K�12K12 K22 #we proceed as follows: from the proof of Th. 2.2.2 we see that the perturbation onK does not need the non{singularity of H. Furthermore, the non{zero eigenvaluesof the pair H;K coincide with the eigenvalues of the pair fH; fK, where fK = K11 �K12K�122 K�12. Thus, in perturbing H the zero eigenvalues do not change and we canapply Th. 2.2.2 to the pair fH;fK. We obtain the full assertion of Th. 2.2.2 witheC(fH;fK) instead of eC(H;K).Similarly, Th. 2.2.3 holds where A, bA and B are obtained by scaling fH , fH eK andK, respectively. If, in addition, H is positive semide�nite, then fH eK = fH, and Th.2.2.3 and the subsequent theory hold with A = bA and B obtained by scaling fH andK, respectively.It is readily seen that (2.2.28) is the only form (up to a permutation) of a positivesemide�nite matrix whose eigenvalues behave well under the 
oating{point perturba-tions. As we shall see later, the inde�nite case is more complicated in this aspect.2.2.1 Perturbation of the eigenvectorsIn this subsection we consider the behaviour of the eigenvectors under the perturba-tions as in Th. 2.2.1. We consider the case of a single non{singular Hermitian matrixH (i.e. K = I, �K = 0). Like in [2, 13], this behaviour is in
uenced by a relative gapbetween the neighbouring eigenvalues. Our de�nition of relative gap is similar butnot identical with the ones from [2, 13] which makes an exact comparison of (actuallysimilar) results di�cult. Our approach { in contrast to the one from [2, 13] { is that of[20] which deals with the norm{estimates of the spectral projections and thus allowsthe treatment of multiple and clustered eigenvalues. We also expect our bounds tobe better than those of [2, 13], since they do not depend on n.We now de�ne the relative gap, rg(�), for the possibly multiple eigenvalue � ofH. To simplify the notation, as well as the statement and the proof of the followingtheorem, we shall assume that � is positive. Negative eigenvalues of H are considered24



as the positive eigenvalues of the matrix �H. By �L and �R we denote the left andthe right neighbour of � in the spectrum �(H) of H, respectively. We setrg(�) = 8>>>>><>>>>>: min(p��p�Lp� ; p�R �p�p�R ) if �L > 0 ;min(2(p2 � 1); �R � ��R + �) otherwise : (2.2.29)Theorem 2.2.13 Let � be a positive (possibly multiple) eigenvalue of a non{singularHermitian matrix H, and letP = 12�i Z�R�d� ; R� = (�I �H)�1 ; (2.2.30)be the corresponding eigenprojection. Here � is a curve around � which separates �from the rest of the spectrum. Let P + �P be the corresponding spectral projection ofthe matrix H + �H with jx��Hxj � �x�H x. Thenk�Pk2 � 8>>>>>>>><>>>>>>>>: �rg(�) � 11�  1 + 1rg(�)! � for �L > 0; 2p��q�L < q�R ;�rg(�) � 11� �rg(�) otherwise ; (2.2.31)provided that the right hand side is positive.Proof. By setting� = H �1=2�HH �1=2; z� = R�H 1=2; w� = H 1=2R�H 1=2;we obtain k�k2 � � and �P = 12�i Z� z�� 1Xk=0(w��)kz�d� :Choosing � as a circle around � with the radius r, we obtaink�Pk2 � rz2� 11 �w�with z2 = max�2� kz�k22 = max�2� max�2�(H) j�jj�� �j2w = max�2� kw�k2 = max�2� max�2�(H) j�jj�� �j ;25



provided that � < 1=w. We obviously havez2 = max( j�Lj(�� r � �L)2 ; �r2 ; �R(�R � � � r)2)w = max( j�Lj�� r � �L ; �r ; �R�R � �� r) : (2.2.32)We �rst consider the case �L > 0. If 2p� �p�L < p�R, then by settingr = p�(p� �q�L) (2.2.33)we obtain z2 = 1(p� �p�L)2 ; w � p�p� �p�L + 1 :Here we used our assumption and the fact that both rightmost terms in (2.2.32) aredecreasing functions of �R. Therefore,k�Pk2 � p�p��p�L� 11�  1 + p�p� �p�L! � ;and (2.2.31) holds. Positivity of the right hand side of (2.2.31) justi�es, in turn, ourchoice of the same � in the de�nitions of P and P + �P as follows: perturbationtheorem for the eigenvalues implies that �L can increase to at most �L(1 + �), �Rcan decrease to at least �R(1 � �), and the eigenvalues of H + �H which correspondto � remain in the interval [�(1 � �); �(1 + �)]. Positivity of the right hand side of(2.2.31) always implies rg(�) > �. This, together with our choice of r, implies that� contains no points of the spectrum of H + �H and that the interior of � containsexactly those eigenvalues of H + �H which correspond to �. This remark holds forthe subsequent cases, as well.If 2p��p�L � p�R, then by settingr = p�(q�R �p�)we obtain z2 = 1(p�R �p�)2 ; w = p�Rp�R �p� :Here we used our assumption and the fact that both leftmost terms in the right handside of (2.2.32) are increasing functions of �L > 0. Therefore,k�Pk2 � p�p�R �p�� 11 � p�Rp�R �p�� ;26



and (2.2.31) holds. If � is the largest positive eigenvalue (i.e. �R does not exist), thenby setting r as in (2.2.33) we obtainz2 = 1(p� �p�L)2 ; w = p�p��p�L ;and (2.2.31) holds again.If �L < 0 or if �L does not exist, we proceed as follows: if rg(�) = 2(p2 � 1) (if�R exists, this implies �(4p2 + 5) � �R), then by settingr = 2(p2� 1)�we obtain z2 = 14(p2� 1)2� ; w = 12(p2 � 1) ;so (2.2.31) holds. Finally, if rg(�) = (�R � �)=(�R + �), then by settingr = ��R � ��R + �we obtain z2 = 1�  �R + ��R � �!2 ; w = �R + ��R � � ;and (2.2.31) holds again. Q.E.D.2.3 Perturbations by factorsIn this section we consider perturbations of the eigenvalues of a single Hermitianmatrix H given in a factorized formH = GJG� ; (2.3.1)whereG need not to be square but must have full column rank, whereas J is Hermitianand non-singular. A typical J is J1 = " I 00 �I # : (2.3.2)Here the unit blocks need not have the same dimension and one of them may bevoid. Such factorization is obtained e.g. by the symmetric inde�nite decompositionof Chap. 4. We consider the changes of the eigenvalues and eigenvectors of H underperturbation of G while J remains unchanged. Here it is natural to use the one{sidedscaling G = BD. 27



For J = I the problem reduces to considering singular values of G. We reproducethe result of [13] with somewhat better constants. The same technique allows aninteresting 
oating{point estimate for the eigenvalues of G (see [32]).The section is organized as follows. Th. 2.3.1 gives a general perturbation theory,while Th. 2.3.2 applies this theory to the 
oating{point perturbations. In the followingdiscussion we simplify the perturbation bounds analogously to the previous section.As an application we derive 
oating{point perturbation estimates for some classes ofmatrices not covered by Sect. 2.2.Theorem 2.3.1 Let H = GJG� be as above and let H 0 = G0JG0� withG0 = G+ �G ; k�Gxk2 � �kGxk2 ; (2.3.3)for all x 2 Cn and some � < 1. Then H and H 0 have the same inertia and theirnon{vanishing eigenvalues �k, �0k, respectively, satisfy the inequalities(1� �)2 � �0k�k � (1 + �)2 : (2.3.4)Proof. We �rst show that the non{vanishing eigenvalues of H coincide with theeigenvalues of the pair G�G; J�1. Indeed, since G�G is positive de�nite, there existsa non{singular F such that F �G�GF = � (2.3.5)and F �J�1F = J1 (2.3.6)are diagonal matrices, and J1 is from (2.3.2). Then the eigenvalues of the pairG�G; J�1 are found on the diagonal of �J1 = J1�. Set U = GF��1=2. By (2.3.5) wehave U�U = I (but not necessarily UU� = I). Using (2.3.5) and (2.3.6) we obtainHU = GJG�GF��1=2 = GJF��F �G�GF��1=2= GJF���1=2 = GFF�1JF���1=2= GF (F �J�1F )�1�1=2 = UJ1� :Thus, the columns of U are eigenvectors of H and the eigenvalues of H coincide withthose of G�G; J�1. Furthermore, U�x = 0 implies Hx = 0, so the eigenvalues ofG�G; J�1 are exactly all non{vanishing eigenvalues of H. By (2.3.3) we have(1� �)kGxk2 � kG0xk2 � (1 + �)kGxk2 ; (2.3.7)so that everything said for H holds for H 0 as well. In particular, H and H 0 have thesame inertia. Now square (2.3.7), use the monotonicity property from the proof ofTh. 2.2.1 for the pairs J�1; G�G and J�1; G0�G0, and take reciprocals in (2.2.7) and(2.2.8). Q.E.D.We now consider 
oating{point perturbations and scalings.28



Theorem 2.3.2 Let H = GJG� be as in (2.3.1) and (2.3.2). Let H 0 = G0JG0� whereG0 = G+ �G, and for all i; j and some " > 0 holdsj�Gijj � "jGij j : (2.3.8)Set � � "kjBjk2�min(B) ;where B = GD�1, D is diagonal and positive de�nite, and �min(B) is the smallestsingular value of B. If � < 1 then the assumptions of Th. 2.3.1 are ful�lled, hence itsassertion holds.Proof. For x 2 Cn we havek�Gxk2 � "kjBjDjxjk2 � "kjBjk2kDxk2� "kjBjk2kBDxk2�min(B) = "kjBjk2kGxk2�min(B) : Q.E.D.By kjBjk2 � kBk2 we havekjBjk2�min(B) � �max(B)�min(B) � 1 :Here both inequalities go over into equalities, if and only if B has the propertyB�B = 
2I ; 
 > 0 ; kjBjk2 = 
 ;or, equivalently (Lemma 2.2.9), if and only if jBjT jBj = 
2I. Similarly as in Sect. 2.2we can make a simplifying estimatekjBjk2�min(B) � (Tr (B�B))1=2�min(B) ;so that � = "(Tr (B�B))1=2�min(B) < 1 (2.3.9)again implies (2.3.3) and therefore (2.3.4). This yields a new "condition number"(Tr (B�B))1=2�min(B) � pn ;where the equality is attained if and only if B�B = 
2I. For the standard scalingwhere (B�B)ii = 1 the relation (2.3.4) is implied by� = "pn�min(B) < 1 : (2.3.10)29



This is a slight improvement over [13] for the case J = I (our constant is pn timesbetter).For J = I (or J = �I) we can handle the matrix H = GG� in two ways. If G hasfull column rank, then we apply our theory as described in Theorems 2.3.1 and 2.3.2.If G� has full column rank, then we apply our theory to the matrix cH = G�G, whosenon{vanishing eigenvalues are the eigenvalues of H. In the inde�nite case (J 6= �I)the situation is di�erent. The following simple example illustrates this importantasymmetry. Take G = [a; b] ; �G = [�a; �b] :Our theory cannot be applied toH = GG� = jaj2 + jbj2 ;but it works on H = G�G ;where G� = eBfD, eB = h 1=p2 1=p2 iT , fD = (jaj2 + jbj2)1=2, thus giving � = "independently of a and b. On the contrary, no theory can "save" the matrixH = G " 1 00 �1 #G� = jaj2 � jbj2since ja+ �aj2� jb+ �bj2jaj2 � jbj2cannot be made small uniformly in a, b if j�a=aj and j�b=bj are su�ciently small.5Similarly as in Th. 2.2.5 we can show that a perturbation result holds underperturbations �G de�ned byj�Gijj � "Dj for all i; j;where D is a scaling. The above type of perturbation is less restrictive than (2.3.8),e.g. it allows us to change zero elements. We havek�Gxk22 = Xi;j;k �xi� �Gji�Gjkxk � n0@"Xj jDjxjj1A2� n2"2kDxk22 � n2"2kGxk22�min(B�B) ;hence (2.3.4) is implied by � = n"�min(B) < 1 : (2.3.11)5In the inde�nite case the values �k =pj�kjsign �k are called the hyperbolic singular values [21].30



Similarly one shows that the estimate (2.3.4) is obtained under the perturbation�G = �BD ; � = k�Bk2�min(B) < 1 : (2.3.12)The following two examples show how Th. 2.3.2 can accomodate 
oating{pointperturbations of some matrices which, in spite of Rem. 2.1, cannot be handled bythe theory from Sect. 2.2. For the �rst example setH = " A F �F 0 # ; (2.3.13)where A is of order m and m � n�m. Then H = GJG� withG = " 12A IF 0 # ; J = " 0 II 0 # ;where the unit blocks have the order m. Now the perturbation �H of H with jHij j �"jHij j gives rise to a perturbation �G of G with j�Gijj � "jGijj, and Th. 2.3.2 holdse.g. with B = " 12A IF 0 # " D�1 00 I # ;where D is the standard scalingD2ii = �14A2 + F �F�ii :The requirement that G have full column rank is equivalent to the same requirementon F . Note that this allows singular matrices H.An even simpler case is the one with A = 0. Then we can apply the theory toH = " 0 F �F 0 # = " 0 IF 0 # " 0 II 0 # " 0 F �I 0 # ; (2.3.14)as well as to H = " 0 FF � 0 # = " 0 FI 0 # " 0 II 0 # " 0 IF � 0 # :In any case, the non{vanishing eigenvalues of H coincide with the singular values ofF taken with both signs. Now j�Gijj � "jGij j means j�Fijj � "jFijj and we can applyour theory in two ways:(i) take e.g. (2.3.14) and use Th. 2.3.2 to obtain (2.3.4) with� = kjBjk2�min(B) ;31



where B = FD�1, (B�B)ii = 1, or(ii) apply Th. 2.3.2 to the factorized matrix FF � (with the same B) which yieldsa slightly better estimate (1� �)2 � �02k�2k � (1 + �)2 :In both cases the theory from Sect. 2 would require both BB� and B�B to scale well,which is certainly a further unnecessary restriction.As a second example set H = 264 a b cb 0 0c 0 �2 375 :We can e.g. decompose H asH = 264 a=2 1 0b 0 0c 0 � 375264 0 1 01 0 00 0 1 375264 a=2 b c1 0 00 0 � 375 : (2.3.15)Now j�Hijj � "jHijj again implies j�Gij j � "jGijj and we can apply our theoryas in the previous example. For e.g. a = b = c = 1 we obtain kjBjk2kB�1k2 =2+p3, independently of �. Especially, if � is small then even the absolutely smallesteigenvalue �2=2 + O(�4) is well de�ned by the matrix elements of H. On the otherside, the theory from Sect. 2 applied to H, I gives nothing useful here. Indeed, as�! 0 we have H = 13 264 5 1 11 2 21 2 2 375+O(�2) ; (2.3.16)so that C(A; bA) = O(1=�2). Moreover, numerical experiments show that eC(H) >1=j�j. Another very interesting approach to matrices of the above type is given byDemmel and Gragg [11].2.3.1 Perturbation of the eigenvectorsIn this subsection we give the perturbation bounds for the eigenvectors of the non{singular Hermitian matrix H = GJG� ;under the perturbations as in Th. 2.3.1, i.e.k�Gxk2 � �kGxk2 ;for every x. 32



As in [2, 13] and Subsect. 2.2.1, the behaviour of the eigenvectors is in
uencedby a relative gap between the neighbouring eigenvalues. Our de�nition of relativegap is similar but not identical with the one from [2, 13] and Subsect. 2.2.1, and ourapproach is again that of [20].We now de�ne the relative gap, rgG(�), and the eigenprojection P for the possiblymultiple eigenvalue � of H. To simplify the notation, as well as the statement andthe proof of the following theorem, we shall assume that � is positive. Negativeeigenvalues of H are considered as the positive eigenvalues of the matrix �H. By �Land �R we denote the left and the right neighbour of � in the spectrum �(H) of H,respectively. We setrgG(�) = min(1; �R � ��R + �; �� �L�+ �L) ;P = 12�i Z�R�d� ; R� = (�I �H)�1 ; (2.3.1)where � is a curve around � which separates � from the rest of the spectrum of H.Here, as well as throughout the section, the terms containing �L, �R are de�ned if�L, �R exist and are positive, respectively.Theorem 2.3.3 Let � be a positive (possibly multiple) eigenvalue of a non{singularHermitian matrix H = GJG�, and let P be the corresponding eigenprojection. LetP 0 be the corresponding spectral projection of the matrix H 0 = G0J(G0)�, where G0 =G + �G and k�Gxk2 � �kGxk2 for every x.Then kP 0 � Pk2 � 4��rgG(�) � 11 � 3��rgG(�) ; (2.3.2)where �� = �(2 + �) ;provided that the right hand side in (2.3.2) is positive.Proof. Since H and H�1 have the same eigenvectors, we can de�ne P asP = 12�i Z� S�d� ; S� = (�I �H�1)�1 ;where � is now a curve around 1=� which separates 1=� from the rest of the spectrumof H�1. Therefore, P 0 � P = 12�i Z�(S 0� � S�)d� ; (2.3.3)where S0� = (�I �H 0�1)�1 :33



We can writeS� = (�I �G��JG�1)�1 = G(�G�G � J)�1G� � GT�G� ; (2.3.4)and analogously S 0� = G0T 0�(G0)� ; T 0� = (�(G0)�G0 � J)�1 :Now S0� � S� = G(T 0� � T�)G� + � ; (2.3.5)where � = �GT 0�G� +GT 0��G� + �GT 0��G� : (2.3.6)Further, G(T 0� � T�)G� = GT�(T�1� � (T 0�)�1)T 0�G� = GT��
T 0�G� ; (2.3.7)where 
 = ��G�G �G��G� �G��G :Inserting 
 = G��G (2.3.8)and (2.3.4) into (2.3.7), we obtainG(T 0� � T�)G� = S���GT 0�G� : (2.3.9)Using (2.3.4) and (2.3.8), we obtainGT 0�G� = G(T�1� � �G��G)�1G�= G(I � �T�G��G)�1T�G�= G((T�G�)�1 � ��G)�1= S�(I � ��S�)�1 : (2.3.10)Inserting (2.3.10), (2.3.9), (2.3.6) and (2.3.5) into (2.3.3), we obtainP 0 � P = 12�i Z�[�S��S�(I � ��S�)�1+�GG�1S�(I � ��S�)�1 + S�(I � ��S�)�1G���G�+�GG�1S�(I � ��S�)�1G���G�]d� : (2.3.11)Our assumption on �G and the de�nition of � in (2.3.8) implyk�GG�1k2 � � ;k�k2 � 2k�GG�1k2 + k�GG�1k22 � �� :34



Choosing � as a circle around 1=� with radius r, taking norms in (2.3.11), and usingthe above relations, we obtainkP 0 � Pk2 � rz(w + 1)�� 11 � ��w ; (2.3.12)where w = max�2� k�S�k2 = max�2� max�2�(H�1) j�jj�� �j ;z = max�2� kS�k2 = max�2� max�2�(H�1) 1j�� �j :Since � is a circle, the maxima in the above relations are attained for �'s which lieon the real axis.If �R exists, then we choose r asr = 12 min� 1� � 1�R ; 1�L � 1�� ;and if �R does not exist, then we choose r asr = 12 min�1�; 1�L � 1�� :It is easy to see that we always have z = 1r :Since � = 1=� � r, we havew = max( 1=� � r1=� � r � 1=�R ; 1=� + rr ; 1=� + r1=�L � 1=� � r) :Now if r = (1=� � 1=�R)=2, thenw = 1 + 2�R � ��R � 1 + 2rgG(�) � 3rgG(�) ;and (2.3.2) follows by inserting this and z = 1=r into (2.3.12).If r = (1=�L � 1=�)=2, thenw = �� �L� + �L � 1rgG(�) ;and (2.3.2) follows by inserting this and z = 1=r into (2.3.12).35



Finally, if r = 1=(2�) (�R does not exist), then w = 3 and (2.3.2) follows byinserting this and z = 1=r into (2.3.12).Positivity of the right hand side of (2.3.2) justi�es, in turn, our choice of the same� in the de�nitions of P and P 0 in (2.3.3) as follows: perturbation theorem for theeigenvalues implies that 1=�R can increase to at most 1=(�R(1 � �)2), 1=�L can de-crease to at least 1=(�L(1+�)2) and the eigenvalues of H 0�1 which correspond to 1=�remain in the interval [1=(�(1 + �)2); 1=(�(1� �)2)]. Positivity of the right hand sideof (2.3.2) always implies rgG(�) > 6�. This, together with our choice of r, impliesthat � contains no points of the spectrum of H 0�1 and that the interior of � containsexactly those eigenvalues of H 0�1 which correspond to 1=�. Q.E.D.Remark 2.3.4 It is possible to prove theorem similar to Th. 2.3.3 for a clusterof eigenvalues, as well. All eigenvalues of the cluster must be either positive ornegative. The relative gap for the cluster is then de�ned using �L (�R) and theleftmost (rightmost) member of the cluster, respectively. The r � z term of (2.3.12) isthen larger than 1, and smaller than the inverse of the relative gap of the cluster.Note that we can in some cases actually prove better bounds than (2.3.2), but thedi�erences are small, so we have decided to state and to prove the simpler version.Th. 2.3.3 is a generalization of the corresponding results from [13] since it allowsJ 6= I and multiple eigenvalues.Now suppose that � and �0 are both simple. Let v and v0 = v + �v be thecorresponding unit eigenvectors, and let � be the angle between them. Then P = vv�,P 0 = v0(v0)�, and P 0 � P is a matrix of rank 2 with the non{trivial eigenvalues, say,
1 and 
2. Since Tr (P 0 � P ) = 0, we have j
1j = j
2j � 
. Now2
2 = Tr [(P 0 � P )(P 0 � P )] = 2 sin2 � ;so that kP 0 � Pk2 = j sin�j :This �nally implies k�vk2 = 2j sin(�=2)j � p2kP 0 � Pk2 : (2.3.13)Combining the above relation with Th. 2.3.3 we obtain the bound on k�vk2. Weexpect this bound to compare favourably to the corresponding bounds from [2, 13]since it does not contain the factors (n� 1) or (n� 1)1=2, respectively.36



Chapter 3Error analysis of the J�orthogonalJacobi methods3.1 J�orthogonal Jacobi methodThe J�orthogonal Jacobi method solves the problemHx = �Jx; x 6= 0; (3.1.1)where H = (Hij) is a positive de�nite matrix,J = Inpos � (�In�npos) ;npos is the number of the positive, and n � npos is the number of the negativeeigenvalues of the pair H;J . The algorithm, including the convergence theory, wasproposed by Veseli�c [29]. For the sake of completeness we give the algorithm of themethod and state the known convergence results.In Chap. 2, we showed that there exists a nonsingular matrix V which simultane-ously diagonalizes H and J in the manner thatV THV = D; V TJV = J; (3.1.2)where D = (Di) is a positive de�nite diagonal matrix. The eigenvalues of the pairH;J are the values Di � Ji and the eigenvectors are the corresponding columns ofV . The matrices for which V TJV = J are called J{orthogonal and they form amultiplicative group. (For a �xed J , of course.)The J�orthogonal Jacobi method consists of an iterative application of the con-gruence transformation H 0 = CTHC ;where C is the J�orthogonal plane rotation. From now on let bA denote the 2 � 2pivot submatrix of the square matrix A. The matrix C is de�ned asbC = " cii cijcji cjj # ;37



and the non{displayed elements are those of the identity matrix. The pair (i; j) isthe pivot pair. The J�orthogonality of the matrix C implies that" cii cijcji cjj # = 8>>>>>><>>>>>>: " ch shsh ch # ; for 1 � i � npos < j � n;" cs sn�sn cs # ; otherwise :Here ch = cosh y; sh = sinh y; cs = cos x and sn = sinx for some y and x, respec-tively. These two types of rotations are called the hyperbolic and the trigonometricrotation, respectively. The parametar x or y is chosen so that the i; j�element of thetransformed matrix is annihilated. LetcH = " a cc b # :Then tan 2x = 2cb� a; � �4 � x � �4 ;or tanh 2y = � 2ca+ b:We obtain the following algorithm (in the notation of [13]):
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Algorithm 3.1.1 Two-sided J�orthogonal Jacobi method for the problem (3.1.1).tol is a user de�ned stopping criterion. The matrix V whose columns return thecomputed eigenvectors initially contains the identity.repeatfor all pairs i < j/* compute the parameter hyp: hyp = 1 for the hyperbolic andhyp = �1 for the trigonometric rotation, respectively */if 1 � i � npos < j � n thenhyp = 1elsehyp = �1endif/* compute the J�orthogonal Jacobi rotation which diagonalizes" Hii HijHji Hjj # � " a cc b # */� = �hyp � (b+ hyp � a)=(2c)t = sign(�)=(j�j+p�2 � hyp)h = p1� hyp � t2cs = 1=hsn = t=hsn1 = hyp � sn/* update the 2 by 2 pivot submatrix */Hii = a+ hyp � c � tHjj = b+ c � tHij = Hji = 0/* update the rest of rows and columns i and j */for k = 1 to n except i and jtmp = HikHik = cs � tmp+ sn1 �HjkHjk = sn � tmp+ cs �HjkHki = HikHkj = Hjkendfor/* update the eigenvector matrix V */for k = 1 to ntmp = VkiVki = cs � tmp+ sn1 � VkjVkj = sn � tmp+ cs � Vkjendforendforuntil convergence (all jHijj=(HiiHjj)1=2 � tol )/* the computed eigenvalues of the pair H;J are �j = HjjJjj */39



/* the computed eigenvectors of the pair H;J are the columnsof the �nal matrix V */Our algorithm is essentially the standard one introduced by Rutishauser [22].The formulae for the hyperbolic case are derived in the same manner as for thetrigonometric one [29]. In the following section we analyse this (simple) version ofthe algorithm. We omitt enhancements like delayed updates of the diagonals andfast rotations, to make the analysis clearer. Analysis of the fast rotations is given forthe implicit method in Sect. 3.4. One of the di�erences between our algorithm andthe standard one is the stopping criterion. This criterion is also used in [13, 29, 31].Our justi�cation of this criterion is the same as in [13]: according to Th. 2.2.1, theaccuracy of the eigenvalues depends on 1=�min(A) (or �(A)) and not on �(H), so thatwe set Hij to zero only if jHijj=(HiiHjj)1=2 is small, not just if jHijj=maxkl jHklj issmall.One di�erence between trigonometric and hyperbolic rotations is that Tr (H 0) =Tr (H) after trigonometric, and Tr (H 0) < Tr (H) after hyperbolic rotation. Using thistrace reduction argument Veseli�c [29] proved that the hyperbolic parameter t tendsto zero. The second di�erence is that the condition of the transformation matrix isin the trigonometric case one, while in the hyperbolic case it can be large. Note,however, that j tanh yj � q�(A)� 1q�(A) + 1 ;where A is the scaled matrix, i.e. H = DAD, diag (A) = I. Moreover, if G; J is theoutput of the symmetric inde�nite decomposition, then the scaled condition of thematrix GTG is generally small (see Sect. 4.4, Chap. 5), and it does not grow muchduring the Jacobi process (see Sect. 3.2.2, Chap. 5), so the hyperbolic parameters aregenerally moderate. In Subsect. 3.2.1 we show how to modify hyperbolic rotationsin order to bound the condition of the transformation matrix. This modi�cationimproves the theoretical bounds, but it does not seem to be of importance in practice.Veseli�c [29] proved that the J�orthogonal Jacobi method is globally convergent forthe optimal strategy, threshold strategies, row{cyclic strategy, and all other strategieswhich are equivalent to the row{cyclic one (for example, the modulus parallel strategy[18]). He also proved a very interesting fact that all J�orthogonal matrices V whichsatisfy (3.1.2) have the same condition number. Moreover, if V1 and V2 are two suchmatrices, then V2 = V1U; U = " U1 00 U2 # ;where U1, U2 are othogonal matrices of order m, n�m, respectively.Drma�c and Hari [15] proved that the J�orthogonal Jacobi method is quadraticallyconvergent. 40



3.2 Error bounds for the eigenvaluesIn this section we prove that the two-sided J�orthogonal Jacobi method in 
oating{point arithmetic applied to the problem (3.1.1) computes eigenvalues with the errorbounds of Chap. 2. Since the computed eigenvector matrix is not orthogonal andis not needed when applying our algorithm to a single inde�nite matrix, we do notinvestigate the accuracy of the computed eigenvectors.Let H0 = D0A0D0 be the initial matrix, and Hm = DmAmDm where Hm is ob-tained from Hm�1 by applying a single J�orthogonal Jacobi rotation. Here Dm isdiagonal and Am has unit diagonal as before. All the error bounds in this sectioncontain the quantities 1=�min(A) (or �(Am)), whereas the perturbation bounds ofChap. 2 are proportional to �(A0). Therefore, our claim that J�orthogonal Jacobimethod solves the eigenproblem as accurately as predicted in Chap. 2 depends, as in[13], on the ratios maxm �min(A0)=�min(Am) (or maxm �(Am)=�(A0)) being modestin size. Note that the convergence of Hm to diagonal form is equivalent to the con-vergence of Am to the identity, or �(Am) to 1. Thus we expect �(Am) to be less than�(A0) eventually. Demmel and Veseli�c [13] have overwhelming numerical evidencethat in the positive de�nite case (J = I) the above ratios are modest in size. Ourexperiments of Chap. 5 reveal the same for J 6= I. Our theoretical understanding ofwhy these ratios are so small is somewhat weaker; we present our theoretical boundsin Subsect. 3.2.2.The section is organized as follows: we �rst show that one step of the method satis-�es the perturbation bounds of Chap. 2, and that we can extend this result to an over-all error bound (modulo the assumption that the quotients maxm �min(A0)=�min(Am)are modest). In Subsect. 3.2.1 we show how to modify the method in order to boundpotentially large hyperbolic angles, which, in turn, results in better error bounds.We now present our model of the �nite precision 
oating{point arithmetic. The
oating{point result fl(�) of the operation (�) is given by [33, 13]fl(a� b) = a(1 + "1)� b(1 + "2)fl(a� b) = (a� b)(1 + "3) (3.2.1)fl(a=b) = (a=b)(1 + "4)fl(pa) = pa(1 + "5)where j"ij � ", and " � 1 is the machine precision. This is somewhat more generalthan the usual model which uses fl(a � b) = (a � b)(1 + "1) and includes machineslike the Cray which do not have a guard digit. This does not greatly complicatethe error analysis, but it is possible that the computed rotation angle may be lessaccurate. This may adversely a�ect convergence, but as we will see it does not a�ectthe one-step error analysis.Numerically subscripted "'s will denote independent quantities bounded in mag-nitude by ". As usual (e.g. [13]), we will make approximations like (1+i"1)(1+j"2) =1 + (i+ j)"3 and (1 + i"1)=(1 + j"2) = 1 + (i+ j)"3.41



The next theorem and its corollary justify our accuracy claims for eigenvaluescomputed by two-sided J�orthogonal Jacobi method .Theorem 3.2.1 Let Hm be the sequence of matrices generated by Algorithm 3.1.1in 
oating{point arithmetic with precision "; that is, Hm+1 is obtained from Hm byapplying a single J{orthogonal Jacobi rotation. Then the following diagram commutes.Hm + �HmHm Hm+1? -
oating�����exactThe top arrow indicates that Hm+1 is obtained from Hm by applying one J{orthogonalJacobi rotation in 
oating{point arithmetic. The diagonal arrow indicates that Hm+1is obtained from Hm + �Hm by applying one J{orthogonal Jacobi rotation in exactarithmetic; thus Hm+1 amd Hm+�Hm are exactly similar. �Hm is bounded as follows.Let � = �(Am), and write �Hm = Dm�AmDm. Then, with the relative error of order",1 k�Amk2 � Cm " ; (3.2.2)whereCm = 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
60 + 58pn� 2 in trigon: case ;35:5 + (p�+ 3)(30:93 + 8:24pn� 2) in hyperb: case ; j�j � 32p2 ;222:42 + 46:77pn� 2 in hyperb: case ; j�j > 32p2 ;b � 12a ;225:5 + 62:45pn� 2 in hyperb: case ; j�j > 32p2 ;b < 12a :In other words, one step of Jacobi satis�es the assumptions needed for the perturbationbounds of Sect. 2.2.The bound (3.2.2) seems to be highly discontinuous at j�j = 3=(2p2). This disconti-nuity can be removed as decribed in Rem. 3.2.4, or by using the modi�ed method ofSubsect. 3.2.1.1This formulation is explained after the relation (1.12).42



Proof. The proof of the commuting diagram is a tedious computation. We shallprove the diagram separately for the trigonometric and for the hyperbolic case. Weassume that multiplications with the parameter hyp in Alg. 3.1.1 have no errors.Write the 2 by 2 submatrix of the current matrix Hm ascHm = " a cc b # � " d2i zdidjzdidj d2j # (3.2.3)In both cases we can assume without loss of generality that a � b. By positivede�niteness we have 0 < jzj � �z � (�� 1)=(� + 1) < 1 : (3.2.4)Let a0 and b0 be the new values ofHii andHjj computed by the algorithm, respectively.Trigonometric case. This case was analysed by Demmel and Veseli�c [13]. Ourproof is essentially the same as theirs, and we repeat it for the sake of completeness.Small di�erences in the proof lead to a somewhat better bound for k�Amk2.Systematic application of the formulae (3.2.1) shows that� = fl((b� a)=(2 � c))= (1 + "4)(((1 + "1)b� (1 + "2)a)=((1 + "3)2c))= (1 + "4)(1 + "2)1 + "3  ~b� a2c !where eb � 1 + "11 + "2b � (1 + "b)b ; j"bj � 2" :Thus � = (1 + "�)eb� a2c ; j"�j � 3" :Let et, fcs, fsn and �fsn denote the true values of t, cs, sn and sn1 = �sn (i.e.without rounding error) as a function of a, eb and c. Using (3.2.1) again one can showthat t = (1 + "t)et; cs = (1 + "cs)fcs; sn = (1 + "sn)fsn;where2 j"tj � 7"; j"csj � 10"; j"snj � 17":fcs and fsn de�ne the exact trigonometric Jacobi rotationJm � " fcs fsn�fsn fcs #2Calculating sn as sn = t=h instead of sn = t � cs [13] saves one " in bounding "sn. This wasnoticed by Drma�c [14]. 43



which transforms Hm+�Hm to Hm+1 in the diagram in the statement of the theorem:JTm(Hm + �Hm)Jm = Hm+1 :Now we begin constructing �Hm. �Hm will be nonzero only in the rows andcolumns i and j. We �rst compute its entries outside the 2 by 2 pivot submatrix. LetH 0ik and H 0jk denote the updated quantities computed by the algorithm. ThenH 0ik = fl(cs �Hik � sn �Hjk)= (1 + "4)(1 + "5)csHik � (1 + "6)(1 + "7)snHjk= (1 + "4)(1 + "5)(1 + "cs)fcsHik � (1 + "6)(1 + "7)(1 + "sn)fsnHjk� fcsHik � fsnHjk + �(H 0ik);where �(H 0ik) = "01fcsHik � "02fsnHjk; j"01j � 12"; j"02j � 19":Similarly, H 0jk = fl(sn �Hik + cs �Hjk)= fsnHik +fcsHjk + �(H 0jk);where �(H 0jk) = "03fcsHjk + "04fsnHik; j"03j � 12"; j"04j � 19":Thus " H 0ikH 0jk # = JTm " HikHjk #+ " �(Hik)�(Hjk) #= JTm  " HikHjk #+ Jm " �(Hik)�(Hjk) #!� JTm  " HikHjk #+ " �Hik�Hjk #! ;where �Hik = "01fcs2Hik � "02fcsfsnHjk + "03fcsfsnHjk + "04fsn2Hik�Hjk = �"01fcsfsnHik + "02fsn2Hjk + "03fcs2Hjk + "04fcsfsnHik :Using jHij j � didj; fcs = 1q1 + et2 ; fsn = etq1 + et2 ;we have j�Aikj � 11 + et2  12 + 31jetjdjdi + 19et2! " ; (3.2.5)44



which is an increasing function for jetj 2 [0; 1].Set x � dj=di. Note that x � 1. In estimating j�Ajkj we consider two cases:x < �x � :48, and x � �x. If x < �x, then, with the relative error of O("), we havejetj = 11� x22jzjx + 0@1 +  1 � x22jzjx !21A1=2 � x1� �x2 :Since we want to bound j�Ajkj with a bound of order ", we neglect the relative errorof O(") in the above inequality. Therefore,j�Ajkj � 11 + et2 �12 + 31 11 � �x2 + 19et2� " ; (3.2.6)which is a decreasing function of et2. Substituting 1 for et and �x for dj=di in (3.2.5),and 0 for et in (3.2.6), we obtainq�A2ik + �A2jk � 57:3" : (3.2.7)If x � �x, then j�Ajkj � 11 + et2 �12 + 31jetj1�x + 19et2� " ; (3.2.8)which is an increasing function of jetj 2 [0; 1]. Substituting 1 for et and dj=di in (3.2.5)and (3.2.8), we obtain q�A2ik + �A2jk � 57:4" : (3.2.9)Note that our choice of �x makes bounds in relations (3.2.7) and (3.2.9) almost equal.Now we construct the 2 by 2 submatrix �cHm of �Hm at the intersection of therows and columns i and j. We will construct it of three components�cHm = �1 +�2 +�3 :Applying the relations (3.2.1), we obtainb0 = fl(b+ c t) = 1 + "21 + "1 (1 + "8)eb+ (1 + "9)(1 + "10)(1 + "t) c et= (1 + "9)(1 + "10)(1 + "t) (1 + "2)(1 + "8)(1 + "1)(1 + "9)(1 + "10)(1 + "t)eb+ c et!� (1 + "b0)(eb+ c et+ "0b eb) ;where j"b0j � 9" and j"0bj � 12". Similarly,a0 = fl(a� c t) = (1 + "11)a� (1 + "12)(1 + "13)(1 + "t) c et= (1 + "a0)(a� c et) ; 45



where j"a0j � 9". Here we used the fact that c et < 0.Now let �1 = " 0 00 "bb #+ Jm " 0 00 "0beb # JTm :From earlier discussion we see thatJTm  " a cc b # +�1!Jm = " a� cet 00 b+ cet+ "0beb # :Next let �2 = "a0  " a cc b #+�1! :Thus JTm  " a cc b #+�1 +�2!Jm = (1 + "a0) " a� cet 00 b+ cet+ "0beb #= 264 a0 00 b01 + "a01 + "b0 375 :Now let �3 = Jm 264 0 00 b0 �1 � 1 + "a01 + "b0 � 375JTm � " fsn2"b00b0 fcsfsn"b00b0fcsfsn"b00b0 fcs2"b00b0 # ;where j"b00j � j"a0j+ j"b0j � 18". ThenJTm  " a cc b #+�1 +�2 +�3!Jm = " a0 00 b0 #as desired. This completes the construction of �cHm. Since eb = b(1 + "b) and b0 < b,k� bAmk2 � j"bj+ j"0bj+ 2 � j"a0j+ j"b00j � 60"holds with the relative error of O("). From (3.2.7), (3.2.9), and the above relation, it�nally follows k�Amk2 � (60 + 58pn � 2) " : (3.2.10)This bound improves the bound k�Amk2 � (257pn� 2 + 104)" from [13].Hyperbolic case. To avoid the confusion with the trigonometric case, we denote thequantities cs, sn and sn1 = sn computed by Alg. 3.1.1 with ch and sh, respectively.We �rst compute et, eh, fch and fsh as the exact values of the parameters computed46



without rounding errors from a, b and some ec � (1 + "c)c. Generally, the followingbounds hold: j�j � �+ 1� � 1 > 1 ;jtj � p� � 1p�+ 1 < 1 ; (3.2.11)jshj < ch � 12  4p�+ 14p�! :Let �0 � (a + b)=(�2c) be the exact value of (a+ b)=(�2c). Systematic applicationof (3.2.1) gives �1 = fl a+ b�2c ! = (1 + "�1)�0 ;where j"�1j � 3", andt1 = fl0@ sign (�1)j�1j+q�21 � 11A= (1 + "1)sign (�1)(1 + "2)(j�1j+ (1 + "3)q�21 (1 + "4)(1 + "5)� (1 + "6)= 1 + "11 + "2 � sign (�1)j�1j+ (1 + "3)p1 + "6s�21 (1 + "4)(1 + "5)1 + "6 � 1 :Now let �22 � �21 (1 + "4)(1 + "5)1 + "6 :Then �2 � (1 + "�2)�1, where j"�2j � 1:5". This implies thatt1 = 1 + "11 + "2 � sign (�1)j�2 11 + "�2 j+ (1 + "3)p1 + "6q�22 � 1� (1 + "t1) sign (�2)j�2j+q�22 � 1 ;where j"t1j � 3:5". Furthermore,h = fl(q1� t21) = (1 + "7)q(1 + "8)� (1 + "9)(1 + "10)t21= (1 + "7)p1 + "8s1 � (1 + "9)(1 + "10)1 + "8 t21� (1 + "h)q1 � t22 ; (3.2.12)47



where j"hj � 1:5" ; t22 � (1 + "9)(1 + "10)1 + "8 t21 ;i.e. t2 = (1 + "t2)t1 ; j"t2j � 1:5" : (3.2.13)Therefore, sign (�2)j�2j+q�22 � 1 = 11 + "t1 t1 = 1(1 + "t1)(1 + "t2)t2 � (1 + "0t2)t2 ;where j"0t2j � j"t1j+ j"t2j � 5". In exact arithmetict = sign (�)j�j+p�2 � 1implies � = 12 �t+ 1t� :Therefore, in exact arithmetic for �2 we have�2 = 12  (1 + "0t2)t2 + 1(1 + "0t2)t2! ;which, in turn, implies12 �t2 + 1t2� = (1 + "0�2)�2 = (1 + "0�2)(1 + "�2)�0 � (1 + "00�2)�0 ; (3.2.14)where j"0�2j � j"0t2j � 5" ; j"00�2j � j"0�2j+ j"�2j � 9:5" :Therefore, we can choose "c, j"cj � j"00�2j � 9:5" ;such that for ec = (1 + "c)c in exact arithmetic3a+ b�2ec = (1 + "00�2)�0 : (3.2.15)From (3.2.14) and (3.2.15) it follows that et = t2 is the exact value of the parameter tcomputed without rounding errors from a, b and ec. Seteh = q1� et2; fch = 1eh; fsh = eteh:3In the trigonometric case we had to perturb b. Here we can perturb either a or c, and we perturbc since it is absolutely smaller. 48



For the computed quantities we havet = t1 = (1 + "t)et ; j"tj � j"t2j � 1:5" ;h = (1 + "h)eh ; j"hj � 1:5" ;ch = fl(1=h) = (1 + "ch)fch ; j"chj � "+ j"hj � 2:5" ;sh = fl(t=h) = (1 + "sh)fsh ; j"shj � "+ j"tj+ j"hj � 4" :Here the �rst line follows from et = t2 and (3.2.12), the second line follows from(3.2.13), and the last two lines follow from the �rst two lines and the formulae (3.2.1).fch and fsh de�ne the exact hyperbolic rotationJm � " fch fshfsh fch #which transforms Hm+�Hm to Hm+1 in the diagram in the statement of the theorem:Jm(Hm + �Hm)Jm = Hm+1 :Now we begin constructing �Hm. �Hm will be nonzero only in the rows andcolumns i and j. First we compute its entries outside the 2 by 2 (i; j) submatrix.Let H 0ik and H 0jk denote the updated quantities computed by the algorithm. Then,similarly to the trigonometric case, we haveH 0ik = fl(ch �Hik + sh �Hjk) = fchHik + fshHjk + �(H 0ik);where �(H 0ik) = "01fchHik + "02fshHjk; j"01j � 4:5"; j"02j � 6" ;and H 0jk = fl(sh �Hik + ch �Hjk) = fshHik + fchHjk + �(H 0jk);where �(H 0jk) = "03fchHjk + "04fshHik; j"03j � 4:5"; j"04j � 6":Thus " H 0ikH 0jk # = JTm " HikHjk #+ " �(Hik)�(Hjk) #= JTm  " HikHjk #+ J�1m " �(Hik)�(Hjk) #!� Jm  " HikHjk #+ " �Hik�Hjk #! ;where �Hik = "01fch2Hik + "02fchfshHjk � "03fchfshHjk � "04fsh2Hik ;�Hjk = �"01fchfshHik � "02fsh2Hjk + "03fch2Hjk + "04fchfshHik : (3.2.16)49



Contrary to the trigonometric case, we analyse two cases. The �rst case is whenj�j is near the bound (3.2.11), and the second case is when j�j is bounded away from(3.2.11). Set, as in the trigonometric case, x � dj=di. Set4� = 32p2 ; � � 1�+p�2 � 1 = 1p2 : (3.2.17)Case I. j�j � �.From our assumption, the de�nition of �, and jcj � pab it followsa+ b � � � 2pab;i.e. 1x + x � 2� :This implies x � 1�+p�2 � 1 � � = 1p2 ;dj � di � 1� dj ; b � a � 1�2b ; (3.2.18)i.e. when j�j is near its lower bound, then a and b do not di�er much. We now showthat fch � 12  4p�+ 14p�! (3.2.19)holds with the relative error of O("). Indeed, c = zdidj implies ec = ezdidj = z(1 +"c)didj . Set �1 � (1 + z(1 + "c))=(1� z(1 + "c)) :Then fch � ( 4p�1 + 14p�1 )=2 :A simple calculation shows that1 � z(1 + "c) = (1 + "0)(1� z) ; j"0j � j"cj(�+ 1)=2 :Therefore, �1 � 1 + z(1 + "c)1� z(1 + "c) = 1 + z1� z (1 + "c)(1 + "0) � �(1 + j"cj+ j"0j) ;and (3.2.19) holds. We neglect the relative error of O(") since it adds only the relativeerror of O(") in the �nal estimate. Therefore,fsh2 � jfshjfch � fch2 � 14(p�+ 3) : (3.2.20)4Note that we can choose some other �, as well. This choice is explained in Rem. 3.2.4 below.50



Using the fact that jHij j � didj , and inserting (3.2.18) and (3.2.20) into (3.2.16),we obtain j�Hikj � 14(p�+ 3)(j"01j+ j"02j+ j"03j+ j"04j)didk� 5:25(p�+ 3)didk"j�Hjkj � 14(p�+ 3)(j"02j+ j"03j+ 1� (j"01j+ j"04j))djdk (3.2.21)� 6:34(p�+ 3)djdk" :Now we construct the 2 by 2 submatrix �cHm of �Hm at the intersection of the rowsand columns i and j. We will construct it of three components, �cHm = �1+�2+�3.The analysis is somewhat di�erent from the analysis in the trigonometric case becausea0 < a, b0 < b, so that, due to subtraction, a0 and b0 can both have large relative errors.We havea0 = fl(a+ c t) = (1 + "12)a+ (1 + "13)(1 + "14)(1 + "c)(1 + "t) ec et= (1 + "13)(1 + "14)(1 + "c)(1 + "t)  1 + "12(1 + "13)(1 + "14)(1 + "c)(1 + "t) a+ ec et!= (1 + "a0)(a+ ec et+ "aa) ;where j"a0j � 2"+ j"cj+ j"tj � 13" ;j"aj � 3"+ j"cj+ j"tj � 14" :Similarly, b0 = fl(b+ c t) = (1 + "b0)(b+ ec et+ "bb) ;where j"b0j � 13" ; j"bj � 14" :Let �1 = " 0 "cc"cc 0 #+ J�1m " "aa 00 "bb #J�1m= " 0 "cc"cc 0 #+ 24 fch2"aa+ fsh2"bb �fch fsh("aa+ "bb)�fch fsh("aa+ "bb) fsh2"aa+ fch2"bb 35 ;and �2 = "a0  " a cc b # +�1! :From earlier discussion we see thatJm  " a cc b #+�1 +�2!Jm = 264 a0 00 b01 + "a01 + "b0 375 :51



Now let�3 = J�1m 264 0 00 b0�1 � 1 + "a01 + "b0 � 375J�1m = 24 fsh2"b00b0 �fch fsh"b00b0�fch fsh"b00b0 fch2"b00b0 35 ;where j"b00j � j"a0j+ j"b0j � 26". ThenJm  " a cc b #+�1 +�2 +�3!Jm = " a0 00 b0 #to the �rst order of ", as desired. This completes the construction of �cHm and wehavek� bAmk2 � j"cj+ 14(p�+ 3)maxfj"aj; j"bjg(2�+ 1 + 1�2 ) + 2j"a0j+ 12(p�+ 3)j"b00j� (35:5 + (p�+ 3) 30:93) " :Here we used (3.2.18), (3.2.20), and b0 < b. Combining (3.2.21) with the aboverelation, we �nally obtaink�Amk2 � (35:5 + (p�+ 3)(30:93 + 8:24pn� 2)) " : (3.2.22)Case II. j�j > �.Our assumption implies jtj � � = 1p2 ;ch � 1p1 � �2 = p2 ; (3.2.23)jshj � �p1 � �2 = 1 :These bounds hold with the relative error of O(") for et, fsh and fch, as well. We splitthis case into two subcases.Subcase IIa. x � dj=di � �.The analysis is identical to the analysis in the �rst case; only the upper bounds forfsh2, jfshjfch and fch2 are now obtained from (3.2.23) and not from (3.2.20). Therefore,j�Hikj � (2j"01j+p2j"02j+p2j"03j+ j"04j)didk � 29:85didk " ;j�Hjkj � (p2p2j"01j+ j"02j+ 2j"03j+p2p2j"04j)djdk � 36djdk " ;k� bAmk2 � j"cj+maxfj"aj; j"bjg 
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and, altogether, k�Amk2 � (222:42 + 46:77pn� 2) " : (3.2.24)Subcase IIb. x � dj=di < �.The above assumption implies jcj < �a. Frome� = �(1 + x2)=(2ezx) ; ez = z(1 + "c) ;it follows jetj � 2jezjx=(1 + x2) � 2x :Here we ignored the relative error of O(") in z and and used the fact that jezj < 1.Therefore, fchjfshj = fch2jetj � 2fch2djdi : (3.2.25)From (3.2.16), (3.2.23), (3.2.25), and our assumption, it followsj�Hikj � (2j"01j+p2j"02j 1p2 +p2j"03j 1p2 + j"04j)didk � 25:5didk " ;j�Hjkj � (p2p2j"01j+ j"02j+ 2j"03j+p2p2j"04j)djdk � 57djdk " : (3.2.26)Now we construct the 2 by 2 submatrix �cHm. The analysis is similar to theanalysis in the trigonometric case because a0 can be computed with small relativeerror. We have a0 = fl(a+ c t) = (1 + "a0)((1 + "a)a+ ec et) ;where j"a0j � 13" ; j"aj � 14" :Since jtj � � and jcj < �a, we can write (with the relative error of O("), of course)(1 + "a)a+ ec et = (1 + "0a)(a+ ec et) ;where j"0aj = �����"a ec eta+ ec et����� � j"aj a�2a(1� �2) = j"aj :Therefore, a0 = (1 + "0a0)(a+ ec et) ; j"0a0j � j"a0j+ j"0aj � 27 � " :Also b0 = fl(b+ c t) = (1 + "b0)(b+ ecet+ "bb) ; j"b0j � 13"; j"bj � 14" :53



Let �1 = " 0 "cc"cc 0 # + J�1m " 0 00 "bb # J�1m ;�2 = "0a0  " a cc b #+�1! ;�3 = J�1m 264 0 00 b0  1� 1 + "0a01 + "b0 ! 375J�1m = 24 fsh2"0b00b0 �fch fsh"0b00b0�fchfsh"0b00b0 fch2"0b00b0 35 ;where j"0b00j � j"0a0j+ j"b0j � 40". ThenJm  " a cc b #+�1 +�2 +�3!Jm = " a0 00 b0 # ;and k� bAmk2 � j"cj+ 3j"bj+ 2j"0a0j+ 3j"0b00j � 225:5 " :Combining (3.2.26) with the above relation, we �nally obtaink�Amk2 � (225:5 + 62:45pn� 2) " : (3.2.27)The theorem now follows from the relations (3.2.10), (3.2.22), (3.2.24) and (3.2.27).Q.E.D.Corollary 3.2.2 Assume Algorithm 3.1.1 converges, and that HM ; J is the �nal pair.Write Hm = DmAmDm with Dm diagonal and Am with ones on the diagonal for 0 �m �M . Let �j be the j-th eigenvalue of the pair H;J � H0; J and �0j = (HM )jj Jjj.Then, with the relative error of O("), the following error bound holds:j�j � �0j jj�jj � " M�1Xm=0 Cm�min(Am) + n � tol : (3.2.28)Proof. For every vector x and positive de�nite H we havejx��Hxj � jx�D�ADxj � k�Ak2jx�DDxj � k�Ak2 jx�DADxj�min(A)= k�Ak2�min(A)x�Hx :Let �m;j denote the j�th eigenvalue of the pair Hm; J . Applying Th. 2.2.1 with�J = 0 and �J = 0, and Th. 3.2.1 to the pairs J;Hm for 0 � m �M � 1, we obtain1� �m � �m+1;j�m;j � 1 + �m ; (3.2.29)54



where �m = Cm�min(Am)" :Applying Th. 2.2.1 and the stopping criterion to the pair J;HM , and ignoring theO(tol2) term, we obtain 1 � n � tol � �0j�M;j � 1 + n � tol : (3.2.30)Here we also used the fact that �min(AM) � 1� n � tol. Since�0j�J = �1;j�j � �2;j�1;j � � � �M;j�M�1;j � �0j�M;j ; (3.2.31)the corollary follows by inserting (3.2.29) and (3.2.30) in the above relation, and ig-noring the relative error of O("). Q.E.D.Here are some remarks about Th. 3.2.1 and Cor. 3.2.2. The remarks hold for allsubsequent theorems and corollaries of the above type.Remark 3.2.3 In the hyperbolic case for � � � = 3=2p2 (Case I), the constant Cmdepends additionally on q�(Am). Deichm�oller [8] also obtained a similar bound forsome non{orthogonal transformations.Remark 3.2.4 In practical computation Case I of Th. 3.2.1 occurs rarely, and al-most never if we transform the pair H; I � GJGT ; I to the pair GTG; J (due todiagonalizing e�ect of this transformation). Thus, our choice of � (and its function�) in (3.2.17) implies that the discontinuity of the bound (3.2.2) at j�j = 3=(2p2) haslittle practical importance. This discontinuity can be removed by considering CaseI, j�j � 3=(2p2), as Case II, j�j > �0, for some �0 < 3=(2p2). Also note that �cannot have an optimizing function as �x in the trigonometric case, where the choiceof �x makes the bounds in the relations (3.2.7) and (3.2.9) almost equal. We canchoose another approach when analysing the hyperbolic case in Th. 3.2.1, namelyto analyse only the cases dj=di � � and dj=di < �. Then the bounds (3.2.22) and(3.2.27) hold in the �rst and the second case, respectively. The approach of Th. 3.2.1is, however, more enlightening and it simpli�es the analysis of the modi�ed methodin the following subsection.Remark 3.2.5 The pn� 2 part of Cm may be multiplied by maxm;i6=j jAm;ijj < 1.Thus if the matrices Am are strongly diagonally dominant, the part of the error termwhich depends on n is suppressed.Remark 3.2.6 Numerical experiments indicate that (3.2.28) grows only slowly withthe increase of n or M . 55



3.2.1 The modi�ed methodIn order to avoid potentially large Cm in Th. 3.2.1 in the hyperbolic case for j�j � � =3=(2p2), we modify the J�orthogonal Jacobi method by bounding the hyperbolicangle as suggested in [29]. Since the original method converges, large hyperbolic anglescan occur only �nitely many times. We �rst show that the modi�cation does not a�ectconvergence properties. We then prove that one step of the modi�ed method satis�esthe assumptions needed for the error bounds of Chap. 2, i.e. that Th. 3.2.1 and Cor.3.2.2 hold with small modi�cations. The algorithm of the modi�ed J�orthogonalJacobi method is similar to Alg. 3.1.1. The only changes are the computation of thehyperbolic rotation parameters and the update of the pivot submatrix cH.Algorithm 3.2.7 Modi�ed two-sided J�orthogonal Jacobi method for the problem(3.1.1)./* compute the parameter hyp: hyp = 1 for the hyperbolic andhyp = �1 for the trigonometric rotation, respectively */if 1 � i � npos < j � n thenhyp = 1elsehyp = �1endif/* compute the hyperbolic Jacobi rotation which diagonalizes" Hii HijHji Hjj # � " a cc b #, and update the 2 by 2 pivot submatrix */� = �hyp � (b+ hyp � a)=(2c)if hyp = 1 and j�j � � � 3=(2p2) thencs = p2sn = sign(�)sn1 = snHii = 2 � a+ b� 2 � p2 � jcjHjj = a+ 2 � b� 2 � p2 � jcjHij = Hji = sn � p2 � (a+ b) + 3 � celse t = sign(�)=(j�j+p�2 � hyp)h = p1� hyp � t2cs = 1=hsn = t=hsn1 = hyp � snHii = a+ hyp � c � tHjj = b+ c � tHij = Hji = 0endif 56



proceed as in Algorithm 3.1.1The convergence proof for the modi�ed method [29] rests on the trace reductionwhich takes place in our case, too. Let j�j � � and let H 0 and H 00 denote the matricesafter an unmodi�ed and modi�ed step, respectively. Thena00 = 2a+ b� 2p2jcj ; b00 = a+ 2b� 2p2jcj ;and �Tr0 � Tr(H)� Tr(H 0) = 2jcjjtj ;�T r00 � Tr(H)� Tr(H 00) = �2a� 2b + 4p2jcj :The quotient �Tr00=�Tr0 � 1 is bounded below with �. For � and � from (3.2.17),we have �Tr00�Tr0 = 1jtj(2p2� 2j�j) � 2p2 � 2� = 1p2 :This trace reduction is quite acceptable. Also, modi�ed steps do not a�ect thequadratic convergence. Indeed, Drma�c and Hari [15] showed that the hyperbolictangent is bounded by jtj � p2=6 after the quadratic convergence starts. This, inturn, implies j�j � 3=p2, so the modi�ed steps do not occur after the quadraticconvergence starts.The next theorem is an analog of Th. 3.2.1 and Cor. 3.2.2 for the modi�edJ�orthogonal Jacobi method.Theorem 3.2.8 Let Hm be the sequence of matrices generated by Algorithm 3.2.7 in
oating{point arithmetic with precision ". Then Theorem 3.2.1 holds except that inthe hyperbolic case for j�j � 3=(2p2) the value of Cm is reduced toCm = 82 + 19:63pn� 2 : (3.2.32)Corollary 3.2.2 holds with this exception, too.Proof. The technique of the proof is the same as in Th. 3.2.1. We assume withoutloss of generality that sh = +1. Then sign (c) = �1. Using (3.2.1) we obtainH 00ik = fl(p2Hik +Hjk) = p2Hik +Hjk + "01Hik + "1HjkH 00jk = fl(p2Hjk +Hik) = p2Hjk +Hik + "02Hjk + "2Hik ;where j"01j; j"02j � 3p2". Since dj=di � �, we havej�Hikj � (7 + 4p2)didk " ; j�Hjkj � 15djdk " :57



Further, a00 = fl(2a+ b� 2p2jcj) = 2a+ b� 2p2jcj+ "03a+ "3b+ "04jcjb00 = fl(a+ 2b� 2p2jcj) = a+ 2b � 2p2jcj+ "4a+ "05b+ "06jcjc00 = fl(p2(a+ b) + 3c) = p2(a+ b) + 3c+ "07(a+ b) + "08cwhere j"03j; j"05j � 4" ; j"04j; j"06j � 8p2" ; j"07j � 4p2" ; j"08j � 6" :Setting � = " "03a+ "3b+ "04jcj "07(a+ b) + "08c"07(a+ b) + "08c "4a+ "05b+ "06jcj #we have Jm  " a cc b #+ J�1m �J�1m !Jm = " a00 c00c00 b00 # :Using dj=di � �, we obtain k� bAmk2 � 82 " ;and �nally (3.2.32). Q.E.D.We have thus eliminated �(Am) from Cm in the hyperbolic case for � � 3=(2p2). Thismakes the one{step error bounds for the modi�ed method of the same type as thecorresponding bounds from [13], that is, the bounds depend only on pn� 2. For 2�2matrices, the use of modi�ed rotations makes obviously no improvement. For n � 3,however, numerical experiments show that the use of modi�ed rotations generally doesnot a�ect the convergence. Thus, the use of modi�ed rotations generally decreasesrelative error estimates.3.2.2 Growth of the condition of the scaled matrixAs we have seen in Cor. 3.2.2, the behaviour of the quotient �min(A0)=�min(Am)(or �(Am)=�(A0)) is essential for the overall error bound of the J�orthogonal Ja-cobi method. In this subsection we �rst state known results. We then show that�(Am)=�(A0) � n if �(A) � �(H). After that we give a simple pattern for the be-haviour of the upper bound for �min(A0)=�min(Am). As a corollary we show that,with the appropriate choice of pivots, we can perform n0 � n�1 successive steps suchthat �min(A0)=�min(Am) � n for every 1 � m � n0. In the conclusion, we de�ne analgorithm for calculating the upper bound for �min(A0)=�min(Am) in Jacobi process.Results of numerical experiments are given in Chap. 5. The results of this subsectionare partially contained in [26].We now state the known bounds for 1=�min(Am), which were originally proved forthe case npos = n by Demmel and Veseli�c [13]. Later Veseli�c [28] noticed that theresults also hold if the hyperbolic rotations are used, since the proofs do not requirethe orthogonality of rotation matrices. Let the pair Hm; J be obtained from the pair58



H0; J by applying m Jacobi rotations in pairwise nonoverlapping rows and columns(this means m � n=2), and let (ik; jk) be the pivot pair in the k�th step. We use thestandard scaling, i.e. Hm = DmAmDm ; (3.2.33)where Dm is positive de�nite diagonal matrix, and Am has ones on the diagonal.The spectrum of Am coincides with the spectrum of the pencil A0 � �A00, where A00coincides with A0 on every rotated element and is the identity otherwise. This implies1�min(Am) = maxx6=0 xTA00xxTA0x � maxx6=0;kxk2=1 xTA00xminx6=0;kxk2=1 xTA0x = 1 +max0�k�m�1 jA0;ikjk j�min(A0) :(3.2.34)After m arbitrary steps we have1�min(Am) � Qm�1k=0 (1 + jAk;ikjk j)�min(A0) :The above upper bound for 1=�min(Am) is usually a large overestimate.The second bound is based on the Hadamard measure of a symmetric positivede�nite matrix H, H(H) � det(H)QiHiiIt is easy to see that H(H) � 1 and H(H) = 1 if and only if H is diagonal. H(H) isindependant of the scaling so thatH(H) = H(A) = detA :Furthermore, 1�min(Am) � eH(Hm) ; (3.2.35)where e = exp(1), and 1H(Hm+1) = 1�A2m;ijH(Hm) � 1H(Hm) ; (3.2.36)where (i; j) is the pivot pair in the m�th step. The above two relations can be usedto monitor the convergence of 1=�min(Am) to 1, but they can be a large overestimatein the beginning of the diagonalization process. Finally, (3.2.35) and (3.2.36) give theguaranteed upper boundmaxm 1�min(Am) � edet(A0) = eH(H0) :The following simple result seems not to have attracted attention:59



Proposition 3.2.9 Let npos = n and �(A) � �(H). Let Hm; J be the sequence ofpairs obtained by the J�orthogonal Jacobi method from the starting pair H;J . Then�(Am)=�(A0) � n ;where matrices Am are de�ned by (3.2.33).Proof. The assumption npos = n implies that all rotation matrices are orthogonal.The assumption �(A) � �(H) and (1.5) imply�(Am) � nminD �(DAmD) � n�(Hm) = n�(H) � n�(A): Q.E.D.Now we come to the central result of this subsection:Theorem 3.2.10 Let Hm = DmAmDm be the sequence of matrices obtained by Al-gorithm 3.1.1 from the starting matrix H � H0, i.e.Hm = JTm�1Hm�1Jm�1 :Let us de�ne the sequence of matrices Tm byT0 = ITm = Tm�1UmUm = D�1m�1J�Tm�1Dm :Then for m � 1Am = T�1m A0T�Tm ;1�min(Am) � kA�1m k2 � kA�10 k2kTmk22 � kA�10 k2kTmk2E = kTmk2E�min(A0) ;(3.2.37)and kTmk2E = kTm�1k2E + 2Am�1;ijT Tm�1;�iTm�1;�j : (3.2.38)Here (i; j) is the pivot pair in the m�th step, and Tm�1;�i denotes the i�th column ofTm�1, etc.Proof. The �rst two statements of the theorem are obvious. Moreover, sinceAm ! I as m!1, the relation TmAmT Tm = A0implies limm!1 TmT Tm = A0 ;60



and limk!1Um+1 � � � � � UkUTk � � � � � UTm+1 = Am :It remains to prove the relation (3.2.38). From the de�nition of Um we see that onlyits pivot submatrix bUm di�ers from the identity matrix, and thatbUm bUTm = bAm�1 :Also, U�1m Am�1U�Tm = Am. Now we show thatUm = �J�Tm �DmRm ; (3.2.39)where �Jm is a J�orthogonal Jacobi rotation on Am�1, �D�1m scales �JTmAm�1 �Jm, andRm is orthogonal. Indeed, setbRm = c�Dmb�J�1m cDm�1 bJm�1cD�1m :Then (3.2.39) is satis�ed and Rm is orthogonal sincebRTm bRm = cD�1m bJTm�1cDm�1 b�J�Tm c�D2m b�J�1m cDm�1 bJm�1cD�1m= cD�1m bJTm�1cDm�1 bAm�1cDm�1 bJm�1cD�1m= cD�1m bJTm�1cHm�1 bJm�1cD�1m= cD�1m cHmcD�1m = bINote that the above relation holds for trigonometric as well as for hyperbolic rotations.In the multiplication Tm = Tm�1 Umonly the i�th and j�th column of Tm�1 change, i.e.h Tm;�i Tm;�j i = h Tm�1;�i Tm�1;�j i bUm : (3.2.40)Let a � Am�1;imjm and bRm = " c s�s c # :In the trigonometric case we haveb�Jm = 1p2 " 1 1�1 1 # ; c�Dm = " p1 � a 00 p1 + a # :which, together with (3.2.39) and (3.2.40), impliesh Tm;ki Tm;kj i = h Tm�1;ki Tm�1;kj i �� 1p2 " cp1� a� sp1 + a sp1� a+ cp1 + a�cp1 � a� sp1 + a �sp1 � a+ cp1 + a # :61



After a simple but rather long calculation, we obtainT 2m;ki + T 2m;kj = T 2m�1;ki + T 2m�1;kj + 2aTm�1;kiTm�1;kj : (3.2.41)The relation (3.2.38) now follows by summing up (3.2.41) for k = 1; : : : ; n.In the hyperbolic case we haveb�Jm = " ch shsh ch # ; c�Dm = " p1 + ta 00 p1 + ta # ;where (see Alg. 3.1.1) � = �1a ; t = � a1 +p1� a2 ;ch2 + sh2 = 1p1 � a2 ; sh � ch = � a2p1 � a2 :This, together with (3.2.39) and (3.2.40), impliesh Tm;ki Tm;kj i = h Tm�1;ki Tm�1;kj i p1 + ta" c � ch+ s � sh s � ch� c � sh�c � sh� s � ch �s � sh+ c � ch # :After a simple but rather long calculation, we obtain again (3.2.41) and the theoremis proved. Q.E.D.Corollary 3.2.11 Let the matrices Hm = DmAmDm, Tm, and Um be de�ned as inTheorem 3.2.10. Let us perform n0 � n � 1 successive steps of the J�orthogonalJacobi method such that for every m 2 f1; : : : ; n0g and every k 2 f1; : : : ; ng eitherTm�1;kim = 0 or Tm�1;kjm = 0. Here (im; jm) denotes the pivot pair in the m�th step.(These assumptions are ful�lled e.g. if we choose pivot pairs along the �rst row, oralong the last column, or along the �rst o�{diagonal.) Then1=�min(Am) � n=�min(A0)for every m 2 f1; : : : ; n0g.Proof. By de�nition is kT0k2E = n. The corollary follows from the assumptions andthe relations (3.2.38) and (3.2.37). Q.E.D.Now we derive an e�cient algorithm for calculating the upper bound for 1=�min(Am)in Jacobi process. The inequality (3.2.37) implies that1=�min(Am) � kTmk2E=�min(A0) :62



We can calculate kTmk2E using the recursive equation (3.2.38) in the following manner:instead of keeping the eigenvector matrix V according to Alg. 3.1.1,V0 = IVm = J0J1 � � �Jm�1 = Vm�1Jm�1 ;we keep the matrix S de�ned byS0 = D�10Sm = D�10 J�T0 J�T1 � � �J�Tm�1 = Sm�1J�Tm�1 :In the trigonometric case we have J�Tm�1 = Jm, and in the hyperbolic case we havebJ�Tm�1 = bJ�1m�1 = " ch �sh�sh ch # :Also V �Tm = D0Sm ; Tm = SmDm : (3.2.42)In order to apply (3.2.38), we need to calculate the scalar product of the i�th andj�th column of Tm. From (3.2.42), we see thatT Tm;�iTm;�j = STm;�iSm;�jDm;iiDm;jj :Therefore, the sequence kTmk2E is given by the recursionkT0k2E = n (3.2.43)kTmk2E = kTm�1k2E + 2Hm�1;ijSTm�1;�iSm�1;�j ;at a cost of n+ 2 multiplications and n additions in each step.Suppose that the algorithm converges, and that HM ; J is the �nal pair. Then(3.2.42) implies that V �TM = D0SM ;but we want to obtain the eigenvector matrix VM . Since VM is J�orthogonal, i.e.V TMJVM = J , we have VM = JV �TM J :Multiplication with D0 from left has relative error " and multiplications with J haveno error at all.In numerical experiments sequence kTmk2E behaved extremely well in the sensethat it was approximately n for all m. However, the recursion (3.2.43) does not revealthe fact that 1=�min(Am) tends to one. This convergence can be monitored using themonotonically decreasing upper bound (3.2.35). This bound is usually large in thebeginning of the diagonalization process, and it meets the bound given by (3.2.43)after one or two cycles. After that point (3.2.43) is not needed any more. UpdatingH(Hm) according to (3.2.36) is very simple. The only additional e�ort is to calculateH(H0) (for example by using the Cholesky decomposition of H0).63



Remark 3.2.12 The theoretical results of this section, as well as numerical obser-vations, do not depend upon whether only trigonometric (J = I), or trigonometricand hyperbolic rotations are used. This once more justi�es the use of the hyperbolicrotations.3.3 Implicit J�orthogonal Jacobi methodIn this section we present and analyse the implicit (one{sided) J�orthogonal Jacobimethod for solving the eigenvalue problemHx = �x ; x 6= 0 ; (3.3.1)where H is a n � n real symmetric matrix of rank rank (H) = r � n. Let H bedecomposed as H = GJGT ; (3.3.2)where G is a n� r matrix (i.e. G has full column rank), J = Inpos � (�Ir�npos), andnpos is number of the positive eigenvalues of H. The symmetric inde�nite decom-position (3.3.2) is described in Chap. 4. Since J�1 = J , Th. 2.3.1 implies that theeigenvalues of the pair GTG; J are the nonzero eigenvalues of H, and that there existsa J�orthogonal matrix F (F TJF = J) such that the matrixF TGTGF � �is diagonal and positive de�nite. Therefore, nonzero eigenvalues of the problem (3.3.1)are the diagonal elements of the diagonal matrix �J , and the corresponding eigen-vectors are the columns of the matrixU = GF��1=2 :Instead of forming explicitly the matrix GTG and applying Alg. 3.1.1 to the pairGTG; J , we apply the implicit J�orthogonal Jacobi method to the pair G; J . Themethod, originally proposed by Veseli�c [29], consists of an iterative application of theone{sided transformation Gm+1 = GmJm ;where G � G0 and Jm is a J�orthogonal Jacobi plane rotation.If G is square and non{singular, the method also solves the hyperbolic singularvalue problem [21] for the pair G; J .Note that in the positive de�nite case [13], the implicit method can be appliedeither to G or GT (since J = I, the matricesGTG and GGT have the same eigenvaluesand simply related eigenvectors). Here, even if H is non{singular (G is non{singularand square), only one application makes sense, i.e. from the right on G or from theleft on GT (see also Sect. 2.3). 64



The section is organized as follows: we �rst present the algorithm. Then we provethat in 
oating{point arithmetic the method computes the non{zero eigenvalues ofH with the error bounds of Chap. 2. We analyse the simple version of the algorithm,omitting enhancements like keeping the diagonal in a separate vector and fast rota-tions, to make the error analysis clearer. In Subsect. 3.3.1 we analyse the version ofthe algorithm where diagonal of GTG is kept in a separate vector. In Subsect. 3.3.2we give the norm error bounds for the computed eigenvectors if H is non{singular(non{singularity is neccessary since we use the eigenvector perturbation bounds fromChap. 2). In Sect. 3.4 we analyse the fast version of the algorithm. In Subsect.3.4.1 we analyse the fast method which uses self{scaling rotations. These rotations,introduced and analysed by Anda and Park [1] for the trigonometric case, are usedto suppress possible under
ow/over
ow when accumulating the diagonal of the fastrotations.We now present our algorithm:
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Algorithm 3.3.1 Implicit J�orthogonal Jacobi method for the pair G; J . tol is auser de�ned stopping criterion.repeatfor all pairs i < j/* compute " a cc b # � the (i; j) submatrix of GTG */a = Pnk=1G2kib = Pnk=1G2kjc = Pnk=1Gki �Gkj/* compute the parameter hyp: hyp = 1 for the hyperbolic andhyp = �1 for the trigonometric rotation, respectively */if 1 � i � npos < j � r thenhyp = 1elsehyp = �1endif/* compute the J�orthogonal Jacobi rotation which diagonalizes" Hii HijHji Hjj # � " a cc b # */� = �hyp � (b+ hyp � a)=(2c)t = sign(�)=(j�j+p�2 � hyp)h = p1� hyp � t2cs = 1=hsn = t=hsn1 = hyp � sn/* update columns i and j of G */for k = 1 to ntmp = GkiGki = cs � tmp+ sn1 �GkjGkj = sn � tmp+ cs �Gkjendforendforuntil convergence (all jcj=pab � tol)/* the computed non{zero eigenvalues of H = GJGT (and of the pair GTG; J) are�j = (Pnk=1G2kj)Jjj *//* the computed eigenvectors of H are the normalized columns of the �nal G */Remark 3.3.2 If G is square and non{singular, then the computed hyperbolic sin-gular values [21] of the pair G; J are�j = vuut nXk=1G2kj Jjj ;66



and the computed hyperbolic singular vectors are the normalized columns of the �nalG. This remark holds for all subsequent implicit methods in this chapter.The perturbation theory for the problem (3.3.1), as well as for the hyperbolicsingular value problem [21], is given by Theorems 2.3.1 and 2.3.2. Let Gm be thesequence of matrices obtained by Alg. 3.3.1 from the starting matrix G � G0. Forevery m � 0 write Gm = BmDm, where Dm is diagonal positive de�nite, and thecolumns of Bm have unit norms. All error bounds in this section contain the quan-tities 1=�min(Bm), whereas the perturbation bounds in Chap. 2 are proportionalto 1=�min(B0) (or �(B0)). Therefore, as in Sect. 3.2, our claim that the implicitJ�orthogonal Jacobi method is as accurate as predicted in Sect. 2.3 depends onthe ratio maxm �min(B0)=�min(Bm) (or maxm �(Bm)=�(B0)) being modest. In ex-act arithmetic, one-sided Jacobi on G = BD is identical to two-sided Jacobi onH = GTG = DBTBD = DAD. Thus, all convergence properties of the explicitmethod carry naturally over to the implicit one, and the question of the growth of�(Bm) = �(Am)1=2 is essentially identical to the question of the growth of �(Am) inthe case of two-sided Jacobi. Therefore, the results of Subsect. 3.2.2 apply here, aswell.The following theorem and its corollary justify our accuracy claims for the non{zero eigenvalues of the matrix H = GJGT computed by the implicit J�orthogonalJacobi method.Theorem 3.3.3 Let Gm be the sequence of matrices generated by the implicit J�ortho-gonal Jacobi algorithm in 
oating{point arithmetic with precision "; that is Gm+1 isobtained from Gm by applying a single J�orthogonal Jacobi rotation. Then the fol-lowing diagram commutes: Gm + �GmGm Gm+1? -
oatingJacobi�����exactrotationThe top arrow indicates that Gm+1 is obtained from Gm by applying one J�ortho-gonal Jacobi rotation in 
oating{point arithmetic. The diagonal arrow indicates thatGm+1 is obtained from Gm + �Gm by applying one J�orthogonal plane rotation inexact arithmetic; thus Gm+1JGTm+1 and (Gm + �Gm)J(Gm + �Gm)T have identicalnon{zero eigenvalues and the corresponding eigenvectors. �Gm is bounded as follows:let � = �2(Bm), and write �Gm = �BmDm, where Dm is diagonal such that Bm inGm = BmDm has unit columns. Let aT and bT be the true values of Pk G2ki andPk G2kj , respectively. Then, with the relative error of order ",k�Bmk2 � Cm " ; (3.3.3)67



where Cm = 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
26 in trigonometric case ;�+ 13p�+ 29 in hyperbolic case ; j�j � 32p2 ;77 in hyperbolic case ; j�j > 32p2 ;bT � 12aT ;96 in hyperbolic case ; j�j > 32p2 ;bT < 12aT :In other words, one step of the implicit J�orthogonal Jacobi method satis�es theassumptions needed for the perturbation bounds of Sect. 2.3.Proof. The proof of the commuting diagram is a tedious computation. We shallprove the diagram separately for the trigonometric and for the hyperbolic case. LetcT be the true value of Pk GkiGkj . As in (3.2.3), we setaT = d2i ; bT = d2j ; cT = zdidj :We may assume without loss of generality that aT � bT and cT > 0. As in (3.2.4),we have 0 < z � �z � (�2(Bm)� 1)=(�2(Bm) + 1) < 1 : (3.3.4)Set x � dj=di. Note that x � 1. Systematic application of formulae (3.2.1) showsthat a = aT (1 + "a) where j"aj � n"b = bT (1 + "b) where j"bj � n"c = cT + "cqaTbT where j"cj � n" :Trigonometric case. This case was analysed by Demmel and Veseli�c [13] and wepresent it for the sake of completeness. Small di�erences in the proof give here, again,a somewhat better bound for k�Bmk2.Let fcs � 1=p1 + t2 ; fsn � t=p1 + t2 :From (3.2.1) we getsn = (1 + "sn)fsn ; cs = (1 + "cs)fcs ; j"snj; j"csj � 3" :fcs and fsn de�ne the exact rotationJm = " fcs fsn�fsn fcs #68



which takes Gm + �Gm to Gm+1:(Gm + �Gm)Jm = Gm+1 :Let G0ki and G0kj be the new values for these entries computed by the algorithm. ThenG0ki = fl(cs �Gki � sn �Gkj)= (1 + "1)(1 + "2)csGki � (1 + "3)(1 + "4)snGkj= (1 + "1)(1 + "2)(1 + "cs)fcsGki � (1 + "3)(1 + "4)(1 + "sn)fsnGkj� fcsGki � fsnGkj + Eki ; (3.3.5)and, similarly, G0kj = fl(sn �Gki + cs �Gkj) = fsnGki +fcsGkj + Ekj ; (3.3.6)where kE�ik2 � 5(fcskG�ik2 + jfsnjkG�jk2)"kE�jk2 � 5(jfsnjkG�ik2 +fcskG�jk2)" :Here G�i refers to the i-th column of G, etc. Thush G0�i G0�j i = h G�i G�j i " fcs fsn�fsn fcs #+ h E�i E�j i=  h G�i G�j i+ h E�i E�j i " fcs �fsnfsn fcs #! " fcs fsn�fsn fcs #� �h G�i G�j i+ h F�i F�j i� " fcs fsn�fsn fcs # ; (3.3.7)where kF�ik2 � fcskE�ik2 + jfsnjkE�jk2� (5kG�ik2 + 10fcsjfsnjkG�jk2) "� 5(1 + x)di" ; (3.3.8)and kF�jk2 � jfsnj � kE�ik2 +fcskE�jk2� (5kG�jk2 + 10fcsjfsnjkG�ik2) "� 5(1 + 2fcsjfsnj=x)dj" : (3.3.9)We consider two cases, x < �x � 0:48, and x � �x. First consider x < �x. Byinserting �x for x in (3.3.8) we obtainkF�ik2 � 7:4di" :69



Our assumption further implies that the subtraction 1 � x2 has a low relative error,and that z + n" < 1 with a relative error of O("). Thereforejtj � jcjjb� aj = jcT + "cpaTbT jjbT + "bbT � aT � "aaT j= jzx+ "cxjjx2 � 1 + "bx2 � "aj � x(z + n")1� �x2 (1 +O(")) : (3.3.10)We can ignore the (z + n")(1 + O(")) term, so that jtj � x=(1 � �x2). Inserting thisinequality into (3.3.9) we obtainkF�jk2 � 5(1 + 21� �x2 )dj" � 18dj" :Here we also used fcsjfsnj � fcs2jtj � jtj. Therefore,k�Bmk2 � kF�ik2di + kF�jk2dj � 26" (3.3.11)Now consider the case x � �x. Inserting 1 for x in (3.3.8) we obtainkF�ik2 � 10di" :Inserting fcsjfsnj � 1=2 and 1=�x for 1=x in (3.3.9), we obtainkF�jk2 � 15:5dj" ;so that (3.3.11) holds again, thus improving the bound k�Bmk2 � 72" from [13].Hyperbolic case. For the sake of the clarity, we denote the quantities cs, sn andsn1 = sn computed by Alg. 3.1.1 with ch and sh, respectively. Letfch � 1=p1� t2 ; fsh � t=p1 � t2 :Using (3.2.1) we can show that the bounds (3.2.11) hold for t, fch and fsh with arelative error of O("). Suppose that we can writesh = (1 + "sh)fsh ; ch = (1 + "ch)fch :fch and fsh de�ne the exact rotationJm = " fch fshfsh fch #which takes Gm + �Gm to Gm+1:(Gm + �Gm)Jm = Gm+1 :70



Let G0ki and G0kj be the new values for these entries computed by the algorithm. ThenG0ki = fl(ch �Gki + sh �Gkj)= (1 + "1)(1 + "2)chGki + (1 + "3)(1 + "4)shGkj= (1 + "1)(1 + "2)(1 + "ch)fchGki + (1 + "3)(1 + "4)(1 + "sh)fshGkj� fchGki + fshGkj + Eki ; (3.3.12)and, similarly,G0kj = fl(sh �Gki + ch �Gkj) = fshGki + fchGkj + Ekj ; (3.3.13)where kE�ik2 � j"01jfchkG�ik2 + j"02jjfshjkG�jk2kE�jk2 � j"03jjfshjkG�ik2 + j"04jfchkG�jk2 :Here j"01j; j"04j = j"chj+ 2" ; j"02j; j"03j = j"shj+ 2" : (3.3.14)Thus h G0�i G0�j i = h G�i G�j i " fch fshfsh fch # + h E�i E�j i=  h G�i G�j i+ h E�i E�j i " fch �fsh�fsh fch #! " fch fshfsh fch #� �h G�i G�j i+ h F�i F�j i� " fch fshfsh fch # ; (3.3.15)where kF�ik2 � fchkE�ik2 + jfshjkE�jk2� (j"01jfch2 + j"03jfsh2)kG�ik2 + (j"02j+ j"04j)fchjfshjkG�jk2� (j"01jfch2 + j"03jfsh2 + (j"02j+ j"04j)fchjfshjx)di ; (3.3.16)and kF�jk2 � jfshj � kE�ik2 + fchkE�jk2� (j"04jfch2 + j"02jfsh2)kG�jk2 + (j"01j+ j"03j)fchjfshjkG�ik2� �j"04jfch2 + j"02jfsh2 + (j"01j+ j"03j)fchjfshj1x� dj : (3.3.17)Now we have to calculate the upper bounds for j"0ij's, fch2, fsh2 and fchjfshj, and toinsert them into relations (3.3.16) and (3.3.17). We consider two cases, j�j � � andj�j > �, where � is de�ned by (3.2.17). 71



First consider j�j � �. As in the proof of Th. 3.2.1 we can show that the relations(3.2.18) and (3.2.20) hold. From (3.2.11) it follows thatfl(p1 � t2) = (1 + "h)p1� t2 ;where j"hj � �38p�+ 43� " :Therefore, j"shj; j"chj � �38p�+ 73� " ;so that j"0ij � �38p�+ 133 � " ; i = 1; : : : ; 4 :Inserting 1=x � p2, (3.2.20), and the above relation in (3.3.16) and (3.3.17), weobtain kF�ik2 � (0:375� + 5:46p�+ 13)di"kF�jk2 � (0:46� + 6:6p�+ 15:67)dj" :This, in turn, implies k�Bmk2 � Cm as desired.Now consider the case j�j > �. As in the proof of Th. 3.2.1, we can show that therelations (3.2.23) hold for t, fch and fsh with a relative error of O("). Nowfl(p1� t2) = (1 + "h)p1 � t2 ; j"hj � 3" ;so that j"shj; j"chj � 4" ; j"0ij � 6" ; i = 1; : : : ; 4 : (3.3.18)We have two subcases, x � � and x < �, where � is de�ned by (3.2.17). If x � �,then inserting 1=x � p2, (3.3.18) and (3.2.23) into (3.3.16) and (3.3.17) yieldskF�ik2 � 35di" ; kF�jk2 � 42dj" ; k�Bmk2 � 77" ;as desired.If x < �, thenjtj � 1j�j = 2jcjja+ bj = 2jcT + "cpaTbT jjaT + "aaT + bT + "bbT j= 2jzx+ "cxjj1 + x2 + "a + "bx2j � 2x(z + n")(1 +O(")) : (3.3.19)We can ignore the (z + n")(1 +O(")) term, so that jtj � 2x. Therefore,fchjfshj = fch2jtj � 2fch2x :72



Inserting this, (3.3.18) and (3.2.23) into (3.3.16) and (3.3.17), we obtainkF�ik2 � 30di" ; kF�jk2 � 66dj" ; k�Bmk2 � 96" ;and the theorem is proved. Q.E.D.Corollary 3.3.4 Assume Algorithm 3.3.1 converges, and that GM ; J is the �nal pairwhich satis�es the stopping criterion. For 0 � m � M write Gm = BmDm with Dmdiagonal and Bm with unit columns. Let �j be the j-th non-zero eigenvalue of G0JGT0 ,and let �0j be the j-th computed non{zero eigenvalue. Then, with the relative error ofO("), (1 � 
)2 � �0j�j � (1 + 
)2 ; (3.3.20)where 
 = "M�1Xm=0 Cm�min(Bm) + n � tol=2 + r � n � "=2 :Proof. Let �m;j denote the j�th non{zero eigenvalue of the matrix GmJGTm. Bysubstituting (3.3.3) into (2.3.12) and then applying Th. 2.3.1 for every 0 � m �M�1,we obtain (1� �m)2 � �m+1;j�m;j � (1 + �m)2 ; (3.3.21)where �m = "Cm=�min(Bm) :Also, diag (�0j) = diag (fl(GTMGM )) = fl(GTMGM ) + F ;where jFijj � (n"+ tol)kGM �ik2kGM;�jk2 :Here GM;�i denotes the i�th column of GM . The tol term comes from the stoppingcriterion. The n" term comes for the o�{diagonal elements of F from the fact thatc=pab in the stopping criterion may be underestimated by as much as n", and for thediagonal elements of F from computing the norms of the columns of GM . Therefore,1� r � n � "� n � tol � �0j�M;j � 1 + r � n � "+ n � tol ;and (3.3.20) follows by inserting (3.3.21) and the above relation into (3.2.31), andignoring the relative error of O("). Q.E.D.An alternative way to prove this corollary is given in the proof of Th. 3.3.9.73



Remark 3.3.5 If G is square and non{singular, then Cor. 3.3.4 can be applied tothe hyperbolic singular value problem. Let �j be the j-th hyperbolic singular valueof G0; J and �0j the j-th computed hyperbolic singular value. Then, by taking squareroots in (3.3.20) and ignoring relative errors of O("), we obtain1 � 
 � " � �0j�j � 1 + 
 + " ; (3.3.22)where 
 = "M�1Xm=0 Cm�min(Bm) + n � tol=2 + r � n"=2 :Extra " in (3.3.22) comes from the fact that �0j = fl(q�0j).This remark holds for all subsequent implicit methods in this chapter.As we did in Subsect. 3.2.1, we can modify the implicit J�orthogonal Jacobimethod in order to avoid potentially large Cm in Th. 3.4.2 in the hyperbolic case forj�j � �. The algorithm of the modi�ed method is obtained by combining Algorithms3.3.1 and 3.2.7 in the obvious manner. The comments from Subsect. 3.2.1 hold here,as well. We have the following:Theorem 3.3.6 Let Gm be the sequence of matrices generated by the modi�ed im-plicit J�orthogonal Jacobi method in �nite precision arithmetic with precision ".Then Theorem 3.3.3 holds except that in the hyperbolic case for j�j � 3=(2p2) thevalue Cm is changed to Cm = 28. Corollary 3.3.4 holds with this exception, too.Proof. The technique of proof is the same as in Th. 3.3.3. We assume without lossof generality that fsh = sh = +1. Also, fch = p2, ch = fl(p2), so thatj"chj � " ; "sh = 0 :Therefore, j"01j; j"04j � 3" ; j"02j; j"03j � 2" ;and the theorem follows by inserting these values and 1=x � p2 into (3.3.16) and(3.3.17). Q.E.D.3.3.1 Keeping the diagonal in a separate vectorThe approximate operation count for the implicit J�orthogonal Jacobi method ofAlg. 3.3.1 is the following: we need 3n multiplications and 3(n � 1) additions tocalculate a, b, and c, and 4n multiplications and 2n additions to update vectorsG:i, G:j per rotation. This gives the total of approximately 3:5n3 multiplications and2:5n3 additions per cycle (n(n�1)=2 rotations). Keeping the diagonal elements of the74



matrix GTG in a separate vector makes the calculation of the parameters a and b viascalar product in each step unnecessary, which leaves the total of 2:5n3 multiplicationsand 1:5n3 additions per cycle.The main idea (in the notation of Alg. 3.3.1) is the following: at the beginning ofeach cycle we calculate �i = nXk=1G2ki :At the beginning of each step we seta = �i ; b = �j ; c = nXk=1GkiGkj :We update �i and �j by the formulae�i = �i � c � t ; �j = �j + c � t ;in the trigonometric, and�i = �i + c � t ; �j = �j + c � t ;in the hyperbolic case, respectively.Due to subtractions in updating �i's, they can become inaccurate, i.e. the relativeerror of �i to kG�ik2 can be larger then O("). Suppose that �i = kG�ik2. After onesubtraction we have�0i = kG0�ik2(1 + �) ; j�j � �2(Bm) + 12 " ;where the maximum is attained when z tends to its upper bound (3.3.4) and a =b. Therefore, the relative error of �i can grow considerably, which can a�ect theconvergence by making the rotation angles inaccurate. This is why the vector �should be updated at the beginning of each cycle from the columns of the currentmatrix G. We did not use the well known Rutishauser's delayed updates of thediagonal, since they do not guarantee high relative accuracy of the diagonal at thebeginning of each cycle.When the pair GTG; J is obtained from the pair GJGT ; I, then the probabilitythat the convergence is actually spoiled is very low. This is due to a non-trivialdiagonalizing e�ect of the above transition.We now turn to the one{step error analysis of the method. In the notation of Th.3.3.3 we have �i = d2i ; �j = d2j ; x = q�i=�j :If x � �x in the trigonometric, and x � � in the hyperbolic case, then Th. 3.3.3 holdsirrespectively of the accuracy of �i and �j.75



If x < �x in the trigonometric, and x < � in the hyperbolic case, then Th. 3.3.3holds if the relations (3.3.10) and (3.3.19) are satis�ed, respectively. This is alwaysthe case if c2 < �i�j :If the above inequality does not hold, then we have to refresh �i and �j. Note thathyperbolic rotations cause no additional problems over trigonometric ones.The following algorithm is only a slight modi�cation of Alg. 3.3.1, so only theparts where the two algorithms di�er are stated.Algorithm 3.3.7 Implicit J�orthogonal method for the pair G; J . The vector �contains diagonal elements of the matrix GTG.repeat/* at the beginning of each cycle refresh the vector� which contains diagonal of GTG */for j=1 to r�j = Pnk=1G2kjendforfor all pairs i < j/* compute " a cc b # � the (i; j) submatrix of GTG */c = Pnk=1Gki �Gkjif c2 < �i�j thena = �ib = �jelsea = Pnk=1G2kib = Pnk=1G2kjendif/* compute the parameter hyp: hyp = 1 for the hyperbolic andhyp = �1 for the trigonometric rotation, respectively *//* compute the J�orthogonal Jacobi rotation which diagonalizes" Hii HijHji Hjj # � " a cc b # *//* update columns i and j of G *//* update �i and �j */�i = a+ hyp � c � t�j = b+ c � tendforuntil convergence (all jcj=pab � tol)/* the computed non{zero eigenvalues of H = GJGT (and of the pair GTG; J) are�j = (Pnk=1G2kj)Jjj *//* the computed eigenvectors of H are the normalized columns of the �nal G */76



Numerical experiments of Chap. 5 showed no di�erence in the accuracy between Alg.3.3.7 and other implicit algorithms.3.3.2 Error bounds for the eigenvectorsTheorems which give one{step error analysis of the implicit J�orthogonal Jacobimethods in Sections 3.3 and 3.4 imply that one step of any of those methods satis�esthe eigenprojection perturbation bounds of Th. 2.3.3. As a consequence, the eigen(spectral) projections computed by any of those methods also satisfy those bounds.We prove the following theorem for the method de�ned by Alg. 3.3.1. The proof forother implicit methods is similar. In the proof of the theorem we use the followinglemma due to Veseli�c [30]:Lemma 3.3.8 Let F �F = I + E ; kEk2 = � < 1 ;where F is any matrix with full column rank. Then there exists a matrix Q such thatQ�Q = I and kF �Qk2 � � .Proof. We make the polar decomposition F = QP where Q�Q = I and P isHermitian positive de�nite matrix. Since QQ�F = F , we have P 2 = I + E, or(P + I)(P � I) = E :Thus kP � Ik2 � �=(1 +p1� �) � � ;so that kF �Qk2 = kQP �Qk2 = kP � Ik2 ;and the lemma is proved. Q.E.D.Theorem 3.3.9 Let G; J , where G is non{singular, be the starting pair for Alg.3.3.1. Assume algorithm converges, and that GM ; J is the �nal pair which satis�esthe stopping criterion. For 0 � m � M write Gm = BmDm, where Dm diagonaland Bm has unit columns. Let � be an eigenvalue of the matrix GJGT and let P beits eigenprojection. Let P 0 be the approximation of the corresponding spectral projec-tion, i.e. P 0 is obtained from the �nal eigenvectors which are obtained by dividing thecolumns of GM by their norms. Then, with the relative error of O("),kP 0 � Pk2 � 4��rgG(�) 11 � 3��rgG(�) + 2n � tol+ n(3n + 4)" ; (3.3.23)77



where �� = �(� + 2), and� = "M�1Xm=0 Cm�min(Bm) + n � tol + n2" ;provided 3��=rgG(�) < 1. Here rgG(�) is de�ned by (2.3.1) and the quantities Cm arede�ned by Th. 3.3.3.Proof. We �rst show that for every 1 � m � M , the matrix Gm is obtained bythe sequence of exact transformations on some perturbed matrix G+ �G(m�1) in thesense of Th. 3.3.3, i.e. Gm = (G + �G(m�1))R0 � � � � �Rm�1 ; (3.3.24)where k�G(m�1)xk2 � "m�1Xk=0 Ck�min(Bk)kGxk2 (3.3.25)holds with the relative error of ". The proof is by induction on m. For m = 1 thestatement follows from Th. 3.3.3. Now suppose that (3.3.24) holds for some m � 1.By Th. 3.3.3 and the induction assumption we haveGm+1 = (Gm + �Gm)Rm= [(G+ �G(m�1))R0 � � � � �Rm�1 + �Gm]Rm= (G + �G(m))R0 � � � � �Rm ;where �G(m) = �G(m�1) + �Gm(R0 � � � � �Rm�1)�1 :Set �Gm = �BmDm. Thenk�G(m)xk2 � k�G(m�1)xk2 + k�Bmk2�min(Bm)kBmDmG�1m (G + �G(m�1))xk2 ;and (3.3.24) follows from (3.3.25) and Th. 3.3.3, ignoring the relative errors of O(").Since the �nal pair satis�es the stopping criterion, we haveBTMBM = I + E ; kEk2 � n � tol+ n2" :The n2" term comes from the fact that c=pab in the stopping criterion may beunderestimated by as much as n". Lemma3.3.8 implies that there exists an orthogonalmatrix B0M = BM + �BM ;where k�BMk2 � n � tol + n2" :78



Set G0M = B0MDM . As in the �rst part of the proof, we can show thatG0M = (G + �G(M))R0 � : : : �RM�1 ;where k�G(M)xk2 � �kGxk2. Since �min(BM ) � 1 � (n � tol + n2"), we ignore thefactor 1=�min(BM ) when applying Th. 3.3.3. Let P 0M denote the spectral projectionof the matrix G0MJG0TM which corresponds to the eigenprojection P . Th. 2.3.3 nowimplies kP � P 0Mk2 � 4��rgG(�) � 11 � 3��=rgG(�) : (3.3.26)The spectral projection P 0M is obtained from columns of the matrix B 0M , while theapproximation P 0 is obtained from columns of the matrixfl(GM � jdiag (�0j)j�1=2) = BM + F ;where jFijj � jBM;ijj(n+ 4)"=2 :Here we used j�0j j=DM;j � 1 + n" and ignored the relative error of O("). UsingkBMk2 � 1 + n � tol + n2", and ignoring again the relative error of O("), we �nallyhave kP 0M � P 0k2 � k(BM + �BM)(BM + �BM)T � (BM + F )(BM + F )Tk2� 2k�BMk2 + 2kFk2� 2n � tol + n(3n+ 4)" ;which, together with (3.3.26), implies (3.3.23). Q.E.D.3.4 Fast implicit methodIn this section we de�ne and analyse the fast implicit J�orthogonal Jacobi methodfor the pair G; J . The remarks from Sect. 3.3 hold here as well. The section is alsoorganized as Sect. 3.3. We �rst present the algorithm. We then give one{step erroranalysis and overall error bound for the eigenvalues. In Th. 3.4.4 we give one{steperror analysis of the modi�ed method. After that we shortly discuss the version of thealgorithm where the diagonal of GTG is kept in a separate vector. In Subsect. 3.4.1 weconsider fast self{scaling rotations used in order to avoid possible under
ow/over
owwhen updating the scaling matrix.The idea of fast rotations is to use transformation matrices of the formJm = " 1 �� 1 # ; (3.4.1)79



instead of matrices of the form" cs sn�sn cs # ; " ch shsh ch # :This saves 2n multiplications in each step, or approximately n3 multiplications ineach cycle. The use of matrices of the type (3.4.1) is possible if the matrices Gm arestored in factorized form Gm = �Gm �Dm ;where �Dm is diagonal positive de�nite.In the m�th step of the implicit method only the columns i and j of the matrixGm are changed. Let Gm � G and Gm+1 � G0. If we use the ordinary rotation, thenwe have h G0�i G0�j i = h G�i G�j i " cs sn�sn cs # ;in the trigonometric, orh G0�i G0�j i = h G�i G�j i " ch shsh ch # ;in the hyperbolic case. Now suppose that G = �G �D, i.e.h G�i G�j i = h �G�i �G�j i " �Di �Dj # : (3.4.2)Simple calculation shows thath G0�i G0�j i = h �G0�i �G0�j i " �D0i �D0j # ;where h �G0�i �G0�j i = h �G�i �G�j i " 1 �� 1 # :Here � = �Di�Dj t ; � = � �Dj�Di t ; t = sn=cs ;�D0i = �Dics ; �D0j = �Djcs ; (3.4.3)in the trigonometric, and� = �Di�Dj t ; � = �Dj�Di t ; t = sh=ch ;�D0i = �Dich ; �D0j = �Djch ; (3.4.4)in the hyperbolic case.We now state the algorithm: 80



Algorithm 3.4.1 Fast implicit J�orthogonal Jacobi method for the pair G; J . tolis a user de�ned stopping criterion.for k = 1 to rDk = 1endforrepeatfor all pairs i < j/* compute " a cc b # � the (i; j) submatrix of GTG */a = D2i Pnk=1G2kib = D2j Pnk=1G2kjc = DiDjPnk=1Gki �Gkj/* compute the parameter hyp: hyp = 1 for the hyperbolic andhyp = �1 for the trigonometric rotation, respectively */if 1 � i � npos < j � r thenhyp = 1elsehyp = �1endif/* compute the J�orthogonal Jacobi rotation which diagonalizes" Hii HijHji Hjj # � " a cc b # */� = �hyp � (b+ hyp � a)=(2c)t = sign(�)=(j�j+p�2 � hyp)cs = 1=p1� hyp � t2� = t �Di=Dj� = hyp � t �Dj=Di/* update columns i and j of G */for k = 1 to ntmp = GkiGki = tmp+ � �GkjGkj = � � tmp+Gkjendfor/* update Di and Dj */Di = Di � csDj = Dj � csendforuntil convergence (all jcj=pab � tol)/* the computed non{zero eigenvalues of H = GJGT (and of the pair GTG; J) are�j = (Pnk=1G2kj)D2jJjj *//* the computed eigenvectors of H are the normalized columns of the �nal G */81



The following theorem and its corollary justify our accuracy claims for the eigen-values of the matrix H = GJGT computed by the fast implicit J�orthogonal Jacobimethod .Theorem 3.4.2 Let �Gm, �Dm be the sequences of matrices generated by the fast im-plicit J�orthogonal Jacobi algorithm in 
oating{point arithmetic with precision ";that is �Gm+1 is obtained from �Gm by applying a single fast rotation, and Dm+1 isobtained from Dm according to (3.4.3) or (3.4.4). Let Gm � �Gm � �Dm. Since Gm isneeded only for theoretical consideration, we suppose that this matrix multiplicationis exact. Then the following diagram commutes.Gm + �Gm�Gm �Dm � Gm �Gm+1 � �Dm+1 � Gm+1? -fast 
oatingrotation��������*exactrotationThe top arrow indicates that Gm+1 is obtained from Gm by applying one fast rota-tion in 
oating{point arithmetic. The diagonal arrow indicates that Gm+1 is obtainedfrom Gm + �Gm by applying one J�orthogonal plane rotation in exact arithmetic;thus Gm+1JGm+1 and (Gm + �Gm)J(Gm+ �Gm)T have identical eigenvalues. �Gm isbounded as follows. Let � = �2(Bm) and write �Gm = �BmDm, where Dm is diagonalsuch that Bm in Gm = BmDm has unit columns. Let aT and bT be the true values ofPkG2ki and Pk G2kj , respectively. Then, with the relative error of order ",k�Bmk2 � Cm � " ; (3.4.5)where Cm = 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
33 in trigonometric case ;�+ 16p�+ 39 in hyperbolic case ; j�j � 32p2 ;102 in hyperbolic case ; j�j > 32p2 ;bT � 12aT ;125 in hyperbolic case ; j�j > 32p2 ;bT < 12aT :In other words, one step of the fast implicit J�orthogonal Jacobi method satis�es theassumptions needed for the perturbation bounds of Sect. 2.3.Proof. The proof of the commuting diagram is a tedious computation. We shallprove the diagram separately for the trigonometric and for the hyperbolic case. Let82



aT , bT and cT be the true values of �D2i Pk �G2ki, �D2j Pk �G2kj and �Di �DjPk �Gki �Gkj . Wemay assume without loss of generality that aT � bT and cT > 0. As in (3.2.3), wehave aT = d2i ; bT = d2j ; cT = zdidj :As in (3.2.4), we can show that (3.3.4) holds. Also let x � dj=di � 1. Systematicapplication of formulae (3.2.1) shows thata = aT (1 + "a) where j"aj � (n+ 2)"b = bT (1 + "b) where j"bj � (n+ 2)"c = cT + "cqaTbT where j"cj � (n + 2)"Trigonometric case. This case was analysed by Anda and Park [1] for the Givensrotation in the QR{algorithm. Our proof is similar to theirs.Let fcs � 1=p1 + t2 ; fsn � t=p1 + t2e� � t �Di= �Dj ; e� � �t �Dj= �Di : (3.4.6)For the calculated transformation parameters we havecs = (1 + "cs)fcs ; j"csj � 3" ;� = (1 + "�)e� ; � = (1 + "�) e� ; j"�j; j"�j � 2" :fcs and fsn de�ne the exact rotationJm = " fcs fsn�fsn fcs #which takes Gm + �Gm to Gm+1:(Gm + �Gm)Jm = Gm+1 :Let G0ki and G0kj be the new values for these entries computed by the algorithm. Wehave �G0ki = fl( �Gki + � �Gkj) = (1 + "1) �Gki + (1 + "2)(1 + "3)(1 + "�) e� �Gkj= �Gki + e� �Gkj + "1 �Gki + ("2 + "3 + "�) e� �Gkj�D0i = fl( �Difcs) = �Difcs+ ("4 + "cs) �Difcs :Using G�i = �G�i �Di ; G0�i = �G0�i �D0i ;and (3.4.6), and ignoring the relative error of O("), we obtainG0�i = fcsG�i � fsnG�j + E�i83



where kE�ik2 � (5fcskG�ik2 + 8jfsnjkG�jk2)" :Here G�i refers to the i-th column of G, etc. Similarly,G0�j = fsnG�i +fcsG�j + E�jwhere kE�jk2 � (8jfsnjkG�ik2 + 5fcskG�jk2)" :Now (3.3.7) holds withkF�ik2 � fcskE�ik2 + jfsnjkE�jk2� 11 + t2 (5 + 8t2 + 13jtjx)di" (3.4.7)kF�jk2 � jfsnj kE�ik2 +fcskE�jk2� 11 + t2 (5 + 8t2 + 13jtj=x)dj" : (3.4.8)We consider two cases, x < �x � 0:51, and x � �x. First consider x < �x. Inserting�x for x in (3.4.7) we obtain kF�ik2 � 9:82di" :Inserting (3.3.10) into (3.4.8) we obtainkF�jk2 � 22:57dj" ;and kBmk2 � 33" : (3.4.9)Now consider the case x � �x. Inserting 1 for x in (3.4.7) we obtainkF�ik2 � 13di" :Inserting 1=�x for 1=x in (3.4.8), we obtainkF�jk2 � 19:25dj" ;so that (3.4.9) holds again.Hyperbolic case. The proof is a combination of the above proof for the trigonomet-ric case and the proof for the hyperbolic case of Th. 3.3.3. We denote the quantitiescs, sn and sn1 = sn computed by Alg. 3.4.1 with ch and sh, respectively. Letfch � 1=p1 � t2 ; fsh � t=p1� t2e� � t �Di= �Dj ; e� � t �Dj=Di : (3.4.10)84



For the calculated transformation parameters we havech = (1 + "ch)fch ;� = (1 + "�)e� ; � = (1 + "�) e� ; j"�j; j"�j � 2" :fch and fsh de�ne the exact rotationJm = " fch fshfsh fch #which takes Gm + �Gm to Gm+1:(Gm + �Gm)Jm = Gm+1 :Let G0ki and G0kj be the new values for these entries computed by the algorithm. Asin the proof for the trigonometric case, we obtainG0�i = fchG�i + fshG�j + E�iwhere kE�ik2 � (2"+ j"chj)fchkG�ik2 + (5" + j"chj)jfshjkG�jk2 ;and G0�j = fshG�i + fchG�j + E�jwhere kE�jk2 � (5"+ j"chj)jfshjkG�ik2 + (2"+ j"chj)fchkG�jk2 :Now (3.3.15) holds withkF�ik2 � ((2"+ j"chj)fch2 + (5"+ j"chj)fsh2 + (7" + 2j"chj)fchjfshjx)dikF�jk2 � ((2"+ j"chj)fch2 + (5"+ j"chj)fsh2 + (7" + 2j"chj)fchjfshj=x)dj :(3.4.11)As in Th. 3.3.3 we consider two cases, j�j � 3=(2p2) and j�j > 3=(2p2). Firstconsider j�j � 3=(2p2). Then (3.2.18) and (3.2.20) hold, andj"chj � �38p�+ 73� " :The assertion of the theorem now follows by inserting 1=x � p2, (3.2.20), and theabove relation into (3.4.11).Now consider j�j > 3=(2p2). Then the relations (3.2.23) hold for t, fch and fshwith a relative error of O("), and j"chj � 4" : (3.4.12)We have two subcases, x � 1=p2 and x < 1=p2. If x � 1=p2, then the assertionof the theorem follows by inserting 1=x � p2, (3.4.12), and (3.2.23) into (3.4.11).If x < 1=p2, then (3.3.19) holds, and the assertion of the theorem follows byinserting (3.3.19), (3.4.12), and (3.2.23) into (3.4.11). Q.E.D.85



Corollary 3.4.3 Assume Algorithm 3.4.1 converges, and that GM ; J � �DM �GM ; Jis the �nal pair which satis�es the stopping criterion. For 0 � m � M write Gm =BmDm with Dm diagonal and Bm with unit columns.Let �j be the j-th non-zero eigenvalue of G0JGT0 , and let �0j be the j-th computedeigenvalue. Then, with the relative error of O("),(1 � 
)2 � �0j�j � (1 + 
)2 ; (3.4.13)where 
 = "M�1Xm=0 Cm�min(Bm) + n � tol=2 + r(n+ 2)"=2 :Proof. See the proof of Cor. 3.3.4. The r(n+2)"=2 term comes from the facts thatc=pab in the stopping criterion may now be underestimated by as much as (n+ 2)",and that the squares of the norms of the columns of GM are computed with a relativeerror not greater than (n+ 2)". Q.E.D.As in Subsect. 3.2.1, we can modify the fast implicit J�orthogonal Jacobi methodin order to avoid potentially large Cm in Th. 3.4.2 in the hyperbolic case for j�j �3=(2p2). The algorithm of the modi�ed method is obtained by combining Algorithms3.4.1 and 3.2.7 in the obvious manner. We have the following:Theorem 3.4.4 Let Gm be the sequence of matrices generated by the modi�ed fastimplicit J�orthogonal Jacobi method in 
oating{point arithmetic with precision ".Then Theorem 3.4.2 holds except that in the hyperbolic case for j�j � 3=(2p2) thevalue Cm is changed to Cm = 55. Corollary 3.4.3 holds with this exception, too.Proof. See the proof of Th. 3.3.6. Q.E.D.As in Subsect. 3.3.1, we can keep the diagonal of the matrix GTG in a separatevector, thus saving 2(n+1) multiplications and 2(n�1) additions in every step. Thisis done as in Alg. 3.3.7, except that �i's are now refreshed using �Gm and �Dm. Allremarks about Alg. 3.3.7 from Subsect. 3.3.1 hold here, as well.3.4.1 Self{scaling rotationsAnalysing the fast rotation formulae (3.4.3) and (3.4.4), we see that these rotationsmake both values �Di and �Dj smaller or larger, respectively. This can lead to un-der
ow/over
ow in some �Di during 
oating{point computation. As already men-tioned, the probability that this happens is in the case of transition from the matrixH = GJGT to the pair G; J very low. The probability of under
ow/over
ow canfurther be reduced by using self{scaling rotations suggested by Anda and Park [1].86



The main idea is to "push" the diagonal element of �D which is further away from1 towards 1. We use the "two way branch algorithm" of [1] and generalize it to thehyperbolic case. This adds four new fast rotations to the already existing ones (3.4.3)and (3.4.4). In this subsection we de�ne these rotations, give the algorithm of themethod, and present the error analysis.The trigonometric self{scaling rotations from [1] are the following: suppose that(3.4.2) holds. Simple calculation shows that eitherh G0�i G0�j i = h �G�i �G�j i " 1 �0 1 # " 1 0� 1 # " �D0i �D0j # ; (3.4.14)where � = �Di�Dj t ; � = � �Dj�Di cs � sn ; t = sn=cs ;�D0i = �Di=cs ; �D0j = �Djcs ; (3.4.15)or h G0�i G0�j i = h �G�i �G�j i " 1 0� 1 # " 1 �0 1 # " �D0i �D0j # ; (3.4.16)where � = � �Dj�Di t ; � = �Di�Dj cs � sn ; t = sn=cs ;�D0i = �Dics ; �D0j = �Dj=cs : (3.4.17)The hyperbolic versions of the above rotations are either (3.4.14) with� = �Di�Dj t ; � = �Dj�Di ch � sh ; t = sh=ch ;�D0i = �Di=ch ; �D0j = �Djch ; (3.4.18)or (3.4.16) with � = �Dj�Di t ; � = �Di�Dj ch � sh ; t = sh=ch ;�D0i = �Dich ; �D0j = �Dj=ch : (3.4.19)The rotation (3.4.3) makes both �Di and �Dj smaller. We use it in the trigonometriccase when �Di; �Dj � 1. The rotation (3.4.4) makes both �Di and �Dj larger. We use itin the hyperbolic case when �Di; �Dj < 1.The rotations (3.4.14), (3.4.15) and (3.4.16), (3.4.19) make �Di larger and �Djsmaller so they are always used when �Di < 1 � �Dj . The �rst is also used in the87



trigonometric case when �Di � �Dj < 1 and the second is used in the hyperbolic casewhen 1 � �Di � �Dj .The rotations (3.4.16), (3.4.17) and (3.4.14), (3.4.18) make �Di smaller and �Djlarger so they are always used when �Di � 1 > �Dj . The �rst is also used in thetrigonometric case when 1 > �Di > �Dj , and the second is used in the hyperbolic casewhen �Di > �Dj � 1.Thus, we have the followingAlgorithm 3.4.5 Fast implicit J�orthogonal Jacobi method with self{scaling rota-tions for the pair G; J . tol is a user de�ned stopping criterion.for k = 1 to rDk = 1endforrepeatfor all pairs i < j/* compute " a cc b # � the (i; j) submatrix of GTG */a = D2i Pnk=1G2kib = D2j Pnk=1G2kjc = DiDjPnk=1Gki �Gkj/* compute the parameter hyp: hyp = 1 for the hyperbolic andhyp = �1 for the trigonometric rotation, respectively */if 1 � i � npos < j � r thenhyp = 1elsehyp = �1endif/* compute the J�orthogonal Jacobi rotation which diagonalizes" Hii HijHji Hjj # � " a cc b # */� = �hyp � (b+ hyp � a)=(2c)t = sign(�)=(j�j+p�2 � hyp)h = p1� hyp � t2cs = 1=hsn = t=h/* update columns i and j of G and Di and Dj */if (hyp = 1 and Di;Dj < 1) or (hyp = �1 and Di;Dj � 1) then� = t �Di=Dj� = hyp � t �Dj=Difor k = 1 to ntmp = GkiGki = tmp+ � �Gkj 88



Gkj = � � tmp+GkjendforDi = Di � csDj = Dj � cselseif (hyp = 1 and (Dj < 1 � Di or Di > Dj � 1)) or(hyp = �1 and (Di < 1 � Dj or Di � Dj � 1)) then� = t �Di=Dj� = hyp � cs � sn �Dj=Difor k = 1 to nGkj = � �Gki +GkjGki = Gki + � �GkjendforDi = Di=csDj = Dj � cselse� = hyp � t �Dj=Di� = cs � sn �Di=Djfor k = 1 to nGki = Gki + � �GkjGkj = � �Gki +GkjendforDi = Di � csDj = Dj=csendifendforuntil convergence (all jcj=pab � tol)/* the computed non{zero eigenvalues of H = GJGT (and of the pair GTG; J) are�j = (Pnk=1G2kj)D2j Jjj *//* the computed eigenvectors of H are the normalized columns of the �nal G */The version of the algorithm where the diagonal of GTG is kept in a separatevector is obtained by combining Algorithms 3.4.5 and 3.3.7. The only exception fromAlg. 3.3.7 is that �i's are refreshed using �Gm and �Dm. Further, the modi�ed methodis obtained by combining Algorithms 3.4.5 and 3.2.7. Error analysis of the self{scalingrotations is similar to the analysis of the fast rotations from previous section. Thefollowing theorem gives error analysis of the modi�ed method:Theorem 3.4.6 Let �Gm, �Dm be the sequences of matrices generated by the modi�edfast implicit J�orthogonal Jacobi algorithm with self{scaling rotations in 
oating{point arithmetic with precision "; that is �Gm+1 is obtained from �Gm by applying oneof the fast rotations, and Dm+1 is obtained from Dm by one of the formulae (3.4.3),(3.4.4), (3.4.15), (3.4.17 { 3.4.19). Then Th. 3.4.2 holds withCm = 191 (3.4.20)89



in all cases. Corollary 3.4.3 holds as well.Proof. For the standard fast rotations (3.4.3) and (3.4.4), the theorem follows fromTheorems 3.4.2 and 3.4.4.Suppose that we apply the hyperbolic self{scaling rotation de�ned with (3.4.16)and (3.4.19). Let the quantities cs and sn computed by Alg. 3.4.5 be denoted by chand sh, respectively. Letfch � 1=p1 � t2 ; fsh � t=p1� t2e� � t �Dj= �Di ; e� � �Di= �Djfch � fsh : (3.4.21)Since we are using the modi�ed method, the relations (3.2.23) always hold, and forthe calculated transformation parameters we havech = (1 + "ch)fch ; sh = (1 + "sh)fsh ; j"chj; j"shj � 4"� = (1 + "�) e� ; j"�j � 2" :� = (1 + "�)e� ; j"�j � 11" ;fch and fsh de�ne the exact rotationJm = " fch fshfsh fch #which takes Gm+ �Gm to Gm+1, i.e. (Gm+ �Gm)Jm = Gm+1. Let G0ki and G0kj be thenew values for these entries computed by the algorithm. From Alg. 3.4.5 we have�G0ki = fl( �Gki + � �Gkj) = (1 + "1) �Gki + (1 + "2)(1 + "3)(1 + "�) e� �Gkj= �Gki + e� �Gkj + "1 �Gki + ("2 + "3 + "�) e� �Gkj�D0i = fl( �Dj ch) = �Difch+ ("4 + "ch) �Difch :Using G�j = �G�j �Dj ; G0�j = �G0�j �D0j ;and (3.4.21), we obtain G0�i = fchG�i + fshG�j + E�iwhere kE�ik2 � (6fchkG�ik2 + 9jfshjkG�jk2)" :Further,�G0kj = fl(� �G0ki + �Gkj) = (1 + "5)(1 + "6)(1 + "�)e� �G0ki + (1 + "7) �Gkj�D0j = fl( �Dj=ch) = �Dj=ch + ("8 + "0ch) �Dj=ch ;90



where j"0chj � 4", so thatG0�j = �G0�j �D0j = fshG�i + fchG�j + E�jwhere kE�jk2 � 0@19jfshjkG�ik2 + 0@5fch + 1fch + 17fsh2fch 1A1A " :Now (3.3.15) holds withkF�ik2 � fchkE�ik2 + jfshjkE�jk2� (6fch2 + 19fsh2 + (14fchjfshj+ 17jtjfsh2 + jtj)x)"di ;kF�jk2 � jfshj � kE�ik2 + fchkE�jk2� (25fchjfshj=x+ 26fsh2 + 5fch2 + 1)"dj : (3.4.22)Here kG�ik2 � di ; kG�jk2 � dj ; ; x � dj=di :We consider two cases, x � 1=p2 and x < 1=p2. If x � 1=p2, then by inserting1=x � p2 and (3.2.23) into (3.4.22) we havekF�ik2 � 64di" ; kF�jk2 � 86dj" ;k�Bmk2 � kF�ik2=di + kF�jk2=dj � 150" :If x < 1=p2, then (3.3.19) holds, and by inserting (3.3.19), and (3.2.23) into (3.4.22)we have kF�ik2 � 54di" ; kF�jk2 � 137dj" ;k�Bmk2 � 191" :The analysis of the three remaining types of the self{scaling rotations is similar.Q.E.D.
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Chapter 4Symmetric inde�nitedecomposition4.1 Introduction and algorithmIn order to solve the eigenvalue problemHx = �x ; x 6= 0 ; (4.1.1)where H is a n � n real symmetric matrix with rank (H) = r � n, by any of theimplicit (one{sided) Jacobi methods of Chap. 3 for which we have good error bounds,we �rst decompose H asPHP T = GJGT ; J = Inpos ��Ir�npos : (4.1.2)Here G is a n � r matrix (i.e. G has full column rank), P is a permutation matrix,and npos is the number of positive eigenvalues of H. The decomposition (1.1) is thenobtained by multiplying (4.1.2) by P T from the left and P from the right, that is, theimplicit Jacobi is applied to the pair P TG; J .The chapter is organized as follows: in this section we give the algorithm of thesymmetric inde�nite decomposition (4.1.2). In Sect. 4.2 we give the error analysis ofthe method. In Sect. 4.3 we give the �nal error bounds for the computed eigensolutionof the symmetric eigenvalue problem. Finally, in Sect. 4.4 we show an interestingfact that the scaled condition of the matrix GTG is bounded by a function of nirrespectively of the condition of the starting matrix H.We now give the algorithm of the symmetric inde�nite decomposition (4.1.2). Ourmethod is essentially the method of Bunch and Parlett [6] with some modi�cations.The method of Bunch and Parlett decomposes H asPHP T = LTLT ; (4.1.3)93



where L is lower triangular matrix with unit diagonal, and T is block diagonal matrixwith (1 � 1) and (2 � 2) blocks. We shortly describe one step of the algorithm. Let�P be a permutation matrix such that�PH �P T = " X CTC Y # ; (4.1.4)where X is nonsingular k � k matrix, k 2 f1; 2g, C is a (n� k)� k matrix, and Y isa (n� k)� (n� k) matrix. Such �P always exists because H is nonsingular. We candecompose �PH �P T as �PH �P T = �L " X 00 H1 # �LT ;�L = " Ik 0CX�1 In�k # ;H1 = Y � CX�1CT : (4.1.5)Recursive application of (4.1.5) yields (4.1.3) in the obvious manner. We choose 1�1or 2� 2 pivot according to the unequilibrated diagonal pivoting from [6] 1: set� = (1 +p17)=8 ;and calculate �0 = maxi6=j jHijj ; �1 = maxi jHiij : (4.1.6)We choose a 1 � 1 pivot if and only if �1 � ��0, and a 2 � 2 pivot otherwise. For a1� 1 pivot, we choose �P in (4.1.4) to interchange row and column 1 with s, where sis the least integer such that �1 = jHssj. Therefore, jXj = �1. For a 2 � 2 pivot, wechoose �P to interchange rows and columns 1 with q and 2 with p, where q is the leastcolumn integer and p is the least row integer in the q�th column such that �0 = jHpqj(note that p > q). Therefore,j( �PH �P T )21j = �0 ;�det(X) = jdetXj � �20 � �21 : (4.1.7)Bunch and Parlett [6] showed that the above choice of � minimizes the elementgrowth which can take place in transition from H to H1, and that for any pivotingstrategy which satis�es (4.1.7)jLijj � ( 1:562 if Lij is obtained after a 1� 1 pivot2:781 otherwise : (4.1.8)1See Rem. 4.2.3. 94



To obtain decomposition (4.1.2), we futher decompose PHP T asPHP T = LQQTTQQTLT ;where Q is orthogonal block diagonal matrix with the same structure as T . The 1�1blocks of Q are 1, and the 2� 2 blocks of Q are elementary orthogonal plane rotationmatrices of the form " cs sn�sn cs # ; cs2 + sn2 = 1 ;chosen to diagonalize corresponding 2 � 2 blocks of T . Denoting L1 = LQ andD1 = QTTQ we can write PHP T = L1D1LT1 , where L1 is lower block triangularand D1 is diagonal matrix. Due to (4.1.7) the 2 � 2 diagonal blocks of D1 whichcorrespond to 2 � 2 diagonal blocks of T always have one positive and one negativeelement. Further we have PHP T = L1qjD1jJ1qjD1jLT1 ;where J1 is diagonal with J1;ii 2 f�1; 1g: Finally,PHP T = L1qjD1jP1P T1 J1P1P T1 qjD1jLT1 ; (4.1.9)where P1 is a permutation matrix chosen to sort elements of J1 according to the rela-tion (4.1.2). Setting G = L1qjD1jP1 and J = P T1 J1P1 we obtain the decomposition(4.1.2).If H is positive de�nite, the above algorithm reduces to the Cholesky decomposi-tion with complete pivoting (see e.g. [13]), that isPHP T = LLT : (4.1.10)Combining (4.1.5) and (4.1.9), and usingQTXQ = D ;where D is a 1� 1 or 2 � 2 diagonal matrix, we obtain (in the notation of (4.1.5))�PH �P T = �G " J 00 H1 # �GT ;�G = " B 0Z I # ;B = QjDj1=2 ;Z = CQjDj�1=2J ;H1 = Y � ZJZT : (4.1.11)Thus, we have the following: 95



Algorithm 4.1.1 Symmetric inde�nite decomposition (4.1.2) of a real symmetricmatrix H. Vector P is initially de�ned by Pi = i; i = 1; : : : ; n. The symbol $denotes interchanging of two elements.� = (1 +p17)=8i = 1npos = 0r = 0repeat/* �nding �0, �1, p, q and s */�0 = 0�1 = jHiijfor k = i+ 1 to nif jHkkj > �1 then�1 = jHkkjs = kendiffor l = i to k � 1if jHklj > �0 then�0 = jHkljp = kq = lendifendforendforif �1 � � � �0 then/* 1 � 1 pivot; we �rst check for the non{singularity */if �1 = 0 thenr = i� 1i = n+ 1else/* permuting */for k = i to nHki $ Hksendforfor k = 1 to nHik $ HskendforPi $ Ps/* updating H */Ji = sign(Hii)if Ji = �1 thennpos = npos + 1 96



endiftemp = qjHiijHii = tempfor k = i+ 1 to nHki = Hki � Ji=tempHik = 0for l = i+ 1 to kHkl = Hkl �Hki �Hli � JiHlk = Hklendforendfori = i+ 1endifelse/* 2� 2 pivot; we �rst permute */for k = i to nHki $ HkqHk;i+1 $ Hkpendforfor k = 1 to nHik $ HqkHi+1;k $ HpkendforPi $ PqPi+1 $ Pp/* calculating the orthogonal matrix which diagonalizes " Hii Hi;i+1Hi+1;i Hi+1;i+1 # */� = (Hi+1;i+1 �Hii)=(2 �Hi+1;i)t = sign(�)=(j�j+p�2 + 1)h = p1 + t2cs = 1=hsn = t=h/* updating H */a = Hii �Hi+1;i � tb = Hi+1;i+1 +Hi+1;i � tJi = sign(a)Ji+1 = sign(b)npos = npos + 1a = jajb = jbjHii = cs � aHi;i+1 = sn � b 97



Hi+1;i = �sn � aHi+1;i+1 = cs � bfor k = i+ 2 to ntemp = HkiHki = (temp � cs�Hk;i+1 � sn) � Ji=aHk;i+1 = (temp � sn+Hk;i+1 � cs) � Ji+1=bHik = 0Hi+1;k = 0for l = i+ 2 to kHkl = Hkl �Hki �Hli � Ji �Hk;i+1 �Hl;i+1 � Ji+1Hlk = Hklendforendfori = i+ 2endifuntil i > n/* if non{singularity did not occur, then rank equals dimension */if r = 0 thenr = nendif/* permuting the columns of H to sort J */k = npos + 1for l = 1 to nposif Jl = �1 thenwhile Jk = �1k = k + 1endwhilefor m = 1 to nHml $ Hmkendfork = k + 1endifendfor/* r is equal to rank(H) and to the number of columns of G *//* Matrix G is stored in the �rst r columns of the array H *//* Matrix J is given implicitly by npos and r *//* Vector P describes the pivoting which took place in the sense that H(P;P ) = GJGT */98



4.2 Error analysisIn this section we give error analysis of the symmetric inde�nite decomposition de�nedby Alg. 4.1.1. In our proof we use the approach from Th. 3.3.1 of [16]. We compareour result with the existing analysis of the algorithm of Bunch and Parlett [6] byBunch [3].Theorem 4.2.1 Let G and J be the factors of a real symmetric matrix H computedby Alg. 4.1.1 in 
oating{point arithmetic with precision ". Then, with the relativeerror of O("), G and J satisfyGJGT = PHP T + E ;jEj � 136n(P jHjP T + jGjjGjT )" : (4.2.1)Proof. The proof is by induction on n. The theorem obviously holds for all matricesof order 1. To begin the induction, we must also analyse matrices of order 2 for a2 � 2 pivot. Let e� = (H22 �H11)=(2H21) ;et = sign (e�)=(je�j+q1 + e�2) ;fcs = 1=q1 + et2 ;fsn = et=q1 + et2 ;ea = H11 �H21et ;eb = H22 +H21et ; (4.2.2)and eGij denote the exact quantities computed by Alg. 4.1.1, i.e. without roundingerrors. Since jH21j = �0 ; maxfjH11j; jH22jg � �1 ; (4.2.3)the fact that we perform a 2� 2 step impliesje�j � ( � if sign (H11) = �sign (H22) ;�=2 otherwise : (4.2.4)Now we show that the computed quantities t, cs, sn, a and b have small relativeerrors with respect to the exact quantities from (4.2.2). Single subscribed "'s denotequantities of absolute value less than or equal to ". Most of the subsequent inequalitieshold with a relative error of O("). Using (4.2.3) and the maximum in (4.2.4), we have� = fl(H22 �H112H21 ) = H22(1 + "1)�H11(1 + "2)2H21(1 + "3) (1 + "4)= e� + "� ; 99



where j"�j � 3�". This implies that the equalityfl(1 + �2) = (1 + "5)(1 + (e� + "�)2(1 + "6)) = (1 + e�2)(1 + "0) ;holds for some j"0j � 2j"� e�j+ (j"5j+ j"6j)e�2 + j"5j � 4:3" :Further, the equalityfl(j�j+q1 + �2) = (1 + "7)(je� + "�j+ (1 + "8)(1 + "0=2)q1 + e�2)= (1 + "00)(je�j+q1 + e�2)holds for some j"00j � j"�j+ j"7j(1 + je�j) + j"8j+ j"0j=2 � 7" ;so that �nally t = et(1 + "t) ; j"tj � 8" ;cs = fl(1=p1 + t2) = fcs(1 + "cs) ; j"csj � 11" ;sn = fl(t=p1 + t2) = fsn(1 + "sn) ; j"snj � 19" : (4.2.5)Let a = fl(H11 �H21t)b = fl(H22 +H21t) : (4.2.6)If sign (H11) = �sign (H22), then a and b are both calculated by addition and havesmall relative errors, i.e.a = ea(1 + "a) ; b = eb(1 + "b) ; j"aj; j"bj � 10" : (4.2.7)Let sign (H11) = sign (H22). Assume further that H11 � H22 � 0. Then a is againcalculated by addition and (4.2.7) holds for it. Using (4.2.4), jH21j = �0, and jH22j ��1, we have jebj = jH22 +H21etj � jetjjH21j � jH22j� �00@ 1�=2 +q1 + �2=4 � �1A � 0:088�0 :Therefore,b = H22(1 + "9) + (1 + "10)(1 + "11)(1 + "t)H21et = eb(1 + "0b) ;j"0bj � (jH22"9j+ (j"10j+ j"11j+ j"tj)jH21jjetj)=eb � 121" :100



We conclude that in any casea = ea(1 + "a) ; b = eb(1 + "b) ; j"aj; j"bj � 121" : (4.2.8)This implies that, e.g. G21 = fl(�snqjaj) = eG21(1 + "G) ;j"Gj � j"snj+ j"aj=2 + 2" � 81:5" ;so that B = G = eG+ �G ; j�Gj � 81:5j eGj" : (4.2.9)Thus, BJBT = GJGT = ( eG + �G)J( eG+ �G)T = H + E ;jEj � 2 � 81:5j eGjj eGjT "= 163jGjjGjT " ; (4.2.10)and (4.2.1) holds.The induction step must also be done separately for a 1�1 and a 2�2 pivot. Wecan assume without loss of generality that �P from (4.1.4) is the identity. Moreover,permuting the columns of G in order to sort the elements of J (see (4.1.9)) does notin
uence the statement of the theorem. From (4.1.4) and (4.1.11) we conclude thatH = " X CTC Y # = " B 0Z I # " J 00 H1 # " BT ZT0 I # : (4.2.11)Suppose that we do a 1�1 step, and that (4.2.1) holds for all matrices of order n�1.Then (4.2.11) holds withB = fl(jH11j1=2) = jH11j1=2 + �B ;j�Bj � jH11j1=2" ;Z = fl(CJ=B) = CJ jH11j�1=2 + �Z ;j�Zj � 2"jCjjH11j�1=2 ;H1 = fl(Y � ZJZT ) = Y � ZJZT + F1 ;jF1j � 2"(jY j+ jZjjZjT ) : (4.2.12)The induction assumption implies thatG1J1GT1 = P1H1P T1 + E1 ; (4.2.13)where jE1j � 136(n � 1)"(P1jH1jP T1 + jG1jjG1jT ) :101



Now Alg. 4.1.1 yields G = " B 0P1Z G1 # ;so that G " J J1 #GT = " BJBT BJZTP T1P1ZJBT P1ZJZTP T1 +G1J1GT1 # : (4.2.14)Setting P = I � P1 and using (4.2.12), we obtainG " J J1 #GT = P " H11 CTC Y #P T+ " 2�BJ jH11j1=2 �CT�C E1 + P1F1P T1 # (1 +O("))� H + E ;where �C = P1(�ZJ jH11j1=2 + CjH11j�1=2�B) :Using this and (4.2.12), we obtainjEj � " 2jH11j 3jCjTP T13P1jCj jE1 + P1F1P T1 j # " : (4.2.15)From (4.2.12) it follows thatjH1j � (1 + 2")(jY j+ jZjjZjT ) :By using (4.2.13), we havejE1 + P1F1P T1 j � (136(n � 1) + 2)(P1(jY j+ jZjjZjT )P T1 + jG1jjG1jT )" : (4.2.16)Inserting the above relation into (4.2.15) we obtainjEj � (136(n � 1) + 3)(P jHjP T + jGjjGjT )" ;which, in turn, implies (4.2.1).Now suppose that we do a 2 � 2 pivot, and that (4.2.1) holds for all matrices oforder n � 2. From the analysis of the 1 � 1 step, we see that we can without loss ofgenerality assume that P1 equals identity. Let H be partitioned as in (4.1.4), and leteQTX eQ = fD be the exact spectral decomposition of X. Let Q and D be the computedmatrices eQ and fD, respectively. The analysis of the 2� 2 case for n = 2 holds for the
oating{point spectral decomposition of X, as well. Thus, (4.2.5) and (4.2.8) implythat Q = eQ+ �Q ; j�Qj � 19j eQj" ;D = fD + �D ; j�Dj � 121jfDj" : (4.2.17)102



Now (4.2.11) holds with H1 de�ned by (4.2.12), and B and Z as follows: from (4.2.9)it follows directly that B = fl(QjDj1=2) = eQjfDj1=2 + �B ;j�Bj � 81:5j eQjjfDj1=2" ; (4.2.18)and from (4.1.11) and (4.2.17) it follows thatZ = fl(CQjDj�1=2J) = C eQjfDj�1=2J + �Z ;j�Zj � 83:5jCjj eQjjfDj�1=2" : (4.2.19)As in the 1 � 1 case, the induction assumption (4.2.13), where nowjE1j � 136(n � 2)"(jH1j+ jG1jjG1jT ) ;implies (4.2.14). This, (4.2.18), (4.2.19), (4.2.12), and (4.2.13), imply thatG " J J1 #GT = " X CTC Y #+ " �X �CT�C E1 + F1 # � H + E ; (4.2.20)where �C = �ZJ jfDj1=2 eQT + C eQjfDj�1=2J�BT :From (4.2.10) it follows directly thatj�Xj � 163jBjjBjT" : (4.2.21)As in the proof of (4.2.16), we havejE1 + F1j � (136(n � 2) + 2)(jY j+ jZjjZjT + jG1jjG1jT )" ; (4.2.22)and it remains to bound j�Cj from above. From (4.2.18) and (4.2.19) it followsj�Cj � 165jCjj eQjj eQjT " :It is easy to see that jCjj eQjj eQjT � jCj+ h jC�2j jC�1j i ;where C�j denotes the j�th column of C. Further,jZjjBjT = jC eQjfDj�1=2 + �Zj � jjfDj1=2 eQT + �BT j� jC eQjj eQjT � 165jCjj eQjj eQjT " : (4.2.23)Now (jC eQjj eQjT )�i = jC�1fcs�C�2fsnjfcs+ jC�1fsn+ C�2fcsjjfsnj :103



Simple checking of all possible combinations for the signs of Cij and fsn shows thateither jCi1fcs�Ci2fsnj = jCi1jfcs+ jCi2jjfsnj ; (4.2.24)or jCi1fsn+ Ci2fcsj = jCi1jjfsnj+ jCi2jfcs : (4.2.25)If (4.2.24) holds for some i, then(jC eQjj eQjT )i1 � jCi1j(fcs2 � fsn2) + 2jCi2jjfsnjfcs :From (4.2.4) it follows that jetj � 1�+p1 + �2 : (4.2.26)Therefore, 2fcsjfsnj � (1 + �2)�1=2 � 0:842 ;and (jC eQjj eQjT )i1 � 0:842jCi2j :If (4.2.25) holds for some i, then(jC eQjj eQjT )i1 � 2jCi2jjfsnjfcs� jCi1j(fcs2 � fsn2) :From (4.2.26) it follows thatfcs2 � fsn2 � �(1 + �2)�1=2 � 0:54 ;so that (jC eQjj eQjT )i1 � 0:842jCi2j � 0:54jCi1j :The similar analysis holds for the second column of jC eQjj eQjT , too, and we concludethat jCj+ h jC�2j jC�1j i � 10:842 jC eQjj eQjT + �1 + 0:540:842� jCj� 1:642 (jC eQjj eQjT + jCj) :Using this and (4.2.23), and ignoring the relative error of O("), we obtainj�Cj � 165 � 1:642 (jZjjBjT + jCj+ 165 jCjj eQjj eQjT ")"� 271 (jZjjBjT + jCj)" :Finally, (4.2.1) follows by inserting this, (4.2.21) and (4.2.22) into (4.2.20), and thetheorem is proved. Q.E.D.104



Bunch [3] showed that the decomposition (4.1.3) with the unequilibrated diagonalpivoting (which is also used in Alg. 4.1.1) is stable in the following sense: let L andT be the factors of H computed in 
oating{point arithmetic with precision ". ThenLTLT = PHP T + F ;where kFk1 � maxk �(k)0 (21:6n + 7:9n2)" ;and �(k)0 is the value of �0 in the k�th reduction step. The quantity maxk �(k)0 isfurther bounded bymaxk �(k)0 � maxi;j jHij j3:07f(n)pn(n� 1)0:446 ;where f(n) =  nYk=2 k1=(k�1)!1=2 � 2n(1=4) logn :The bound of Th. 4.2.1 compares favourably to the above bounds, since it does notcontain the n2" term. The quantity maxk �(k)0 is implicitly included in the jGjjGjTterm of (4.2.1). Note that Th. 4.2.1 holds for a singular H, as well.From the proof of Th. 4.2.1 we see that 2 � 2 steps contribute much more to theerror bound than 1 � 1 steps. If only 1 � 1 steps are performed (which is alwaysthe case when we decompose a positive de�nite matrix, and is often the case whenwe decompose scaled diagonally dominant matrices of [2]), then the bound (4.2.1)reduces to jEj � 3n(P jHjP T + jGjjGjT )" :In the positive de�nite case Alg. 4.1.1 reduces to the Cholesky decomposition withcomplete pivoting, and only 1 � 1 steps are performed. The above inequality thenimplies jEijj � 6n((PHP T )ii(PHP T )jj)1=2" ;which is similar to the result of Demmel [9]. There the constant 6n is replaced by(n + 1)=(1 � (n + 1)"). Note, however, that the above bound holds for the outerproduct version of the Cholesky decomposition (Alg. 4.2.2 of [16]) with the additionof the complete pivoting, while Demmel [9] analysed the Gaxpy version (Alg. 4.2.1 of[16]).Remark 4.2.2 Numerical experiments of Chap. 5 indicate that the bound (4.2.1)increases only slowly with n.Remark 4.2.3 Other pivot strategies. Note that Th. 4.2.1 and then, in turn, Th.4.3.1, hold for any pivot strategy for which (4.2.4) holds when we apply a 2� 2 step.In particular, these theorems hold for the partial pivot strategy of [5] and for the105



pivot strategy given by Algorithm C of [4], which both require O(n2) search. Wehave chosen the unequilibrated diagonal pivoting since it has better bounds for theelement growth, as well as the uniform upper bound for the scaled condition of thematrix GTG (see Sect. 4.4). Moreover, since the symmetric inde�nite decompositiontakes about 10% of the computing time, an O(n3) search, which is needed by theunequilibrated diagonal pivoting, does not considerably slow down the algorithm.However, theoretical and practical investigation of Algorithm C of [4] (for positivede�nite matrices this algorithm also reduces to Cholesky decomposition with completepivoting), is certainly of interest.4.3 Overall error boundsThe results of the previous parts of the thesis suggest the following procedure to solvethe real symmetric eigenvalue problem (4.1.1):1. decompose H as H = GJGT by �rst using Alg. 4.1.1 to obtain the decompo-sition (4.1.2), and then setting G = P TG as follows (in the notation of Alg.4.1.1):/* Back{permuting the rows of H to obtain the �nal factor */for k = 1 to nfor l = k + 1 to nif Pl = k thenPl $ Pkfor m = 1 to rHkm $ Hlmendforendifendforendfor2. solve the problem (4.1.1) by applying any of the implicit J�orthogonal Jacobimethods of Chap. 3 on the pair G; J .In this section we combine the error analysis of the symmetric inde�nite decom-position, error analysis of the implicit J�orthogonal Jacobi methods, and the pertur-bation bounds of Chap. 2, to obtain error bounds for the computed eigensolution ofthe real symmetric eigenvalue problem. Bounds hold only in the non{singular case,since we cannot otherwise apply the perturbation theory of Sect. 2.2 to Th. 4.2.1. Wegive error bounds for the case when the implicit method of Alg. 3.3.1 is used. Errorbounds for other implicit methods of Chap. 3 are obtained by simply substitutingerror bounds for those methods in the �nal estimate. We then show that an approx-imation for the error bounds can be obtained using only computed quantities. We106



also discuss what happens in the singular case. We give an interesting example howa change of the pivoting in the symmetric inde�nite decomposition can considerablyimprove the accuracy of the obtained eigensolution. In the conclusion, we summarizesome open problems.Theorem 4.3.1 Let H be a real symmetric non{singular matrix and let � be the i�theigenvalue of H. Let G; J be the decomposition of H obtained by Alg. 4.1.1 in 
oating{point arithmetic with precision ", and let G = DGBG, where DG is diagonal and therows of BG have unit norms. Let �G be the i�th eigenvalue of GJGT . Let Gm; Jbe the sequence of pairs obtained from the pair G; J by Alg. 3.3.1 in 
oating{pointarithmetic with precision ", and let GM ; J be the �nal pair which satis�es the stoppingcriterion. For m � 0 write Gm = BmDm, where Dm is diagonal and columns of Bmhave unit norms. Let �0 be the i�th calculated eigenvalue. Then, with the relativeerror of O("), we have 1� � � �1 � �0� � 1 + � + �1; (4.3.1)where � = 272n2"�min(D�1G GJGT D�1G ) ;�1 = 2"M�1Xm=0 Cm�min(Bm) + n � tol + n2" ; (4.3.2)� is the spectral absolute value de�ned in Sect. 2.1, and Cm are constants from Th.3.3.3.Now suppose � is simple. Let v be the corresponding eigenvector. Let v0 be theeigenvector corresponding to �0, i.e. the i�th column of GM divided by its norm. Thenkv0 � vk2 � p2�rg(�) � 11�  1 + 1rg(�)! �+ 4p2��rgG(�G) � 11 � 3��rgG(�G) + 2n � tol + n(3n + 4)" ; (4.3.3)provided 1 < (1 + 1=rg(�))� and rgG(�G) < 3��. Here rg(�) and rgG(�) are de�nedby (2.2.29) and (2.3.1), respectively, and�� = �2(2 + �2) ;�2 = (�1 + n � tol + n2")=2 ;where � is de�ned by (4.3.2). 107



Proof. From Th. 4.2.1, by multiplying (4.2.1) by P T from the left and by P fromthe right, and then setting G = P TG, it follows thatH = GJGT + �H ;where j�Hj � 136n(jHj + jGjjGjT )" :Also, jHj � jGJGT j+ j�Hj � jGjjGjT + j�Hj ;so that, by ignoring the relative error of O("), we havej�Hj � 272njGjjGjT " :Further, jxT�Hxj � jxjT j�Hjjxj � 272njxjT jDGEDGjjxj"� 272n2xTD2Gx "� 272n2"�min(D�1G GJGT D�1G )xT GJGT x :Applying Th. 2.2.1 to the pair GJGT ; I with� � �H = 272n2 "�min(D�1G GJGT D�1G ) ; �I = 0 ;we obtain 1� � � �G� � 1 + � :This and Cor. 3.3.4, by ignoring the relative error of O("), imply (4.3.1).Let vG be the eigenvector of �G. Applying (2.3.13) and Th. 2.2.13 to the matrixGJGT yields kvG � vk2 � �rg(�) � 11�  1 + 1rg(�)! � :The relation (4.3.3) now follows from the above relation, (2.3.13), Th. 3.3.9, and thetriangle inequality. The assumptions on rg(�) and rgG(�G) together with the proofsof Theorems 2.2.13 and 3.3.9, implies that � is throughout the algorithm well sepa-rated from the rest of the spectrum. Q.E.D.Remark 4.3.2 Th. 4.3.1 also holds if we substitute GJGT by H in (4.3.2). Indeed,if we consider GJGT as H � �H, thenjxT�Hxj � 272n2"�min(D�1G HD�1G )xT H x" ;108



and we can apply Theorems 2.2.1 and 2.2.13 directly to H. We are using GJGTsince G is the computed factor and DG its exact scaling.Th. 4.3.1 implies that the error bounds depend on how D�1G scales GJGT . In thepositive de�nite case GGT = GGT and the scaling with DG is optimal in the sense of(2.1.4). Our numerical experiments show that in the inde�nite case the scaling withDG is also not far from the almost optimal one by (diag GJGT )�1=2.It is natural to want to approximate the bounds (4.3.1) and (4.3.3) by using onlycomputed quantities. We can substitute rg(�) and rgG(�G) with rg(�0) and rgG(�0),respectively. Although �0 = �(1 +O(")) = �G(1 +O(")), the above substitutions canhave large relative errors. However, in numerical tests they are shown to be realistic.Further, we can substitute GJGT with GMGTM . This is justi�ed as follows: if F is aJ�orthogonal matrix which diagonalizes some GTG as in the proof of Th. 2.3.1, thenGJGT = GFF TGT . Now consider the matrixG0M � (BM + �BM)DM � GM + �BMDM � (G+ �G(M))R0 � : : : �RM�1from the proof of Th. 3.3.9. This matrix has orthogonal columns so thatG0MG0TM = (G + �G(M))J(G+ �G(M))T ;and G0MG0TM is, in turn, "not far" from GMGTM . We have no theoretical results aboutthe quality of this approximation, but its use is also justi�ed by numerical experi-ments. Moreover, since we observed that the actual errors increase only slowly as nand M increase, and that the condition of the scaled matrix grows only little duringthe Jacobi process, we expect that������0 � �� ����� �  1�min(D�1G GMGTMD�1G ) + 2�min(B)! " ; (4.3.4)kv0 � vk2 � �rg(�0) � 11�  1 + 1rg(�0)! � + 4��rgG(�0) � 11 � 3��rgG(�0) ;where � = "�min(D�1G GMGTMD�1G ) ;�� = 3"�min(B) :We cannot apply Th. 4.3.1 to singular matrices, since GJGT �1 is not de�ned.However, if we obtain a componentwise accurate factor G, as in the example (2.3.13),relative errors of the computed eigenvalues are bounded by Cor. 3.3.4. In this concreteexample, we �rst have to bring J to the form I�(�I). This is equivalent to performing109



m trigonometric rotations for �=4 on G from the right. These rotations add m termsto 
 of (3.3.20). Since Th. 3.3.9 (Th. 2.3.3) requires the non{singularity of G, wehave no error bounds for the eigenvectors in this case.The following example opens an interesting problem about the pivot choice in thesymmetric inde�nite decomposition. The example underlines once more the impor-tance of exact factors, and shows what di�culties we have when trying to do de
ation.Consider the matrix H = 264 1 1 11 0 01 0 �2 375 ; (4.3.5)where � > 0 is small. Alg. 4.1.1 decomposes H as H = GJGT withG = 264 11 11 1 p�2 � 1 + 1 375 ; J = diag (1;�1; 1) :Since H is given by (2.3.16), the error bounds of Th. 4.3.1 are large. Since incalculating fl(p�2 � 1 + 1) we obtain only log�2 � log " accurate digits, these errorbounds are almost attained. However, since 1=�min(B) � 2:5, any implicit Jacobimethod will compute the eigensolution of the pair G; J with high accuracy. Thismeans that when using Alg. 4.1.1, we can do de
ation only if the submatrix which isto be reduced at some stage is exactly zero.2 One way to accurately decompose H isgiven by (2.3.15). Here we give another one: let us �rst choose 2� 2 pivot in (4.1.5).Then we have H = 264 10 10 1 � 375264 1 11 0 1 375264 1 0 01 1� 375 :It is easy to see that with this pivot choice Alg. 4.1.1 returns the factor G which hascomponentwise small relative errors. Therefore, the �rst terms of (4.3.1) and (4.3.3)are super
uous, and, since 1=�min(B) � 2, the obtained eigensolution is accurate.This underlines the importance of accurate factors, and shows that the unequilibrateddiagonal pivoting is not always the best choice.Now we shortly summarize some open problems:� �nding a realistic upper bound for the growth of 1=�min(BM ),� how well does D�1G scale GJGT , and how well does �min(D�1G GMGTMD�1G ) ap-proximate �min(D�1G GJGT D�1G ),� proving Th. 2.3.3 for the non{square full column rank G,� improving the pivot strategy in Alg. 4.1.1, to avoid the unnecessary errors as inthe example (4.3.5).2In [6, 5] de
ation is also performed only in this case.110



The last problem is very di�cult, and it is similar to the problem of �nding the bestpivots in Gaussian elimination. It is easy to see (see also Rutishauser [23]) that Gauss'algorithm with complete pivoting is also inaccurate when applied to (4.3.5).4.4 Bound for the scaled condition of GTGThe symmetric inde�nite decomposition of Alg. 4.1.1 enables us to transform theeigenvalue problem (4.1.1) to the eigenvalue problem for the pair GTG; J on whichwe can use implicit methods of Chap. 3. In this section we show that the scaledcondition of the matrix GTG is bounded by a function of n irrespectively of thecondition of the starting matrix H. This bound is nearly attainable. For relatedresults see [19]. Numerical experiments of [13] and Chap. 5 show that the scaledcondition of GTG is generally much smaller than our bound. This has a positivee�ect on the speed of the implicit methods applied on the pair GTG; J . The resultsof this section are partially contained in [25].For any positive de�nite matrix H we de�ne the scaled matrix A � Scal (H) byH = DAD, where D is diagonal positive de�nite, and A has ones on the diagonal.We analyse separately the positive de�nite and inde�nite case. For H positivede�nite Alg. 4.1.1 reduces to the Cholesky decomposition with complete pivoting(4.1.10), PHP T = LLT . Complete pivoting is equivalent to the fact thatL2ii � jXk=i L2jk ; i = 1; : : : ; n� 1; j > i:This implies Lii � Ljj ; Lii > jLjij ; i = 1; : : : ; n� 1; j > i : (4.4.1)Set H1 = LTL : (4.4.2)If (�; x) is an eigenpair of H, then (�;L�1x) is an eigenpair of H1. Let A1 = Scal (H1),i.e. H1 = D1A1D1 : (4.4.3)Demmel and Veseli�c [13] showed that �(A1) is bounded by a constant depending onlyon the dimension n. For example, for n = 2 it is easy to see that �(A1) < 3 + 2p2.For general n their upper bound is�(A1) < e � n � n! ; (4.4.4)which is, as they stated, a large overestimate. Here e = exp (1).Now we analyse matrix A1 in more detail and give a better bound which can bealmost attained. We �rst illustrate the idea of the analysis on a 3 � 3 example. Let111



PHP T = LLT be the Cholesky decomposition with complete pivoting of a 3 � 3positive de�nite matrix H. ByD1 = diag (qL211 + L221 + L231;qL222 + L232; L33)we have A1 = 266666664 1 L21L22 + L31L32qL211 + L221 + L231qL222 + L232 L31qL211 + L221 + L2311 L32qL222 + L232sym: 1 377777775 :Now we need two monotonicity properties of the norm k � k2,kAk2 � kjAjk2 � pnkAk2 ; (4.4.5)where jAj = jAijj, and jAijj � Bij =) kAk2 � kBk2 : (4.4.6)From (4.4.5) and (4.4.1) we conclude that kA1k2 � kA0k2 where A0 = D�1jLjT jLjD�1,i.e. the worst case is when all Lij; i 6= j; are non{negative. Treating A023 as amonotonically increasing function of the (positive) variable L32, from (4.4.1) it followsA023 < L22qL222 + L222 = s12 :Treating A013 as an increasing function of L31 we haveA013 < L11qL211 + L211 + L221 � s12 :The element A012 is an increasing function in three (positive) variables L21; L31 andL32. Therefore, A012 < L11L22 + L11L22qL211 + L211 + L211qL222 + L222 = s23 :Finally, from (4.4.6) we conclude thatkA1k2 < 
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2 � 1 +s23 +s12 :112



Further, we have A�11 = D1L�1L�TD1, whereL�1 = 26664 1 1 1L33 377752666664 1 1L22�L32L22 1 3777775266666664 1L11�L21L11 1�L31L11 1 377777775 :From (4.4.5), (4.4.6) and (4.4.1) we see that kA�11 k2 < kD0L0(L0)TD0k2, whereL0 = 26664 1 1 1L33 3777526664 1 1L221 1 3777526664 1L111 11 1 37775 ;and D0 = diag (p3L11;p2L22; L33). ThereforeD0L0(L0)TD0 = D0 266666664 1L211 1L11L22 2L11L332L222 3L22L33sym: 6L233 377777775D0 = 264 3 p6 2p3p6 4 3p22p3 3p2 6 375 ;and kA�11 k2 < Tr (A) = 13 :Alltogether we have �(A1) < 13(1 +q2=3 +q1=2) � 32:81:(The bound (4.4.4) for n = 3 is 18e � 48:96.)Theorem 4.4.1 Let H be a real symmetric positive de�nite matrix of order n, andlet PHP T = LLT be its Cholesky decomposition with complete pivoting. Let A1 =D�11 LTLD�11 , whereD1 = diag (D1;ii; : : : ;D1;nn) = diag (LTL) ; D1;ii =  nXk=i L2ki!1=2 :Then �(A1) < 0@1 + n�1Xi=1 s ii+ 11A nXi=1 1 + 22(i�1) � 13 ! (n+ 1� i) : (4.4.7)113



Proof. Reasoning as we did in the 3� 3 example, we conclude that kA1k2 < kA0k2where A0 = 266666666664 1 sn� 1n sn� 2n� 1 : : : s121 sn� 2n� 1 : : : s121 : : : .... . . 1 377777777775 :Therefore kA1k2 < 1 + n�1Xi=1 s ii+ 1 ; (4.4.8)which proves the �rst part of (4.4.7). As in the 3� 3 example, we also conclude thatkA�11 k2 = kD1L�1L�TD1k2 � kD0L0(L0)TD0k2;where D0 = diag (pn;pn� 1; : : : ;p2; 1);L0 = L(n)L(n�1) � : : : � L(1);L(i)jk = 8><>: 1; j = k ;1; k = i; j = i+ 1; : : : ; n ;0; otherwise :For the elements of the matrix L0 we now haveL0ij = 8><>: 1; i = j ;2i�1�j ; i > j ;0; i < j :Set B = L0(L0)T and C = D0L0(L0)TD0 = D0BD0. ThenBii = 1 + i�1Xj=1(L0ij)2 = 1 + i�1Xj=1 22(i�1�j) = 1 + i�2Xk=0 22k= 1 + 22(i�1) � 13 ; i = 1; : : : ; n ;and Bij = L0ij + j�1Xk=1L0ikL0jk = 2i�1�j + j�1Xk=1 2i�1�k2j�1�k= 2i�1�j + 2i+j�2 0@j�1Xk=0 2�2k � 11A= 2i�j  12 + 22(j�1) � 13 ! ; i = 1; : : : ; n; i > j :114



Of course, Bij = Bji. Furthermore,Cij = Bijpn+ 1 � iqn+ 1� j :Finally, kCk2 < Tr (C) and the second part of (4.4.7) is proved. Q.E.D.In Th. 4.4.1 we have essentially proved that for any positive de�nite matrixH, thevalue �(A1) is smaller than the product kA0k2kCk2. We must, however, emphasizethat the second (dominant) part of (4.4.7) is a very good approximation for kCk2 inthe sense that for all n nXi=1  1 + 22(i�1) � 13 ! (n+ 1 � i)!=kCk2 < 1:0001 :We can further symplify the inequality (4.4.7) by bounding kA0k2 by n and kCk2 byZ n+11  1 + 22(x�1) � 13 ! (n + 1� x)dx < 13 �n2 + 1ln2 422n� ;which yields �(A1) < n3 �n2 + 1ln2 422n� : (4.4.9)We have experimentally observed that13 �n2 + 1ln2 422n� =kCk2 < 1:1708 :Now we show that the transition from the matrix H to the matrix LTL cannotspoil the condition of the scaled matrix too much. We use the technique from [14].Set A = Scal (PHP T ) = D�1LLTD�1, B = D�1L, and B1 = LD�11 . Then A = BBT ,A1 = BT1 B1 and B�11 = D1L�1 = D1B�1D�1 :From (4.4.1) for every 1 � j � i � n it followsjD1B�1D�1jij = vuutL2ii + L2i+1;i + � � �+ L2niL2j1 + L2j2 + � � �+ L2jj jB�1jij� pn� i+ 1 LiiLjj jB�1jij � pn� i+ 1 jB�1jij :Thus, (4.4.5) and (4.4.6) implykB�11 k2 � kjD1B�1D�1jk2 � pnkjB�1jk2 � nkB�1k2 ;that is, kA�11 k2 � n2kA�1k2. 115



The bound (4.4.7) is almost attained for the matrices of the formH = LLT , whereL = L0D0 ;D0 = diag (1; s; s2; : : : ; sn�1) ;(L0)ij = 8><>: 1; i = j ;�c; i > j ;0; i < j : (4.4.10)s2 + c2 = 1 :These matrices are due to Kahan and are described in [16]. When c ! 1, then Hand Scal (H) both tend to singular matrices. Since H1 = LTL = D0LT0L0D0 and L isitself the optimal Cholesky factor of H, we conclude thatA1 = Scal (H1) = Scal (LT0 L0) = D�11 LT0L0D�11 ;where D1 = diag �q1 + (n � 1)c2;q1 + (n� 2)c2; : : : ; 1� :It is easy to verify that limc!1A�11 = C. Therefore, the quotient between the bound(4.4.7) and �(A1) is in this case equal to kA0k2=kA1k2 which is smaller than the �rstpart of (4.4.7) (smaller than n).At the end we have to point out that, even though the bound of Th. 4.4.1 mayseem pessimistic, experiments from Demmel and Veseli�c [13] and Chap. 5 show that�(A1) is in practice considerably better than �(A) and, thus, the examples like thatof Kahan are very rare. Moreover, for the matrices de�ned by (4.4.10) it is possibleto obtain much better �(A1). Since Hii = 1, the optimal Cholesky decompositionrequires no pivoting. However, permuting the matrix H so that e.g. Hnn comes tothe position (1,1) does not contradict the complete pivoting and results in �(A1) < n2.Demmel and Veseli�c [13] showed that for positive de�nite matrix H�min(A) � Hii�i � �max(A) ;where A = Scal (H), �i denotes the i�th eigenvalue of H, and Hii's and �i's havethe same ordering. This means that the diagonal entries of H can di�er from theeigenvalues only by factors bounded by �(A). Applying this result to H1 = LTL,wee see that the Cholesky decomposition usually has rank{revealing property. Thecomplete pivoting usually gives satisfactory results, but the choice of the optimalpivoting as in the above example in an open problem. For related results about therank{revealing QR decomposition see [7].The following theorem holds for a non{singular but possibly inde�nite H:Theorem 4.4.2 Let H be a nonsingular symmetric matrix and let PHP T = GJGTbe its decomposition. Let � = 2:781 denote the maximal value of the quantities jLijjfrom (4.1.8), and let A1 = Scal (GTG). Then�(A1) < n(1 + 15n)3:7812n : (4.4.11)116



Proof. From (4.1.9) it followskA1k2 = kScal (GTG)k2 = kScal (P T1 qjD1jLT1 L1qjD1jP1)k2= kScal (qjD1jLT1L1qjD1j)k2= kScal (LT1 L1)k2 = kD�1LT1 L1D�1k2 ;where D is diagonal with elements Dii = (LT1 L1)ii = (QTLTLQ)ii. Note that inestimating kA1k2 and kA�11 k2 we can without loss of generality assume that P1 = I.The matrix A1 is positive de�nite and has unit diagonal, so thatkA1k2 < n : (4.4.12)Further, kA�11 k2 = kDL�11 L�T1 Dk2 = kDQTL�1L�TQDk2 :Now we shall maximize elements of the matricesD and QTL�1 and use the mono-tonicity properties of the norm k � k2 as we did in Th. 4.4.1. The elements of L�1 arelargest in modulus if all under{diagonal elements of L are equal to ��. Let us denotethis "maximal" L�1 by �L. Then�Lij = 8><>: 1; i = j ;�(1 + �)i�1�j ; i > j ;0; i < j :Now jQTL�1j � jQT j�L � L0 ;where L0ij = 8>>><>>>: 1 + �; i = j ;�(2 + �)(1 + �)i�1�j ; i > j ;1; i = j � 1 ;0; i < j � 1 :Element Dii is the norm of the i{th column of LQ. It is easy to verify thatDii = q1 + L2i+1;i + : : : L2ni ;when the index i corresponds to a 1� 1 pivot, andDii = qcs2 + sn2 + (Li+2;ics� Li+2;i+1sn)2 + (Lnics� Ln;i+1sn)2 ;Di+1;i+1 = qcs2 + sn2 + (Li+2;i+1cs+ Li+2;isn)2 + (Ln;i+1cs+ Lnisn)2 ;when the indices i; i+1 correspond to a 2�2 pivot. Therefore, it is always Dii � D0ii,where D0 is diagonal matrix with elementsD0ii = q1 + 2(n � i)�2 :117



Now we havekA�11 k2 = kDQTL�1L�TQDk2 � kD0L0(L0)TD0k2 � Tr (D0L0(L0)TD0)= nXi=1 241 + (1 + �)2 + i�1Xj=1 ��(1 + �)(i�1�j)(2 + �)�235 (1 + 2(n� i)�2)= nXi=1 h1 + �(2 + �)((1 + �)2(i�1) � 1)i (1 + 2(n � i)�2)� �(2 + �)(1 + 2n�2) nXi=1(1 + �)2(i�1)� (1 + 2n�2)(1 + �)2n ;which completes the proof of the theorem. Q.E.D.Due to the fact that some of the worst cases assumed in the above proof areimpossible, the statement of Th. 4.4.2 is an overestimate. Numerical experiments ofChap. 5 show that �(Scal (GTG)) is, as in the positive de�nite case, generally verysmall.If H is singular, then Alg. 4.1.1 returns an n�r matrix G of the full column rank.The nature of the proof of Th. 4.4.2 implies that (4.4.11) holds in this case, too (andthat even with better constants, since some summations have fewer terms).
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Chapter 5Numerical experimentsIn this chapter, we present the results of our numerical experiments. Brie
y, wetested the algorithm of Sect. 4.3 and veri�ed that error bounds of that section heldin all examples. The comparison of our algorithms with the QR and the standardJacobi algorithm showed that our algorithms are uniformly more accurate. In fact,the performance is better than we were able to explain theoretically, both becausewe could observe little or no growth in actual errors for increasing dimension, andbecause of small values attained by maxm �(Bm)=�(B0) during the Jacobi part. Therelative errors in eigenvalues were given by (4.3.4) multiplied by small coe�cientswhich increased only slowly with n. The norm errors in eigenvectors were smallerthan those predicted by (4.3.4) by an order of magnitude .Tests were performed using FORTRAN on an IBM RISC/6000. The arithmeticis IEEE arithmetic with machine precision "S � 5:9604 � 10�8 in single, and "D �1:1102 � 10�16 in double precision. Over
ow/under
ow tresholds are approximately10�38 in single, and 10�308 in double precision. The machine has a special multiply{and{add function, maf, which computes a = b+ c�d as a single instruction. In singleprecision, maf �rst computes c�d in double precision, adds b, and then rounds a backto single precision. For IEEE arithmetic with maf, the constants 272 and Cm from(4.3.2) are somewhat, but not essentially, smaller.In our tests we used �ve di�erent algorithms:JGJ { the symmetric inde�nite decomposition of Alg. 4.1.1 followed by the standardimplicit method of Alg. 3.3.1,JGJF { the symmetric inde�nite decomposition of Alg. 4.1.1 followed by the fastimplicit method of Alg. 3.4.1,JGJFS { the symmetric inde�nite decomposition of Alg. 4.1.1 followed by the fastimplicit method with self{scaling rotations of Alg. 3.4.5,JAC { the standard Jacobi algorithm (We used Alg. 3.1.1 with J = I. Then nohyperbolic rotations are performed andH does not have to be positive de�nite.),119



SSYEV { LAPACK single precision routine which implements tridiagonalizationfollowed by QR iteration.In all three implicit Jacobis the diagonal was kept separately according to Alg. 3.3.7.We tested the accuracy as follows: we considered real symmetric non{singulareigenproblems. We �rst solved every problem using JGJ and JAC in double precision.We assumed that the digits of the computed eigenvalues which overlap in those twoalgorithms are correct. We took the eigenvectors computed by JGJ as the ones ofreference. Then we solved the same problem with the single precision versions ofJGJ, JGJF and JGJFS, and compared the answers with the double precision solutionto see if they were as accurate as predicted (which they were). We also comparedthe solutions obtained by SSYEV and the single precision version of JAC. Absolutelysmall eigenvalues computed by SSYEV were often of the wrong sign, indicating totalloss of relative accuracy. All Jacobi algorithms used the stopping criterion tol = n � "and the parallel cyclic pivot strategy of [24].The rest of the chapter is organized as follows: we �rst discuss the test matrixgeneration. We then discuss accuracy of the computed eigensolutions. We make aninteresting remark about the sensitivity of the QR and the standard Jacobi algorithmsto the initial permutations of the input matrix. After that we discuss behaviour of�min(D�1G GMGTMD�1G ), growth of 1=�min(Bm) during the implicit Jacobi process, andbehaviour of the diagonal in fast rotations. Finally, we discuss convergence rates.Test matrix generation. We generated two types of random matrices. The �rsttype is divided in several categories according to dimension n, �( bA) (where bAii � 1,so that �( bA) is at most factor n from C(A; bA) from (2.2.12) ), and �(H). We �rstdescribe the algorithm used to generate a random matrix from these parameters andthen the sets of parameters used. All steps were preformed in double precision. Given�( bA), we generated a positive de�nite diagonal matrix D whose entries' logarithmsare uniformly distributed between [�0:5 log �( bA); 0:5 log �( bA)]. On D we applied �vesweeps of random trigonometric plane rotations, thus obtaining matrix A0. On A0we applied �ve sweeps of the "anti{Jacobi" method, thus obtaining matrix �A. Thismethod, due to Veseli�c, consists of an iterative application of trigonometric planerotations, Am+1 = JTmAmJm, where Jm is obtained in the following manner: let" a cc b # ; " cs sn�sn cs # ;be the pivot submatrices of Am and Jm, respectively. Then cs = 1=h and sn = �t=h,where � = 2cb� a ; t = sign �j�j+p1 + �2 ; h = p1 + t2 :The sequence of matrices obtained by the anti{Jacobi method converges to a matrixA where Aii � TrD=n, i.e. �(Scal (A)) = �(A). The convergence is very slow. It120



often required 50 or more sweeps for n = 30. However, after �ve sweeps �( �A) and�(A) = �(D) di�er by no more than 10 %. Given �(H), we generated a positive de�-nite diagonal matrix D1 whose entries' logarithms are uniformly distributed between[�0:5 log �(H); 0:5 log �(H)], and formed a positive de�nite matrix �H = D1 �AD1. Wethen calculated the eigendecomposition �H = UT ��U by our algorithm, and changedsome randomly selected eigenvalues into negative ones, thus obtaining matrix �. Ourrandom test matrix was then H = UT�U .The values for �( bA) were 10, 102 and 103, the values for �(H) were 102, 105, 109,1014 and 1020, and the values for n were 10, 20, 50, 100 and 200. This makes a totalof 3 � 5 � 5 = 75 di�erent classes of matrices. In each class of dimension n = 10matrices we generated 500 random matrices, in each class of n = 20 we generated 300random matrices, in each class of n = 50 we generated 200 random matrices, in eachclass of n = 100 we generated 100 random matrices, and in each class of n = 200 wegenerated 50 random matrices. This makes a total of 17250 di�erent test matrices.The second type of test matrices were block scaled diagonally dominant (b.s.d.d)matrices of Th. 2.2.7 generated according to two parameters, dimension n and �(H).We �rst randomly generated number of diagonal blocks 2 � nb � n� 1, and the sizeof the blocks. We then generated a random symmetric orthogonal matrix A with thisblock structure (the elements outside blocks are 0), and formed matrix �A = A +N ,were N is a random symmetric matrix with kNk2 � 0:5. Given �(H), we gener-ated a positive de�nite diagonal matrix D whose entries' logarithms are uniformlydistributed between [�0:5 log �(H); 0:5 log �(H)]. D is constant on the blocks whichcorrespond to the blocks of A, so that A and D commute. Finally, we formed ourtest matrix H = D �AD. As above, we have chosen �(H) 2 f102; 105; 109; 1014; 1020gand n 2 f10; 20; 50; 100; 200g. In each class of dimension n = 10 and n = 20 matriceswe generated 100 random matrices, in each class of n = 50 we generated 50 randommatrices, in each class of n = 100 we generated 30 random matrices, and in each classof n = 200 we generated 10 random matrices.Accuracy of the computed eigensolution. For every matrix we �rst calculatedexpected relative error in eigenvalues and expected norm error in eigenvectors accord-ing to (4.3.4) with " = "S = 5:9604 � 10�8. For every eigenvalue we calculated relativeerror j�D;i � �S;ijj�D;ij ;where �D;i denotes the i�th reference eigenvalue, and �S;i denotes the i�th singleprecision eigenvalue. For every eigenvector we calculated the error kvD;i � vS;ik2,where vD;i and vS;i are the eigenvectors corresponding to �D;i and �S;i, respectively.Table 1 shows quotients of the maximum of the relative errors in single precisioneigenvalues and the expected relative error of (4.3.4). For all quantities we givemean value, standard deviation, maximum and minimum attained on the respective121



Table 1: maxifj�D;i � �S;ij=j�D;ijgexpected relative errorn MEAN STD MAX MIN10 JGJ 1.551 1.342 6.710 .0676JGJF 1.562 1.372 7.658 .0554JGJFS 1.225 1.024 6.347 .056520 JGJ 2.267 2.137 10.53 .1105JGJF 2.330 2.199 10.32 .1231JGJFS 1.618 1.509 8.216 .098450 JGJ 4.282 4.165 17.01 .2256JGJF 4.355 4.282 18.34 .2332JGJFS 2.737 2.625 11.14 .1872100 JGJ 6.653 6.528 26.56 .3609JGJF 6.803 6.721 27.45 .3595JGJFS 4.191 4.168 20.06 .2357200 JGJ 12.13 11.53 38.97 .9087JGJF 12.26 11.60 39.11 .9693JGJFS 7.546 7.239 25.62 .5904class of test matrices. We see that the expectations were ful�lled up to a slowlygrowing constant, thus the statements of Remarks 3.2.6 and 4.2.2 that the actualerrors increase only slowly as n or M increases. Note that the quotients in Table 1increase at most linearly in n, which is still far below the theoretical growth of O(n2)from (4.3.2). Comparing the data for JGJ and JGJF indicates that the use of mafmakes no di�erence in practice (maf is theoretically fully exploited by fast rotationsin JGJF, and only partially exploited in JGJ). Note that JGJFS is slightly moreaccurate than JGJ and JGJF.Table 2 shows quotients of the maximum of the norm errors in single precisioneigenvectors and the expected norm error. We see that the actual errors are consid-erably smaller than the expected ones, for which we have no explanation. Note, also,that the quotients are almost independent of n, and that JGJFS is now somewhatless accurate than JGJ and JGJF.Table 3 shows quotients between maximal relative errors in eigenvalues of SSYEV(JAC) and JGJFS. We see that SSYEV and JAC often had no accurate digits, andare therefore unreliable. SSYEV and JAC performed as well or even slightly betterthan our algorithms on those matrices for which parameter �(H) was small, i.e. onthe matrices where our perturbation theory and the standard one do not di�er much.Tables 1, 2 and 3 are obtained from the �rst type of test matrices. Data forb.s.d.d matrices are similar, except that JAC is for those matrices as accurate as ouralgorithms. 122



Table 2: maxi kvD;i � vS;ik2expected norm errorn MEAN STD MAX MIN10 JGJ .0144 .0106 .0895 .0002JGJF .0147 .0118 .1258 .0003JGJFS .0149 .0111 .0945 .000320 JGJ .0138 .0120 .1095 .0008JGJF .0145 .0133 .1099 .0009JGJFS .0159 .0144 .1112 .000250 JGJ .0168 .0152 .1056 .0004JGJF .0181 .0169 .1018 .0007JGJFS .0230 .0232 .1364 .0014100 JGJ .0177 .0175 .1397 .0008JGJF .0195 .0197 .1356 .0010JGJFS .0285 .0292 .1938 .0012200 JGJ .0198 .0191 .0808 .0001JGJF .0231 .0223 .1045 .0003JGJFS .0365 .0349 .1467 .0011Table 3: Quotients of maximal relative errors in eigenvaluesn MEAN STD MAX MIN10 SSYEV/JGJFS 6:6 � 105 9:3 � 105 4:5 � 106 .1687JAC/JGJFS 1:0 � 104 1:3 � 105 3:1 � 106 .105520 SSYEV/JGJFS 4:2 � 105 4:9 � 105 2:1 � 106 .1812JAC/JGJFS 4:8 � 104 1:6 � 105 1:2 � 106 .128250 SSYEV/JGJFS 2:2 � 105 2:1 � 105 8:3 � 105 .1136JAC/JGJFS 1:2 � 105 1:9 � 105 7:6 � 105 .1595100 SSYEV/JGJFS 1:2 � 105 1:1 � 105 4:5 � 105 .0631JAC/JGJFS 1:0 � 105 1:1 � 105 4:5 � 105 .1608200 SSYEV/JGJFS 4:1 � 104 4:4 � 104 1:4 � 105 .0553JAC/JGJFS 3:7 � 104 4:4 � 104 1:4 � 105 .1877123



Table 4: �min( bA)�min(D�1G GMGTMD�1G )n MEAN STD MAX MIN10 TYPE 1 1.216 .2970 3.076 0.9166TYPE 2 2.742 1.249 6.000 1.10020 TYPE 1 1.412 .1665 4.411 .9696TYPE 2 3.816 1.505 8.300 1.10050 TYPE 1 1.821 .6617 5.000 1.000TYPE 2 6.944 3.318 17.00 1.100100 TYPE 1 2.347 .9997 5.588 1.200TYPE 2 12.12 7.186 25.00 1.500200 TYPE 1 3.522 1.654 7.272 1.608TYPE 2 20.85 8.900 37.00 6.500Remark. We have observed that the QR and the standard Jacobi algorithm oftenimproved in accuracy when the starting matrix was permuted so that the symmetricinde�nite decomposition needs no permutations. In many cases even the accuracy ofour algorithms was achieved. This phenomenon in an interesting open problem, andcan serve as an empirical advice to someone using QR or the standard Jacobi.Behaviour of 1=�min(D�1G GMGTMD�1G ). Table 4 displays values of�min( bA)�min(D�1G GMGTMD�1G ) ;where the denominator comes from (4.3.4), and bA = (diag H )�1=2 H (diag H )�1=2.We see that the quotients are small, thus implying that the errors induced by thesymmetric inde�nite decomposition satisfy the perturbation bounds of Sect. 2.2 al-most optimally. The same values were obtained by all three of our algorithms. Thereare small di�erences between test matrices of the �rst and the second type.Behaviour of 1=�min(Bm). Let Gm = BmDm denote the sequence of matriceswhich was obtained by the implicit Jacobi from the starting pair G0; J . As usual,the columns of Bm have unit norms. Also, let Am = D�1m GTmGmD�1m . We calculatedupper bounds for maxm �min(B0)=�min(Bm) in two ways. Table 5 gives four values:SIGMA, HAD/SIGMA, BOUND and ROT. HereSIGMA = 1=�min(B0) ; HAD = (exp (1)=det (A0))1=2 :BOUND and ROT were computed as follows: we computed a decreasing sequencehm as h0 = HAD2 ; 124



hm+1 = hm(1 �A2m;ij) ; m � 0 :Each sweep of the parallel pivot strategy of [24] has n parallel steps each havingp = (n � 1)=2 rotations for n odd, and n � 1 parallel steps each having p = n=2rotations for n even. We computed a non{decreasing sequence sm de�ned bys0 = SIGMA2 ;sm = sm�1 ; m � 1 ; m mod p 6= 0 ;sm = sm�p(1 + max0�k�p�1 jAm�p+k;ij j) ; m � 1 ; m mod p = 0 :Recursive application of (3.2.34) implies that 1=�2min(Bm) � sm. Recursive applica-tion of (3.2.36), together with (3.2.35), implies that 1=�2min(Bm) � hm. Therefore,1=�2min(Bm) � minfsm; hmg for every m � 0. Also, s0 � h0. Let m0 be the largest msuch that sm � hm. ThenBOUND = (sm=s0)1=2 ; ROT = m0 :In other words, BOUND is the guaranteed upper bound for maxm �min(B0)=�min(Bm).The values of 1=�min(B0) in Table 5 are very small, thus showing the non{trivialdiagonalizing e�ect of the transition from matrix H to pair GTG; J . We also see thatthe guaranteed upper bound is reliable only for smaller dimensions, and that sm andhm usually meet in the �rst sweep. The data of Table 5 come from test matrices ofthe �rst type. Data for b.s.d.d matrices are similar.A much better upper bound for maxm �min(B0)=�min(Bm) was obtained by thealgorithm of Sect. 3.2.2 (which, however, requires additional computational e�ort).This bound is by its nature always greater or equalpn, and the largest value attainedin all experiments was 1:05pn. In fact, accuracy of computed eigensolutions impliesthat this is also an overestimate, that is, 1=�min(Bm) can grow only little beforeconverging to 1.Behaviour of the diagonal in fast rotations. Table 6 shows four values: MINF isthe smallest element of the diagonal of fast rotations obtained by JGJF, MINF/MINSis the quotient of this element and the smallest element of the diagonal of fast self{scaling rotations obtained by JGJFS, MAXF is the largest element of the diagonal ofJGJF, and MAXF/MAXS is the quotient of this element and the largest element ofthe diagonal of JGJFS. We see that, even for large n, there is actually no danger ofunder
ow/over
ow.Convergence rates. We compared computing times of JGJF and SSYEV, com-puting times of JGJ and JGJFS, and number of sweeps and rotations of JAC andJGJF. The speed ratio of JGJF and SSYEV is the following: for n = 200, meanvalue, standard deviation, maximum and minimum are for matrices of the �rst type(4:9; 0:5; 5:8; 3:6), and for b.s.d.d matrices (4:9; 0:8; 6:4; 3:3). These ratios are realistic125



Table 5: Behaviour of 1=�min(Bm)n MEAN STD MAX MIN10 SIGMA 1.940 .7408 5.193 1.032HAD/SIGMA 2.014 1.103 10.86 1.217BOUND 1.331 .2513 2.877 1.649ROT 23 10 60 520 SIGMA 2.813 1.249 9.481 1.130HAD/SIGMA 29.92 87.97 100.2 1.277BOUND 2.606 1.771 14.06 1.649ROT 85 28 170 1050 SIGMA 4.696 2.707 14.65 1.524HAD/SIGMA 1:0 � 1010 1:4 � 1011 2:9 � 1012 2.182BOUND 330.1 784.8 550.5 1.649ROT 653 223 1175 75100 SIGMA 7.146 4.654 23.07 2.003HAD/SIGMA 3:2 � 1031 6:9 � 1032 1:4 � 1034 57.41BOUND 4:1 � 109 8:6 � 1010 1:8 � 1012 9.220ROT 3247 1251 15500 105
Table 6: Behaviour of the diagonal in fast rotationsn MEAN STD MAX MIN100 MINF .2839 .1869 .7100 .0051MINF/MINS .4150 .2584 .9838 .0086MAXF 1.323 .1076 1.700 1.100MAXF/MAXS .9633 .0767 1.230 .7857200 MINF .0876 .0855 .3300 .0005MINF/MINS .1418 .1352 .5409 .0009MAXF 1.439 .1158 1.900 1.300MAXF/MAXS 1.028 .0827 1.357 .9285126



although JGJF could be made slightly faster. Namely, SSYEV uses BLAS routineswhich are distributed together with RISC/6000 (and are therefore highly optimized),while our algorithm uses some extra BLAS type routines written by us (e.g. hyperbolicplane rotation).Use of fast rotations, JGJFS, brought only about 5% speed up over JGJ.We begin the comparison of sweeps and rotations needed for convergence of JACand JGJF with a few details. JAC stopped when the last n(n � 1)=2 stopping testsjHij j � tolqjHiijjHjj j succeeded. Since our implicit algorithms keep the diagonal ina separate vector, JGJF stopped after an empty sweep. Since one scalar productis needed to determine (GTG)ij even if no rotation is performed, an empty sweep inJGJF requires approximately 1=3 of the computation time of the full sweep, which is aslight dissadvantage. The symmetric inde�nite decomposition used in JGJF amountsto no more than 2=9 of one sweep and is neglected. Table 7 shows number of sweepsand rotations for JAC and JGJF, and quotient of numbers of rotations for JAC andJGJF.We see that JAC needed averagely twice as much rotations as JGJF. Anotherimportant phenomenon, not readily seen in this table, is that number of rotations inJGJF is somewhat stable, that is, it did not depend much on parameters �( bA) and�(H), while in JAC number of rotations grew as �(H) grew. Data in Table 7 comefrom matrices of the �rst type. For b.s.d.d matrices, JAC performs better, that is, itneeds averagely 1.5 times more rotations than JGJF.
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Table 7: Sweeps and rotations for JAC and JGJFn MEAN STD MAX MIN10 SWEEP JAC 5.1 .96 9 3ROT JAC 166 30 257 105SWEEP JGJF 4.1 .65 6 3ROT JGJF 107 30 191 43JAC/JGJF 1.6 .4 4.2 .9820 SWEEP JAC 7.2 1.7 12 4ROT JAC 935 191 1556 530SWEEP JGJF 4.8 .72 7 3ROT JGJF 545 152 917 254JAC/JGJF 1.8 .6 4.2 1.050 SWEEP JAC 10.7 2.7 17 4ROT JAC 8305 1740 12719 4089SWEEP JGJF 5.7 .92 8 4ROT JGJF 4317 1361 7427 2084JAC/JGJF 2.1 .9 4.9 .96100 SWEEP JAC 13.2 2.7 19 6ROT JAC 40431 10814 213460 19908SWEEP JGJF 6.5 1.1 9 5ROT JGJF 20502 7816 92408 9059JAC/JGJF 2.2 1.0 5.6 .91200 SWEEP JAC 14.3 2.7 19 9ROT JAC 173952 25326 231892 135121SWEEP JGJF 8.0 1.3 10 6ROT JGJF 108607 31874 161841 57715JAC/JGJF 1.7 .72 3.6 .85
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