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Chapter 1

Introduction

The paper considers the eigenvalue problem
Hx = Ax | r#£0,
where H is a real symmetric matrix of order n. Our aim is the following:

if the matrix is "well-behaved”, that is, if small relative changes of the
matrix elements cause small relative changes in the eigenvalues, then per-
form the eigenreduction accurately in this sense.

Small relative changes in matrix elements typically occur when the matrix is being
stored in the computer.

Our work generalizes the works by Barlow and Demmel [2] who considered scaled
diagonally dominant matrices (which are described later), and by Demmel and Veseli¢
[13] who considered positive definite matrices. Our results are, however, less definite
than in the positive definite case. This is due to the fact that the structure of the set
of all well-behaved indefinite matrices is more complicated than the structure of the
set of all well-behaved positive definite matrices, and is not simply characterized as
yet. Demmel and Veseli¢’s [13] algorithm of choice was the Jacobi method. One of the
versions of the algorithm that they used consists of two steps. First step is to calculate
the Cholesky decomposition of a starting positive definite matrix. Second step is to
apply the implicit (one-sided) version of the Jacobi method to the Cholesky factor
as described by Veseli¢ and Hari [31]. We use the algorithm which is an immediate
generalization of this two-step algorithm, and was proposed by Veseli¢ [28, 29].

The algorithm consists of two steps.

1. Decompose H as
H = GJGT 5 J = [npos & (_[T—TLPOS) ) (11)

where ¢ is a n X r matrix of a full column rank, rank (H) = r, and npos
is the number of the positive eigenvalues of H.



This decomposition is an extension of the known symmetric indefinite decomposition
of Bunch and Parlett [6]. The eigensolutions of the matrix i and the pair GT G, J are
simply related. There always exists a matrix /' which diagonalizes the pair GG, J
such that
FIGTGF = A, FTJF =J .

where A is diagonal and positive definite. The matrices for which FTJF = J are
called J—orthogonal. The non—zero eigenvalues of H are the diagonal elements of
AJ, and the corresponding eigenvectors are the columns of GFA~!/2,

2. Apply the implicit (one—sided) J—orthogonal Jacobi method to the pair
G, J to find the non—zero eigenvalues and the corresponding eigenvectors

of H.

The implicit J—orthogonal Jacobi method consists of an iterative application of the
transformation

Gm—l—l = ijm ,

where G = Gy and J,, is a J—orthogonal Jacobi plane rotation. The J—orthogonality
of J,, means that J,, performs a hyperbolic rotation if 1 < < npos < 3 <r, and a
trigonometric rotation otherwise. Since the implicit Jacobi works only on the columns
of (G, it is suitable for parallel computing. The symmetric indefinite decomposition
(1.1) is, however, not suitable for parallelization. The transition from the matrix
H to the pair GT(,J is, in fact, one step of the LR algorithm and usually has a
diagonalizing effect. This reduces the number of iterative steps in our algorithm, and
makes it faster than the standard Jacobi.

The algorithm has very favourable accuracy properties. For most well-behaved
matrices we were able to prove relative error bounds for the eigenvalues and the norm
error bounds for the eigenvectors similar to those in [13]. These errors are uniformly
better than those for QR or the standard Jacobi algorithm applied directly to H.

Now we present our error bounds. They depend on new perturbation theory for
eigenvalues and eigenvectors, error analysis of the symmetricindefinite decomposition,
and error analysis of the J—orthogonal Jacobi methods. The statement that our
algorithm is more accurate than QR or the standard Jacobi algorithm depends also on
some empirical observations for which we have overwhelming numerical evidence, but
somewhat weaker theoretical understanding. Our perturbation theory is an extension
of those of Barlow and Demmel [2] and Demmel and Veseli¢ [13].

We first consider known results. Let H be a real non—singular symmetric matrix.
Let 6 H be a small symmetric perturbation of H such that

Let A; and A, be the 1—th eigenvalues of H and H + § H, respectively, numbered so
that Ay <--- < A,. The standard perturbation theory [33] says that (1.2) implies

A= M| |[6H .
PN e o a7 = () (13)




where k(H) = ||H||2 - ||[H "2 is the condition number of H. For the positive definite
H, Demmel and Veseli¢ [13] proved the following stronger result: write H = DAD
where D = (diag (H))"/? is a scaling so that A; = 1. Then (1.2) implies

ANl en

< A) . 1.4
Y Wy enk(A) (1.4)

By a theorem of Van der Sluis [27]
k(A) < nrrbin/i(DHD) , (1.5)

i.e. K(A) nearly minimizes the condition number of positive definite H over all possible
diagonal scalings. Clearly, it is possible that (A) < x(H) and it is always true that
k(A) < nk(H), so the bound (1.4) is always at least about as good and can be much
better than the bound (1.3). Demmel and Veseli¢ [13] showed that (1.4) also holds

under a more general perturbation of the type
|6 Hyj| < e(HiHy)'* (1.6)

and that the standard Jacobi method computes the eigenvalues with nearly this ac-
curacy. Barlow and Demmel [2] considered scaled diagonally dominant matrices, i.e.
matrices of the form

H=DAD , A=E+ M,

where D is diagonal and non-singular, F is diagonal with elements +1, diag (M) = 0,
and [|[M|]; = ¢ < 1. They showed that for such matrices (1.2) implies

|)\Z — )\;| 5n2
< b
N, 1=

(1.7)

and that a version of bisection without previous tridiagonalization computes the eigen-
values with nearly this accuracy.
Our perturbation bound for the non—singular but possibly indefinite matrix H is
the following: set
|H] = DAD , (1.8)

where | -] is the spectral absolute value (JH] is symmetric square root of H?), and

D = (diag (JH]))"/?. Then

A — N
| o e (1.9)
holds under the perturbations of types (1.2) and under

This bound is actually derived in the more general setting of positive definite Her-

~

mitian matrix pairs. By (1.5) it is always true that x(A) < ne(|H|) = nk(H), and it
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is possible that x(A) < &(H). Therefore, our bound (1.9) is always at least about
as good and can be much better than the bound (1.3). If H is positive definite, our
bound reduces to the bound (1.4). If H is scaled diagonally dominant, our bound is
similar to the bound (1.7) (see Chap. 2).

Since the implicit J—orthogonal Jacobi method works on the pair G, J, we also
need the perturbation theory in the case when H is perturbed by its factors. Let A be
the i—th eigenvalue of a perturbed matrix (G + §G)J(G + 5G)T. Set G = BD where
D is diagonal positive definite, and columns of B have unit norms. Set G = §BD.
If 0B < e and /0, (B) <1, where 0,,;,(B) is the smallest singular value of B,
then

/

(1 —¢/omin(B))?* < % <(1+¢/omm(B))?. (1.11)

Here H needs not to be non—singular, but G must have full column rank.

Error bounds for the eigenvalues computed by our algorithm follow from (1.9),
(1.11), and the error analysis of our algorithm. Let H be non—singular. Suppose
that both steps of our algorithm are performed in a floating—point arithmetic with
precision ¢. Let GG, J be the output of the symmetric indefinite decomposition. Write
GG = D¢ Bg, where D¢ is diagonal positive definite, and rows of Bg have unit norms.
For the matrices (&,, obtained by the implicit J—orthogonal Jacobi method write
G = By, D,,, where D,, is diagonal and positive definite, and columns of B,, have
unit norms. Let Gy, J be the last pair obtained by the implicit Jacobi, and let Gy,
satisfy the stopping criterion,

(B3 B )ij| < tol for all i # j .

tol is a small constant, usually n times machine precision. This relative stopping
criterion is a natural consequence of (1.11) and it has been used before [13, 29, 31].
Let X! be the i—th calculated eigenvalue. Then

A — N 272n%e M=o, 5
1< = — +2e Y ——— +n-tol +n’e 1.12
[Ail Amin (DG IGTGTIDG) im0 Omin(Bm) (1-12)

holds with the relative error of O(g). Here GJGT denotes the exact product of the
calculated factors of H, and C,, are moderate constants. Throughout the thesis the
formulation "with the relative error of O(g)” means that ¢ is replaced by (1 + K¢),
where 0 < K < 1/e. The first quotient on the right hand side of (1.12) comes from
(1.9) and the error analysis of the symmetric indefinite decomposition, and the rest
comes from (1.11) and the error analysis of the implicit Jacobi. The bound (1.12)
has the same order of magnitude as predicted by the perturbation theory of (1.9)
and (1.11) if A\ (DG'GIGT|DZ') is not much smaller than )\mm(;l) of (1.9), and if
the quantity 1/0in(Bm) does not grow much during the implicit Jacobi (note that
in exact arithmetic lim,,—co Omin(Bm) = 1). We have strong numerical evidence for
both these facts, but our theoretical understanding is weaker. Moreover, we have
observed that 1/0,,:,(Bo) is usually very small. This means that:
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o the error induced by symmetric indefinite decomposition is usually larger than
the error induced by implicit Jacobi,

e our method becomes even more accurate if the (almost) exact factor (7 is readily
supplied,

e our algorithm is usually faster than the standard Jacobi.

Similar observations were made by Demmel and Veseli¢ [13] for the positive definite
H. Moreover, since the theoretical results about the behaviour of 1/0,,:, (B, ) are
independent of the type of rotations used, we conclude that there is no reason to
avoid hyperbolic rotations. Deichmoller [8] considered the solving of the generalized
singular value problem with Jacobi—type methods, and obtained similar results about
the growth of the condition of scaled matrices and a good error analysis for non—
orthogonal rotations used there.

Our approach to the eigenvector perturbation theory is that of [20] which deals
with the norm—estimates of the eigenprojections and thus allows the treatment of
multiple and clustered eigenvalues. Our error bound holds, however, only for the
eigenvectors corresponding to single eigenvalues. Let, as above, H and G both be
non-singular. Let v; and v} be the eigenvectors of A; and A, respectively. Let Ag; be
the i—th eigenvalue of G.JGT. Then, less formally stated,

1! — il < V2 N 427
T T g\ rge(Xay)

+ O(n’e) . (1.13)

Here 5 is the first quotient of the right hand side of (1.12), and 7 is approximately
1.5 times the rest of the right hand side of (1.12). rg(A) and rgs(A) are two kinds of
relative gaps between the eigenvalues, e.g. for A > 0 we set

A — A A — AL
"Ar+F A A+ A |

rga()) = min{l

Here Ap and AR are the left and right neighbours of A in the spectrum, and the quo-
tients containing them are defined only if A, Ar exist and are positive, respectively.
This result applied to positive definite or scaled diagonally dominant H is similar to
the corresponding results of [13, 2|, although with a different definition of relative
gap. The bound (1.13) compares favourably to the standard eigenvector result [22]
which, for the perturbation of the type (1.2), says

ne|[H|l2
mini; [Ai — Ajl

ot — vl <

+ O(e?).

In fact, if H has two or more tiny eigenvalues, then the above minimum is necessarily
small for some ¢’s, but the relative gaps may be large.



To illustrate our theory consider the matrix

1600 —300 14 300000
- —300 43.5 —4.75 —423212
N 14 —4.75 0.1875 19300

300000 —423212 19800 3207938 - 10°

whose all elements are sums of powers of 2, and are exactly stored in IEEE single
precision, € ~ 1078. We have
1 1

~ 18, ~ 1.1,

so we expect that the single precision version of our algorithm (e &~ 107®) returns six
or seven correct decimal digits. The eigenvalues of H are

A1 = —54.043364

Ay = —0.0283096849
As = 1613.74866

Ay = 3207938084.0105

Here the digits which are common to our algorithm and the LAPACK routine DSYEV
which implements tridiagonalization followed by QR iteration (all performed in IEEE
double precision, ¢ ~ 107'%) are displayed. Our algorithm, QR algorithm from the
LAPACK routine SSYEV, and the standard Jacobi, all in single precision, computed
the following eigenvalues:

OUR ALG. SSYEV JACOBI

A1 —54.043369 —55.990593  —54.043369
Ay —0.02830968 —0.0326757 —0.02830995
As 1613.7487  1651.6652 1613.7486
Ay 3207938000 3207938000 3207938000

Therefore, our algorithm computed the eigenvalues with the predicted relative ac-
curacy, QR has totally missed the absolutely smallest eigenvalue (and two more are
very inaccurate), and the standard Jacobi computed the absolutely smallest eigen-
value somewhat less accurately than our algorithm. Note that H is far from being
scaled diagonally dominant which shows that our results are a non—trivial generaliza-
tion of those of [2]. The algorithms behaved similarly on all such matrices for which
the bound (1.12) is small and x(H) is large.

To explain the loss of accuracy in QR and the standard Jacobi algorithm note that
both algorithms do all of their work on an indefinite matrix. Let H,, be the sequence of
matrices generated in floating—point arithmetic by either of those algorithms. Further,
let A,, be obtained from H,, according to (1.8). In both algorithms it frequently

8



~ ~

happens that max,, £(Am,) > £(A), which can, in turn, result in the loss of accuracy.
In QR algorithm accuracy can be lost during the tridiagonalization, as well as during
the iterative part. To illustrate the loss of accuracy during the tridiagonalization
consider the matrix

102 1 1
H=|1 1 1 |,
11 10%

~

for which k(A) ~ 1 and x(H) ~ 10%°. The tridiagonalization, which consists of one

Givens rotation, yields the matrix

10 V2 0

Hy=| V2 1042 10° -1

0 10*°—1 10*°-1

for which li(;ll) ~ k(H). In floating—point arithmetic with precision ¢ = 107'¢ the

computed matrix Hy is exactly singular indicating total loss of accuracy. Demmel [10]

gives an example of a well-behaved tridiagonal matrix where K(Am) almost reaches
k(H) during QR iterations, which, in turn, results in the total loss of accuracy.

The main difference between indefinite non—singular and positive definite matrices

is the following: for positive definite H the perturbations of the types (1.2) and (1.6)

are equivalent in the sense that if H is insensitive to the one type, it is insensitive to

the other type, and vice versa [13]. For indefinite H this is not the case. Indeed, let

1 1 1
H=]1110 0|,
1 0 ¢

where ¢ is small (this matrix is considered in Sections 2.3, 4.3). H is obviously
very sensitive to perturbations of the type (1.10) so the bound (1.9) must necessarily
be large. On the other side, H is insensitive to small relative componentwise per-
turbations (1.2). This shows that we are still unable to completely characterize all
well-behaved symmetric matrices. Due to large errors in the symmetric indefinite de-
composition, our algorithm computes the eigenvalues with large relative errors. We
can, however, easily obtain an almost exact factorization of H (one way is to change
the choice of pivots in the symmetric indefinite decomposition), and then the implicit
Jacobi computes the eigensolution to nearly full working accuracy. This shows that
we have not completely reached our ideal: if the matrix is well behaved, our algorithm
should compute the eigenvalues with nearly this accuracy.

The thesis is organized as follows: Chapter 2 presents the new perturbation theory.
This chapter, except Subsection 2.3.1, is due to Veseli¢ and Slapnicar [32]. The results
of Veseli¢ and Slapnicar are included mainly for the sake of completeness. In Chapter
3 we first describe the J—orthogonal Jacobi method for the pair H,.J, where H is
positive definite, and give its error analysis. Although this explicit method is rarely



used, its error analysis is the basis for the later analysis of the implicit method. The
error analysis consists of two steps. We first show that one step of J—orthogonal
Jacobi method satisfies the perturbation bounds of Chapter 2. Then we combine
one-step error analysis with the perturbation bounds to obtain overall error bounds
for the eigensolution computed by J—orthogonal Jacobi method. In Subsection 3.2.2
we give known and new results concerning the upper bound for 1/0,in(By). Then
we describe and analyse the implicit J—orthogonal Jacobi method, and do the same
for the implicit method with fast and fast self—scaling rotations. The latter are used
to suppress possible underflow/overflow when accumulating the diagonal of the fast
rotations. In Chapter 4 we define the symmetric indefinite decomposition (1.1) and
give its error analysis. In Section 4.3 we combine the error analysis of the symmetric
indefinite decomposition, error analysis of the implicit J—orthogonal Jacobi method,
and the perturbation bounds of Chap. 2, to obtain the final error bounds for the
computed eigensolution of the real symmetric eigenvalue problem. There we also
shortly refer to the singular case, and state some open problems. In Section 4.4 we give
an interesting theoretical result saying that the condition of the scaled matrix GT G,
x(BTB), is bounded by a function of n irrespective of the condition of the starting
matrix H. In Chapter 5 we present results of our numerical experiments. Main
tests were performed by comparing QR algorithms from LAPACK, standard Jacobi,
and our algorithms in single and double precision. We also tested the behaviour of
Mnin( DENGIGTIDEY) and 6,4, ( B,), and compared computation times.
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Chapter 2

Floating—point perturbations of
Hermitian matrices!

2.1 Introduction and preliminaries

The standard perturbation result for the eigenvalue problem of a Hermitian matrix

H of order n, Hx = Az, reads [16]
531 < 15l (2.11)
where

M A< <A,
M= M0 <. <N =M+ 6N,

are the eigenvalues of H and H + dH, respectively. The perturbation matrix § H is
again Hermitian, and ||-||2 is the spectral norm. The backward error analysis of various
eigenvalue algorithms initiated by Wilkinson [33] follows the same pattern, i.e. the
round—off error estimates are given in terms of norms. A more realistic perturbation
theory starts from the fact that both the input entries of the matrix H and the output
eigenvalues are given in the floating—point form. Thus, a desirable estimate would
read

N

K3

(SHZ']‘

y

< C'max
27]

(2.1.2)

max
K3

Y

where we define 0/0 = 0. Colloquially, "floating-point” perturbations are those with
|0H;;| < e|H;;|, € small. Similarly, we call a matrix "well-behaved” if (2.1.2) holds
with a "reasonable” ' i.e. if the small relative changes in the matrix elements cause
small relative changes in the eigenvalues. For the floating—point perturbations (2.1.1)

!Sections 2.1, 2.2 and 2.3 of this chapter are due to Veseli¢ and Slapnic¢ar [32]. Subsection 2.3.1
1S new.
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implies (2.1.2) with C' = /n - «(H) = /n - ||H||2||H "2, and this bound is almost
attainable. This is illustrated by the positive definite matrix

11
H:[11+€], 0<e< 1.

The small eigenvalue of H is very sensitive to small relative changes in the matrix
elements.

Our results generalize the results obtained in [12, 2, 13]. Demmel and Veseli¢ [13]
showed that for a positive definite matrix H (2.1.2) holds with

C:Mmmw
where
A = (diag (H))™Y?H(diag (H))™"/? (2.1.3)

is the standard scaled matriz. The condition of A can be much smaller and is never
much larger than that of H. Indeed, since A;; = 1 it follows

whereas (1.5) implies

k(A) <n-k(H). (2.1.4)

Similar results hold for the singular value problem [13].

The aim of this paper is to extend the above result to general non—singular Hermi-
tian matrices. The nature of the estimate (2.1.2) shows that the non-singularity is a
natural condition to require. We show (Th. 2.2.3) that (2.1.2) holds for a non-singular
Hermitian matrix H with

C = A1 A 2

where

H=DAD , A=DHD .

Here D is any scaling matriz, i.e. a positive definite diagonal matrix, and |- |, ||
denote the two kinds of absolute value functions, "pointwise” and ”spectral”:

|Als; = Ay, Hl=VvH?,

respectively. Note that [|A|]2 < ||| A]]|z < v/n]|A||2 holds for any matrix A. The scaling
D is typically, but not necessarily of the standard form D = (diag |H])'/2. This result
is stated and proved in a more general setting, namely that of a matrix pair H, K with
K positive definite, thus properly generalizing corresponding results of [2, 13]. Our
eigenvector result, stated in Subsect. 2.2.1, concerns the case of a single non—singular
Hermitian matrix and it essentially generalizes the norm—estimates from [2, 13]. An

12



unpleasant point of our theory is that the matrix |H], which has to be scaled, is not
easy to compute. Moreover, the set of well-behaved indefinite Hermitian matrices is
not scaling-invariant.

Barlow and Demmel [2] showed that for matrices of the type

H=D(E+N)D . (2.1.5)
where D, F are diagonal, E? = I, diag (N) = 0 and || N]2 < 1, (2.1.2) holds with

n

= —7—.
L= [| V]2

(2.1.6)

The matrices (2.1.5) are called scaled diagonally dominant (s.d.d.). We show that for
a s.d.d. matrix

L+ IV

L= [Nl

Although this does not reproduce the constant C' in (2.1.6) (there is an extra factor
L+ |lIN||lz £ 14 y/n), we see that s.d.d. matrices are included in our theory.

In the positive definite case the only well-behaved matrices are those which can be
well scaled, i.e. for which the scaled matrix A from (2.1.3) is "reasonably” conditioned.
More precisely, if (2.1.2) holds for sufficiently small  H, then A, (A) > 2/(14C) for
A from (2.1.3). This, rather sharp result is proved in [32]. It improves a related result
of [13] and also yields a slight improvement of the van der Sluis estimate (2.1.4).

HANRAAT 2 < n

In contrast to this, the choice of well-behaved indefinite matrices is, in a sense,
richer. Writing
H=GJG"

with G*( positive definite (G need not be square) and J non-singular, the eigenvalue
problem Hx = Az converts into the problem

Hy=X\"'y, H=G0. (2.1.7)

In Sect. 2.3 we prove the estimate of the type (2.1.2) for the problem (2.1.7) under
the perturbations of the factor [0G;| < ¢|Gy;|. The latter is a generalization of the
singular value problem known as hyperbolic singular value problem [21]. The estimates
again depend on the condition number of the matrix obtained by scaling G*G. As an
interesting application, we obtain floating-point perturbation estimates for matrices

| Hin Hyo
H = [ Hy 0 ] , (2.1.8)

where Hy5 HY, is positive definite. Note that this H may be singular. As could be

of the type

expected, the only well-behaved singular matrices are those where the rank defect
can be read-off from the zero pattern.

Similarly as in [2], [13] we note the remarkable fact that our eigenvalue estimates
are independent of the condition number of the corresponding eigenvector matrices

13



- in generalized Hermitian eigenvalue problems they are not unitary and there is
no upper bound for their condition. This phenomenon seems to be typical for the
"floating-point” perturbation theory.

2.2 Well-conditioned scalings

In this section we present perturbation results which are natural extensions of those
from [2] and [13]. We first give a general perturbation result for the eigenvalues of
the pair H, K with K positive definite. (An eigenvalue of the pair H, K is a scalar
A for which det (H — AK) = 0.) For this purpose we introduce a new absolute value
of H relative to K denoted by |H|,;. We then apply our general perturbation result
to the floating—point perturbations of the matrices H and K. Theorems 2.2.3 and
2.2.4 give two simplifications of the perturbation bounds and Th. 2.2.5 gives bounds
for another, more general, type of perturbation where perturbing the zero elements is
also allowed. Our theory applied to a single positive definite matrix slightly improves
the corresponding results of [13]. It also improves the van der Sluis estimate (2.1.4) in
some cases [32]. Then we apply our theory to a single non-singular indefinite matrix.
We prove that our theory includes scaled diagonally dominant matrices [2]. We also
characterize the class of matrices with the best perturbation bounds. At the end we
give some examples, and also consider some singular matrices. In Subsect. 2.2.1 we
consider the perturbation of the eigenvectors of a single non—singular matrix H.

Theorem 2.2.1 Let H, K be Hermitian and K positive definite. Set K = ZZ* and
121 A VA T A VA (2.2.1)

|H|i; is independent of the freedom of choice in Z.* Let §H, § K be Hermitian pertur-
bations such that for all x € C"

le*0 Hz| < npa’|H|x | |e*0Kz| < nga™Kaz | N, nr < 1 (2.2.2)
holds. Let \; and X, be the increasingly ordered eigenvalues of the matriz pairs H, K

and H' = H+0H, K' = K+ 0K, respectively. Then A. =0 if and only if \; =0, and

for non—vanishing \;’s we have

—_

+ nH
1 — nNK '

1_77H
1 +nx

Y4
< )\_Z < (2.2.3)

ProoF. Let K = ZZ* = FF*. Then Z = FU, where U is a unitary matrix, and

)z HZ 2 = FUW*F ' HF U F* = FIF"HE |~ .

2For H positive definite we obviously have IHIK =H.

14



Thus, |H]; is independent of the freedom of choice in Z. From (2.2.2) it follows

x*(H - UHIHIK)x
(1 —nr)a"Ka

e (H+0H)x <a*(H+ 77H|H|K):1; \ (2.2.4)

<
< (K 4+ 6K)e < (14 nx)a"Ka . (2.2.5)

Now note that the pair H +ng|H], K has the same eigenvectors as the pair H, K with
the (again increasingly ordered) eigenvalues A; + ng|X;|. Let ); be the increasingly
ordered eigenvalues of the pair H', K. The monotonicity property of the eigenvalues
together with (2.2.4) yields immediately

K3

It is also clear that H and H' have the same inertia.® The transition form H', K to
H', K’ is similar. Note that both pairs have again the same inertia. If e.g. A; < 0,
then A2 <0 and (2.2.5) implies

x*H'x x*H'x x*H'x

min max — < minmax ——— < minmax —,
S; weS; (1 — ) Ka Si zeS; x*K'x S, weS; (14 ) K

>

where 5; is any 1—dimensional subspace of C". In other words,

¥ ¥

<A . 2.2.7
= =N S T (22.7)
Similarly, if N > 0, then X, > 0, and we obtain
by by
<A< : (2.2.8)
L+ nx L —nK
Now (2.2.7) and (2.2.8) combined with (2.2.6) give (2.2.3). Q.E.D.

We now apply this result to the floating—point perturbations of matrix entries.

Set .

~ H

C(H,K) = sup 7|$| |4 |z

x#0 w*IHIKx
and ~ ~
C(H)=C(H,I) .

Obviously, C~'(H, K) is finite if and only if H is non—singular. For every H, K with K
positive definite, we have

C(H,K)>1. (2.2.9)

Indeed, if C~'(H, K) were less than one, then the matrices H, K, 6H = —H and
dK = 0 would satisfy the assumptions of Th. 2.2.1 and this would, in turn, imply
that H 4+ 0 H is non-singular — a contradiction.

3In fact, H and H’ have the same null-spaces.
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Theorem 2.2.2 Let H, K be Hermitian matrices with H non-singular and K posi-
tive definite. Let Hermitian perturbations 6 H and 6K satisfy

|0 H;| < e|Hy;) |6K;| < e|K4] , (2.2.10)

such that N ~
ng =eC(H,K) <1, nr =eC(K) <1.

Then the assumption (2.2.2) of Th. 2.2.1 is fulfilled, hence its assertion holds.
PrOOF. We have
S He| < JoT|5H| 2] < =le T [Hlle] < =C(H, K)a Wl o |

and similarly

"6 Kz| < eC(K)a* K .
Q.E.D.

Th. 2.2.1 is a significant improvement over Lemma 1 and Th. 4 from [2] which
require a more restrictive condition

|e*0Hx| < nyla*He|

which has non—trivial applications only for positive definite H.
The values C(H, K) and C(K) are not readily computable and we now exhibit a
chain of simpler upper bounds for them.

Theorem 2.2.3 Let H, K be as in Th. 2.2.2, and let A, A and B be defined by
H = DAD , |H], = DAD | K = DiBD, , (2.2.11)
where D and Dy are scaling matrices. Then

C(H, K) < [[[A[|LIIA ]2 = C(A,A)
C(K) < IBlll2lB™ 2 = C(B) (2.2.12)

and ng = €C(A,A) <1, nxg =eC(B) < 1 implies the assertion of Th. 2.2.1.
PrOOF. We have

[e[*[H]lz] = |2 DIADz| < [||Al]>2" D
< C(A,A)x"DADz = C(A, A)a"|H|px

and similarly

lz|'|K||z| < C(B)a*DyBDyx = C(B)x* K . Q.E.D
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The constant C'( A, A) cannot be uniformly improved. Indeed, take H as diagonal
with H? = I and let H' = H + § H be obtained by setting to zero any of the diagonal
elements of H. Then the assertion of the above theorem, applied to the pair H, K = [
with K = 0, is obviously not true and we have ng =1, nx = 0.

Of course, all this does not mean that Th. 2.2.3 covers all well behaved matrices.
Next sections will show the contrary.

The constants C(A,A), C(B) are further estimated as follows:

Theorem 2.2.4 Let H, K be as in Th. 2.2.2, and let A, A and B be defined by
(2.2.11), where D, Dy are scalings. Then

C(AA) < Tr AATY; C(B) < Tr B|B™2

and ng = ¢Tr AHA\_IHQ < 1, ng = eTr B||B7Y|s < 1 implies the assertion of Th.
2.2.1.

Proor. lLet
ZJYHZ* = UAU*

be an eigenvalue decomposition of Z7'HZ™ with U unitary and A diagonal. Then
|Z-*HZ=| = U|A|U* and from (2.2.1) it follows

|\Hl = ZUINUZ* = GG™
where G = ZU/|A|. Furthermore,
H=2Z(Z"HZ 2" = ZUNU* 2" = GIG*

where J is diagonal with £1’s on the diagonal. Setting F' = D~'G for some positive
definite diagonal D and using the obvious estimate

(FTF*)5] < \J(F ) FF);5

we obtain |A;;]* < A”’Ajj, and hence |||Allls < Tr A, Similarly, II1Bl|l2 < Tr B, and
the theorem now follows from the definitions of C'(A, A) and C(B). Q.E.D.

For the standard scalings D = (diag |H],)'/?, D1 = (diag K)¥/2, Th. 2.2.4 yields
C(A,A) < nllA7Ys C(B) < nl|B72 .

In addition, the above upper bounds can accomodate another class of perturbations
where perturbing the zero elements is also allowed.
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Theorem 2.2.5 Let H, K be Hermitian matrices with H non-singular and K posi-
tive definite. Let Hermitian perturbations 6 H and 6K satisfy

|(SHZ']‘| S €D¢Z’D]‘]‘ 5 |5[(ij| S 5D1,iiD1,jj ’ (2'2'13)
such that
nr = en||[AT: < 1, nk =en||B7H < 1.

Then the assumption (2.2.2) of Th. 2.2.1 is fulfilled, hence its assertion holds.

PROOF. Let us define the matrix F with £;; = 1. We have
|20 He| < |z|T|6H||z| < ele|"DED|z| < ¢||E|;x*D*x < 5nH;l_1H2:1;*|H|K:1; )

and similarly
|e*6Kz| < en||B7|2*Ka .

Q.E.D.

Remark 2.2.6 Note that for the standard scaling the bounds of Theorems 2.2.3 and
2.2.5 differ by at most a factor n. Therefore, the relative error bounds which use
C(A, A) and C(B) actually allow both kinds of perturbations, (2.2.10) and (2.2.13),

which makes them inappropriate in some cases (see Rem. 2.2.11 below).

When we apply our general theory to a single positive definite matrix H (K = 1),
Th. 2.2.4 reproduces the main floating-point perturbation result of Th. 2.3 from [13],
while Th. 2.2.2 is even sharper. The perturbations allowed by Th. 2.2.5 are of the

form
0H ;| < ey/Hill; (2.2.14)

We now turn to the case of the single non-singular indefinite matrix . We first
prove that the class of matrices H with well-behaved C'(A, A) includes the already
known class of scaled diagonally dominant matrices. We have

Theorem 2.2.7 Let
H=DAD , A=F+ N,

with E = E* = E~', ED = DE, and ||N||y < 1. If A is defined by |H| = DAD, then

L+ [Vl

C(A,A) <n :
L —[IV][2

(2.2.15)
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PRrROOF. Since D commutes with E, there exists a unitary matrix U which simulta-
neously diagonalizes D and F, i.e.

UDU = A | U*EU = diag (£1) .

Since A is only a permuted version of the matrix D, there exists a permutation matrix

P such that A = PDPT. Setting V = UP, we have
VDV =D, VEV = Ey

where I is diagonal with £1’s on the diagonal. Now perform the unitary transfor-
mation

Hy=V*HV = D(V*EV + V*NV)D = D(E; + N;)D .

Here we used the fact that D and V' commute. Also, | N1||z2 = || V|2
By Lemma 3 of [2] for any eigenpair A,y of H; we have

(L= IV Dyl < Iy l5 < (1 + IV 1Dy - (2.2.16)

Note that formally [2] needs that N; have a zero diagonal. It is easily seen that this
condition is not necessary. For any eigenpair A,y of H, (2.2.16) implies

(L= INI)IDyl5 < wlls < (1 + [N Dyl - (2.2.17)

Now let H = YAY™*, Y*Y = [, A = diag (A, ---, A,), be an eigenvalue decomposition
of H. Then |H]= Y|A|Y™* and

A~ = DJH['D = DY |A|7V2A|7V2Y D

Therefore,

- 1 n
A7Yy = IDY]A|"Y?|? < nmax Dyl|P— < ——— .
H H2 H | | H2 = s H Y H2|)\Z| =1 _ HNH2
Here we have set Y = [y1,-- -, y,] and used (2.2.17) for every pair A;,y;. The theorem
now follows from?

HA[ll2 < [T+ IN]ll2 < T+ [|[N]]2 -
Q.E.D.

The s.d.d. matrices are a special case of the matrices considered in Th. 2.2.7, that
is, we do not require the diagonality of . Note that the argument of [2] leading to
the estimate (2.1.6) can be easily modified to hold under the conditions of Th. 2.2.7
as well.

4The case of the pair H, K of s.d.d. matrices is not covered by this result (cf. a similar claim in
[2]), although it seems highly probable that such a generalization holds.
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Even though we could only bound our measureAC(A,;l) by (2.2.15) which is
somewhat weaker than (2.1.6), we expect that C'(A, A) is actually much better. The
following example illustrates the power of our theory. Set

1 09 0.9
09 1 09|, D=

0.9 09 1

R 1
A= d
2

d>1.

Then HA_IHQ = 10. For d = 10* the spectrum of |H| = DAD is, properly rounded,
1.47-107% 1.90 - 10, 1.00 - 10%. Now H is obtained from |H| by just turning the

smallest eigenvalue into its negative. We obtain

0.705  9.00-10" 9.00 - 10
H=|9.00-10" 1.00-10* 9.00-105]
9.00-10% 9.00-10° 1.00-10%
with
0.705 0.9 0.9
A= 09 1 0.9] : Al <3
0.9 09 1

Thus, C(A,A) < 30 and H is far from being s.d.d.

A natural question is to ask which matrix pairs or single non-singular matrices
have the smallest 1y, nx in Th. 2.2.3. Obviously, C'(B) > 1 and the equality is
attained, if and only if A is diagonal. In this case we can take K" = [ and the whole
problem reduces to the case of the single matrix H.

We first derive some useful inequalities. Set @ = K=12y = D'z, Then

l2*He| = |y KVPHK Y2y <y |KV2PHE Yy = o*|H] oo (2.2.18)

and thus

~

|z*Az| < 27 Az . (2.2.19)

Similarly, |+*H~'z| < 2*|H|;; «, and
|2*A7 2| < 2*ATL (2.2.20)

Now we have |47, < HA_1H27 and
COAA) > JAA 2 > A A7 > 1 (2221)

Theorem 2.2.8 Let H = DAD be Hermitian and non-singular and let |H| = DAD.
Then

C(A,A) = [[[Alll2l[ A2 = 1 (2.2.22)
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if and only if A is proportional to P diag (Ay,---, A,)PT, where each of the blocks A;

has one of the forms

A and D commute, and P is a permutation matriz.

PROOF. If H has the form described above, then |H| = D?|A| = D?, i.e. A =1 and
(2.2.22) holds.

Conversely, if (2.2.22) holds, then all inequalities in (2.2.21) go into equalities.
Without loss of generality we can assume that

Ag=1. (2.2.23)
Now the equality ||A||2|]| A7z = 1 means that
A=cV, c>0, V=vVl'l=Vv", (2.2.24)
From |H|2 = H? it follows that
AVDV = AD*A . (2.2.25)
This is equivalent to the unitarity of the matrix
W=cDATVD .

This, in turn, implies that W is similar to cAY2V A71/2 Since the latter matrix is

also Hermitian, it must be unitary, i.e.
FATVRYVATIWVAT =

This is equivalent to

V é _lvzé. 2.2.26
) (2226)

We now use || A|2| A2 = ||(A/c)!|; = 1 which, together with (2.2.26) and (2.2.23),
implies A = [, ¢ = 1. Now we can write (2.2.25) as D*A = AD?, ie. A and D
commute. Finally, we use ||| A]|[2]][A7*||2 = |[|A]||z = 1. By ¢ = 1, the relation (2.2.24)
gives

A=A"1= A",
Here we need the following

Lemma 2.2.9 Let U*U = [ and |||U]|l2 = 1. Then |U|T|U| = I, i.c. each row of
U contains at most one non—vanishing element. If, in addition, U is square, then U
is a (one sided) permutation of a diagonal matriz. Conversely, |[U|T|U| = I implies

UU =1 and ||U]]> = 1
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PROOF. From U*U = I it follows (|U|T|U]);; = 1. If a;; = (|[U[F|U]);; # 0 for some
pair ¢ # j, then the submatrix

1 5

5 1

of [UIT|U]| has an eigenvalue greater than one — a contradiction to the assumption
IIIU]]|2 = 1. The rest of the assertion is trivial. Q.E.D.

To finish the proof of the theorem just use the lemma above and the hermiticity
of A. Thus, up to a simultaneous permutation of rows and columns, A is a direct

0 e .
Aie{lv_lvle—i@ 0 ]}7 Z_lv"'vp'

The simple upper bounds in Th. 2.2.4 take their minimum n on a much larger
class of matrices, namely those with A unitary and commuting with D. Indeed, from
the proot of Th. 2.2.8 we immediately obtain

sum of

Q.E.D.

Corollary 2.2.10 Let H, D, A, and A be as in Th. 2.2.8 such that Ay = 1. Then

the following assertions are equivalent:
(i) T A A, = n,
(i) A=1,
(iii) A is unitary and commutes with D.

An example of such matrix is given by

c s 0 dq
A = —C 0 5 D = dl 9
0 01 ds

where 52 4+ ¢? =1 and d;,ds > 0. Note that Th. 2.2.7 concerns a certain sort of small
perturbations of such matrices. Also note that the only positive definite matrices
satisfying Cor. 2.2.10 are again diagonal ones.

The next natural question is: how good are the matrices H = DAD with A
unitary, but not necessarily commuting with D7 As an example take the matrix

H = DAD with

1 -1 -1 —1 d
1| -1 1 -1 -1 1
A=z 0 |- D = X , (2.2.27)
-1 -1 -1 1 d
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where d > 0. Here A is unitary, but it does not commute with D. The eigenvalues of
H are \; = d*, \y = d, A3 = —d, A\, = 1, and the corresponding eigenvectors are

1/vV2 172 1/2 0
0 —1/2 1/2  1/V2
0 —1/2 1/2 —1/V2
—1/V2  1/2 1/2 0

If we choose a relative perturbation of the form
T
§H = ed*wuw” | w=[100 1] ,
and set H' = H + 6 H, we have |0 H;;| < 2¢|H,;| and

d? 0 0 0
0 d+ed? ed? 0
0 ed* —d+ed* 0
0 0 0 1

UTH'U = diag (d*,d, —d, 1) + ed*UTww U =

Therefore, N, = d(ed + /1 + £2d?) and |5A2]/|A2| > ed, so H is not well-behaved for

large d. Since the matrix

d* +d 0 0 —d*+d
1 0 d+1 d—1 0
HA_§ 0 d—1 d+1 0

—d*+d 0 0 d*+d

is symmetric and positive definite, we conclude that |[H|= HA. Forz =1 0 0 1 !
we have
" B2 _
o|Hp

and thus C~'(H) — 00 as d — oo. This example shows that the properties of the
matrix A alone are in general not enough for the good behaviour of the indefinite
matrix H = DAD. In other words, contrary to the positive definite case, an additional

scaling Hy = Dy H Dy of a well-behaved H need not produce a well-behaved Hj.

Remark 2.2.11 Contrary to the positive definite case, for the indefinite matrices we
do not have the result telling us that the matrix behaves well under the perturbations
of the type (2.2.10) if and only if C~'(H) is small. Moreover, estimating C~'(H) with
C(A,;l) is in some cases not appropriate. For example, matrices of the type (2.1.8)
behave well under the perturbations of the type (2.2.10) (see the following sections),
but are very sensitive to the perturbations of the type (2.2.13) for the standard scaling.
Therefore, ng from Th. 2.2.5 and then, in turn, ny from Th. 2.2.4 must neccessarily
be large and some other kind of analysis is required.
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Remark 2.2.12 (Some singular matrices). Although Th. 2.2.1 does not require the
non-singularity of the unperturbed matrix H, the subsequent theory, as it stands,
cannot handle singular matrices. However, for a single matrix of the type

H= l j;)[ 8 ] \ H non-singular , (2.2.28)

the condition |6 H;;| < | H,;| obviously preserves the zero structure and the problem

trivially reduces to the perturbation of H to which our theory can be applied. For a
pair H, K with H as above and K positive definite of the form

.| K K,
K= l Ky Ky

we proceed as follows: from the proof of Th. 2.2.2 we see that the perturbation on
K does not need the non-singularity of H. Furthermore, the non-zero eigenvalues
of the pair H, K coincide with the eigenvalues of the pair H ]& where K = K1 —
K3 K33 ' K3,. Thus, in perturbing H the zero eigenvalues do not change and we can
apply Th. 2.2.2 to the pair H, K. We obtain the full assertion of Th. 2.2.2 with
C(H [&) instead of C(H K).

Similarly, Th. 2.2.3 holds where A, A and B are obtained by scaling H |H|B and

K, respectively. If, in addition, H is positive semidefinite, then |H|I = H and Th.

2.2.3 and the subsequent theory hold with A = A and B obtained by scaling H and
K, respectively.

It is readily seen that (2.2.28) is the only form (up to a permutation) of a positive
semidefinite matrix whose eigenvalues behave well under the floating—point perturba-
tions. As we shall see later, the indefinite case is more complicated in this aspect.

2.2.1 Perturbation of the eigenvectors

In this subsection we consider the behaviour of the eigenvectors under the perturba-
tions as in Th. 2.2.1. We consider the case of a single non—singular Hermitian matrix
H (i.e. K =1,5K =0). Like in [2, 13], this behaviour is influenced by a relative gap
between the neighbouring eigenvalues. Our definition of relative gap is similar but
not identical with the ones from [2, 13] which makes an exact comparison of (actually
similar) results difficult. Our approach —in contrast to the one from [2, 13] —is that of
[20] which deals with the norm-—estimates of the spectral projections and thus allows
the treatment of multiple and clustered eigenvalues. We also expect our bounds to
be better than those of [2, 13], since they do not depend on n.

We now define the relative gap, rg(\), for the possibly multiple eigenvalue A of
H. To simplify the notation, as well as the statement and the proof of the following
theorem, we shall assume that A is positive. Negative eigenvalues of H are considered
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as the positive eigenvalues of the matrix —H. By Az and Ar we denote the left and
the right neighbour of A in the spectrum o(H) of H, respectively. We set

VA=A VAR = VA .
min , if A, >0,
rg(A) = { VA \ \/)\)\_R } (2.2.29)
min{Z(ﬂ - 1), )\2 ; )\} otherwise .

Theorem 2.2.13 Let A be a positive (possibly multiple) eigenvalue of a non—singular
Hermitian matric H, and let

1
P=— d = (ul — H)™! 2.2.
By FRM K Ry, = (u )7 (2.2.30)

be the corresponding eigenprojection. Here 7 is a curve around A which separates X
from the rest of the spectrum. Let P + 6 P be the corresponding spectral projection of
the matriz H + 6 H with |v*d Hx| < na*|H. Then

1
- ) for Ap, >0, 2V A — /AL < \/Ar ,
Ui

15Pll, < 7o)
7(7)\) . 7 otherwise ,
rg 1—
rg(A)
(2.2.31)
provided that the right hand side is positive.
PrOOF. By setting
A = =S I, 2 = RJH], w, = [H[* R JH]'",

we obtain ||A|lz <7 and

OP = 57 / ZMAZ w, Az, dy .

Choosing 7 as a circle around A with the radius r, we obtain

[6Pl2 < rz?n
1 —wn
with

2 = maXHZ |3 = max max 11
ril2 wel veo(H) |/,L — I/|2

_ v

w = max||w,|z = max max \

pel wel veo(H) |/,L — 1/|
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provided that n < 1/w. We obviously have

22 = max el i Ar
A=—r—=A)2" 12" (Ap— A —1)?
w = max Az i Ar
A=r =X 1" Ap—A—r

(2.2.32)

We first consider the case A\;, > 0. If 2\ — VAL < VAR, then by setting
= VAIVI=/A1) (2.2.33)

2 = ! VA
(VA= VA f \/E

Here we used our assumption and the fact that both rightmost terms in (2.2.32) are
decreasing functions of Ag. Therefore,

\/X n ! )
e 1_(1 fﬂm)

and (2.2.31) holds. Positivity of the right hand side of (2.2.31) justifies, in turn, our
choice of the same 7 in the definitions of P and P + 6P as follows: perturbation
theorem for the eigenvalues implies that Az can increase to at most Ap(1 +7), Ar
can decrease to at least Ag(1 — n), and the eigenvalues of H + § H which correspond
to A remain in the interval [A(1 — 1), A(1 + n)]. Positivity of the right hand side of
(2.2.31) always implies rg(A) > n. This, together with our choice of r, implies that
7 contains no points of the spectrum of H + §H and that the interior of 7 contains
exactly those eigenvalues of H 4+ § H which correspond to A. This remark holds for
the subsequent cases, as well.

If 2/X — /AL > VAR, then by setting
= VA(VAr — V)

.1 o w
= (V- V) RN

Here we used our assumption and the fact that both leftmost terms in the right hand
side of (2.2.32) are increasing functions of Ay, > 0. Therefore,

IO R 7 S |
N TR . T
Mo

we obtain

1P, <

we obtain

z
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and (2.2.31) holds. If A is the largest positive eigenvalue (i.e. A does not exist), then
by setting r as in (2.2.33) we obtain

A v S
(VA= VA VA=V

z

and (2.2.31) holds again.
If A, < 0 or if A, does not exist, we proceed as follows: if rg(\) = 2(v/2 — 1) (if
AR exists, this implies A(4v/2 4+ 5) < Ag), then by setting

r=2(v2—- 1)\

we obtain
2 1 B 1

TAVZ 1A YTV
0 (2.2.31) holds. Finally, if rg(A) = (Ag — X)/(Ar + X), then by setting

Ar — A
= A
Ar + A

we obtain

22 _ l )\R ‘|‘ )\ _ )\R —|— )\
A\ArR =2/ 7 AR — A
and (2.2.31) holds again. Q.E.D.

2.3 Perturbations by factors

In this section we consider perturbations of the eigenvalues of a single Hermitian
matrix H given in a factorized form

H=GJG, (2.3.1)

where (¢ need not to be square but must have full column rank, whereas .J is Hermitian
and non-singular. A typical J is

Jy = H _0[] . (2.3.2)

Here the unit blocks need not have the same dimension and one of them may be
void. Such factorization is obtained e.g. by the symmetric indefinite decomposition
of Chap. 4. We consider the changes of the eigenvalues and eigenvectors of H under
perturbation of G while J remains unchanged. Here it is natural to use the one—sided

scaling G = BD.
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For J = I the problem reduces to considering singular values of G. We reproduce
the result of [13] with somewhat better constants. The same technique allows an
interesting floating—point estimate for the eigenvalues of ¢ (see [32]).

The section is organized as follows. Th. 2.3.1 gives a general perturbation theory,
while Th. 2.3.2 applies this theory to the floating—point perturbations. In the following
discussion we simplify the perturbation bounds analogously to the previous section.
As an application we derive floating—point perturbation estimates for some classes of
matrices not covered by Sect. 2.2.

Theorem 2.3.1 Let H = GJG* be as above and let H' = G'JG™ with
G' =G+ 466G, |0Gx||2 < n||Gzl|2 , (2.3.3)

for all x € C" and some n < 1. Then H and H' have the same inertia and their
non—vanishing eigenvalues A, X, respectively, satisfy the inequalities

/

(P <02, (2.3.4)

Proor. We first show that the non—vanishing eigenvalues of H coincide with the
eigenvalues of the pair G*G, J7!. Indeed, since G* is positive definite, there exists
a non-singular F' such that

F*G*GF = A (2.3.5)
and
F*J7'F =, (2.3.6)

are diagonal matrices, and J; is from (2.3.2). Then the eigenvalues of the pair
G*G, J~" are found on the diagonal of AJ; = JiA. Set U = GFA~Y2, By (2.3.5) we
have U*U = I (but not necessarily UU* = [). Using (2.3.5) and (2.3.6) we obtain

HU = GJG'GFA™V? =GP FG*GFA™Y?
= GJFAY?=GFFJFTAY?
= GF(F*J'F)TAYV2 = UJA .
Thus, the columns of U are eigenvectors of H and the eigenvalues of H coincide with

those of G*(G,J~!. Furthermore, U*x = 0 implies Hx = 0, so the eigenvalues of
G*G, J7! are exactly all non—vanishing eigenvalues of H. By (2.3.3) we have

(L=l Gl <||G'2lls < (1 +n)[|Gell2 (2.3.7)

so that everything said for H holds for H' as well. In particular, H and H’ have the
same inertia. Now square (2.3.7), use the monotonicity property from the proof of
Th. 2.2.1 for the pairs J~!' G*G and J~' GG, and take reciprocals in (2.2.7) and
(2.2.8). Q.E.D.

We now consider floating—point perturbations and scalings.
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Theorem 2.3.2 Let H = GJG* be as in (2.3.1) and (2.3.2). Let H' = G'JG"™ where
G'= G+ G, and for all 1,5 and some & > 0 holds

Set
_ =llIBlll:
"= Umzn(B) 7

where B = GD™', D is diagonal and positive definite, and 7,,;,(B) is the smallest
singular value of B. If n < 1 then the assumptions of Th. 2.3.1 are fulfilled, hence its
assertion holds.

PrOOF. For x € C" we have

[6Gel: < ell[BID[z[lls < el[|B]l2[[ D|5

< cliBlllollBDzlls _ ell|Blll2llGl2

Q.E.D.

By [[B]l[: = [| B|2 we have

1Bl - 0acB) |

Here both inequalities go over into equalities, if and only if B has the property

BB =+1, v>0, 1Bz =" ,

or, equivalently (Lemma 2.2.9), if and only if | B|T|B| = 4%I. Similarly as in Sect. 2.2
we can make a simplifying estimate
B2 _ (Tr (B~B)Y?
Umzn(B) B O-Tmn(B) ’

so that
_ e(Tx (B*B))'/?

again implies (2.3.3) and therefore (2.3.4). This yields a new ”condition number”

(Tr (B*B))'/*
where the equality is attained if and only if B*B = ~%I. For the standard scaling
where (B*B);; = 1 the relation (2.3.4) is implied by

evn

<1 (2.3.9)

>,

n = <1. (2.3.10)
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This is a slight improvement over [13] for the case J = I (our constant is y/n times
better).

For J =1 (or J = —1I) we can handle the matrix H = GG* in two ways. If G has
full column rank, then we apply our theory as described in Theorems 2.3.1 and 2.3.2.
It G* has full column rank, then we apply our theory to the matrix H= G*G, whose
non—vanishing eigenvalues are the eigenvalues of H. In the indefinite case (J # +1)
the situation is different. The following simple example illustrates this important
asymmetry. Take

G =la,b], 0G = [da, bb] .
Our theory cannot be applied to

H= GG = |a + b

but it works on

H=G6"G,
where G* = BD, B = [ 1/vV2 1/V2 ]T, D = (|a|® + |b|*)"/2, thus giving n = ¢

independently of @ and b. On the contrary, no theory can ”save” the matrix

1 0

H:Glo ~1

| 6" = b2~ e

since

la + dal* — b+ 5b)?
jaf* — [b]?
cannot be made small uniformly in a, b if |§a/a| and |6b/b| are sufficiently small.?

Similarly as in Th. 2.2.5 we can show that a perturbation result holds under
perturbations 4G defined by

|0G;| < eD; for all 7, 7,

where D is a scaling. The above type of perturbation is less restrictive than (2.3.8),
e.g. it allows us to change zero elements. We have

2
,5:k J
2.2 Gl’”z
< 222Dl < 2 call 2

hence (2.3.4) is implied by
ne
=—<1. 2.3.11

°In the indefinite case the values p; = /| Ag|sign A; are called the hyperbolic singular values [21].
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Similarly one shows that the estimate (2.3.4) is obtained under the perturbation

_ 9Bl

§G = 6BD | <1. (2.3.12)

The following two examples show how Th. 2.3.2 can accomodate floating—point
perturbations of some matrices which, in spite of Rem. 2.1, cannot be handled by
the theory from Sect. 2.2. For the first example set

H = [;‘ ﬁ” , (2.3.13)

where A is of order m and m < n —m. Then H = GJG* with

LA T 0 1
— 2 —
R R

where the unit blocks have the order m. Now the perturbation 6 H of H with |H,;| <
e|H;;| gives rise to a perturbation 6G of G with |dGy;| < e|Gyj], and Th. 2.3.2 holds

e.g. with
AT D™t 0
—| 2
=[50 0]

where D is the standard scaling

D% = G/P + FF)

k23

The requirement that GG’ have full column rank is equivalent to the same requirement
on F'. Note that this allows singular matrices H.
An even simpler case is the one with A = (0. Then we can apply the theory to

o <1 [o 1[0 r1]1[0 F*]
H=1p o |T|lro|lr0o]|1 0] (2:3.14)
as well as to i i i o o .
gol 0o Fl_[oFr]fo1 0 I
o | T T o[ T o][F 0]

In any case, the non—vanishing eigenvalues of H coincide with the singular values of
F taken with both signs. Now |0G;| < €|Gy;| means |0 F};| < ¢|F;;| and we can apply
our theory in two ways:

(i) take e.g. (2.3.14) and use Th. 2.3.2 to obtain (2.3.4) with

11B]ll2
Umzn(B) 7

77:
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where B = FD™', (B*B);; =1, or
(it) apply Th. 2.3.2 to the factorized matrix F'F** (with the same B) which yields
a slightly better estimate

2

A
(I-n)* <5 <(1+n).
k

In both cases the theory from Sect. 2 would require both BB* and B*B to scale well,
which is certainly a further unnecessary restriction.
As a second example set

a b ¢
H=]1b 0 0
c 0 of
We can e.g. decompose H as
a/2 1 0 010 a/2 b ¢
H = b 0 0 1 00 1 0 0. (2.3.15)
c 0 o 0 01 0 0 «

Now |6H;;| < e|H;;| again implies |0G;;| < |G| and we can apply our theory
as in the previous example. For e.g. @ = b = ¢ = 1 we obtain |||B]|2||B7'||2 =
24+/3, independently of . Especially, if o is small then even the absolutely smallest
eigenvalue a*/2 4+ O(a*) is well defined by the matrix elements of H. On the other
side, the theory from Sect. 2 applied to H, I gives nothing useful here. Indeed, as
a — 0 we have

21
|H|:§ 1 2 2|40, (2.3.16)
12 2

so that C(A,A) = O(1/a?). Moreover, numerical experiments show that C~'(H) >
1/]a|. Another very interesting approach to matrices of the above type is given by
Demmel and Gragg [11].

2.3.1 Perturbation of the eigenvectors

In this subsection we give the perturbation bounds for the eigenvectors of the non—
singular Hermitian matrix

H=GJG",
under the perturbations as in Th. 2.3.1, i.e.

[0G]lz < nllGellz

for every x.
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As in [2, 13] and Subsect. 2.2.1, the behaviour of the eigenvectors is influenced
by a relative gap between the neighbouring eigenvalues. Our definition of relative
gap is similar but not identical with the one from [2, 13] and Subsect. 2.2.1, and our
approach is again that of [20].

We now define the relative gap, rge(A), and the eigenprojection P for the possibly
multiple eigenvalue A of H. To simplify the notation, as well as the statement and
the proof of the following theorem, we shall assume that A is positive. Negative
eigenvalues of H are considered as the positive eigenvalues of the matrix —H. By Ap
and Ar we denote the left and the right neighbour of A in the spectrum o(H) of H,
respectively. We set

rga(A) = min{l Ar = A )\_)\L} \

A+ A A+ A

|
}):-—/ d — (ul — ) 9.3.1
By FRM Ho Ru (/~‘ ) ) ( 3 )

where 7 is a curve around A which separates A from the rest of the spectrum of H.
Here, as well as throughout the section, the terms containing Ay, Ar are defined if
AL, Ar exist and are positive, respectively.

Theorem 2.3.3 Let X be a positive (possibly multiple) eigenvalue of a non—singular
Hermitian matric H = GJG*, and let P be the corresponding eigenprojection. Let
P’ be the corresponding spectral projection of the matrizv H' = G'J(G")*, where G =
G+ 0G and ||6Gz||2 < n||Gz||2 for every x.

Then " |
PP, < —1_. _ 9.3.2
1P Pl < s 2.32)
rga(A)
where
n=n2+n),

provided that the right hand side in (2.3.2) is positive.

PROOF. Since H and H™! have the same eigenvectors, we can define P as

1
P=o— [ 5. = (ul — H)™!
By FSM oy Sy (/~‘ ) )

where ? is now a curve around 1/\ which separates 1/ from the rest of the spectrum

of H=!. Therefore,
1
PoP= o [(8 =8 2.3,
o 05— S (233
where

Sho=(ul — H'=H)=t.
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We can write
S, = (ul — G_*JG_I)_1 = G(uG"G — J)_IG* =G1,67 (2.3.4)

and analogously

S, =Gd'T(G), T = (GG - )yt
Now
S =S, =G, -T,)G"+ &, (2.3.5)
where
® = 0GT,G" + GT,6G" + 6GT,6G" . (2.3.6)
Further,
G(T, —T,)G" = GTM(T;1 — (T[L)_I)T[LG* = GT,y~T,G" | (2.3.7)
where
v =—-0G"G — G"6G — 0G"HG .
Inserting
v =G"AG (2.3.8)
and (2.3.4) into (2.3.7), we obtain
G(T, = T,)G" = S,uAGT,G™ . (2.3.9)

Using (2.3.4) and (2.3.8), we obtain

GIIG" = GI' - pGAG) G
= G —uT,G*AG)™'T,G"
= GUT,G)™ = pAG)™

= S, (I—puAS,)™. (2.3.10)
Inserting (2.3.10), (2.3.9), (2.3.6) and (2.3.5) into (2.3.3), we obtain

1
Pr—P = — F[/“LSMASM([ — uAS,) ™

271
H6GGETS, (1 — pAS )+ S, — pAS,) T G766
+6GGTS, (I — pAS,) ' GT6Gdy (2.3.11)

Our assumption on §G and the definition of A in (2.3.8) imply

16GG™" 2
1Al

m

<
< 2PGET 2+ 10GETH S < -
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Choosing 7 as a circle around 1/X with radius r, taking norms in (2.3.11), and using
the above relations, we obtain

1
P —Pl, < 1) 2.3.12
1P = Pl < reto + D — 2312
where
w = max||uS,lz = max max i )
wel " wel’ ves(H-1) |/,L — I/|
1
z = max|[S,]]z = max max )
wel wel’ ves(H-1) |/,L — I/|

Since 7 is a circle, the maxima in the above relations are attained for u’s which lie
on the real axis.
If Ar exists, then we choose r as

1 {1 1 1}
r=-ming—,— — —
2 ML A
It is easy to see that we always have
1
z=—.
r

Since = 1/A £+ r, we have

B L/A—r L/A+r L/A+r
e 5 N ) P D P ) gy

Now if r = (1/A — 1/Agr)/2, then

2 2 3
=14+ +——-<1 <
v + Ap— A — + rga(A) ~ rga(A)

AR

and (2.3.2) follows by inserting this and z = 1/r into (2.3.12).
If r=(1/ AL —1/X)/2, then

A— AL 1
w = < ,
)\—I-)\L - ng()\)

and (2.3.2) follows by inserting this and z = 1/r into (2.3.12).
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Finally, if » = 1/(2X) (Ar does not exist), then w = 3 and (2.3.2) follows by
inserting this and z = 1/r into (2.3.12).

Positivity of the right hand side of (2.3.2) justifies, in turn, our choice of the same
7 in the definitions of P and P’ in (2.3.3) as follows: perturbation theorem for the
eigenvalues implies that 1/Ag can increase to at most 1/(Ag(1 — n)?), 1/AL can de-
crease to at least 1/(AL(1+7n)?) and the eigenvalues of H'~! which correspond to 1/X
remain in the interval [1/(A(1+1)?),1/(A(1 —n)?)]. Positivity of the right hand side
of (2.3.2) always implies rgg(A) > 65. This, together with our choice of r, implies
that ? contains no points of the spectrum of H’~! and that the interior of ? contains
exactly those eigenvalues of H'~' which correspond to 1/\. Q.E.D.

Remark 2.3.4 It is possible to prove theorem similar to Th. 2.3.3 for a cluster
of eigenvalues, as well. All eigenvalues of the cluster must be either positive or
negative. The relative gap for the cluster is then defined using A (Ar) and the
leftmost (rightmost) member of the cluster, respectively. The r - z term of (2.3.12) is
then larger than 1, and smaller than the inverse of the relative gap of the cluster.

Note that we can in some cases actually prove better bounds than (2.3.2), but the
differences are small, so we have decided to state and to prove the simpler version.
Th. 2.3.3 is a generalization of the corresponding results from [13] since it allows
J # I and multiple eigenvalues.

Now suppose that A and A are both simple. Let v and v' = v + dv be the
corresponding unit eigenvectors, and let ¢ be the angle between them. Then P = vv*,
P ='(v")*, and P’ — P is a matrix of rank 2 with the non—trivial eigenvalues, say,
1 and 7,. Since Tr (P’ — P) =0, we have |y1| = |y2| = 7. Now

292 =Tr[(P' — P)(P' — P)] = 2sin’ ¢,

so that
|[P"— Pl = [sing] .

This finally implies
[601l> = 2/ sin(/2) < VEIP' = P, (23.13)

Combining the above relation with Th. 2.3.3 we obtain the bound on ||dv|[;. We

expect this bound to compare favourably to the corresponding bounds from [2, 13]

1/2

since it does not contain the factors (n — 1) or (n — 1)'/%, respectively.
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Chapter 3

Error analysis of the J—orthogonal
Jacobi methods

3.1 J—orthogonal Jacobi method

The J—orthogonal Jacobi method solves the problem

Hx =Mz, x #0, (3.1.1)
where H = (H,;) is a positive definite matrix,

S = Lupos D (=Lnnpos)

npos is the number of the positive, and n — npos is the number of the negative
eigenvalues of the pair H,.J. The algorithm, including the convergence theory, was
proposed by Veseli¢ [29]. For the sake of completeness we give the algorithm of the
method and state the known convergence results.

In Chap. 2, we showed that there exists a nonsingular matrix V' which simultane-
ously diagonalizes H and J in the manner that

VIHV = D, VIV = J, (3.1.2)

where D = (D;) is a positive definite diagonal matrix. The eigenvalues of the pair
H,.J are the values D; - J; and the eigenvectors are the corresponding columns of
V. The matrices for which VIJV = J are called J-orthogonal and they form a
multiplicative group. (For a fixed J, of course.)

The J—orthogonal Jacobi method consists of an iterative application of the con-
gruence transformation

H =CcTHC

where (' is the J—orthogonal plane rotation. From now on let A denote the 2 x 2
pivot submatrix of the square matrix A. The matrix C is defined as



and the non—displayed elements are those of the identity matrix. The pair (i,7) is
the pivot pair. The J—orthogonality of the matrix €' implies that

[ ¢h sh . .
h ch]’ for 1 < < npos < j <n,
[ Cii  Cij ] _ )
Cii Cjj
e ] , otherwise .
—sn ¢S

Here ch = coshy, sh = sinhy, ¢s = cosx and sn = sinx for some y and x, respec-
tively. These two types of rotations are called the hyperbolic and the trigonometric
rotation, respectively. The parametar x or y is chosen so that the 7, j—element of the
transformed matrix is annihilated. Let

— a c
=[]
Then
2c T T
tan 2z = , ——<z<—,
—a 4 4
or 5
c
tanh 2y = — .
anh 2y Ry

We obtain the following algorithm (in the notation of [13]):
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Algorithm 3.1.1 Two-sided J—orthogonal Jacobi method for the problem (3.1.1).
tol is a user defined stopping criterion. The matriz V whose columns return the
computed eigenvectors initially contains the identity.

repeat
for all pairsi < j
/* compute the parameter hyp: hyp =1 for the hyperbolic and
hyp = —1 for the trigonometric rotation, respectively */
if 1 <1< npos <j<n then
hyp =1
else
hyp = —1
endif
/* compute the J—orthogonal Jacobi rotation which diagonalizes
H“' Hij - a c *
Hji H]‘]‘ - c b /
¢ = —hyp* (b+ hyp*a)/(2c)
t = sign(¢)/([¢] + v/ ¢* — hyp)
h =+/1— hyp * t?
cs =1/h
sn=t/h
snl = hyp * sn
/* update the 2 by 2 pivot submatriz */
Hi=a4+ hyp*xcxt
H]‘]‘ = b —|— cxt
Hij = Hji =0
/* update the rest of rows and columns i and j */
for k=1 ton except 1 and j
tmp = Hy
Hip = csxtmp+ snl x Hj;,
Hjp =snxtmp+cs+ Hj

Hy; = H;

Hk]‘ = H]‘k
endfor
/* update the eigenvector matriz V- */
fork=1ton

tmp = Vi

Vie = cs xtmp 4 snl x Vi,
Vij = snxtmp+ cs x V;
endfor
endfor
until convergence (all |H¢j|/(HiiHjj)1/2 < tol )
/¥ the computed eigenvalues of the pair H,J are \j = H;;J;; */
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/* the computed eigenvectors of the pair H,J are the columns

of the final matriz V' */

Our algorithm is essentially the standard one introduced by Rutishauser [22].
The formulae for the hyperbolic case are derived in the same manner as for the
trigonometric one [29]. In the following section we analyse this (simple) version of
the algorithm. We omitt enhancements like delayed updates of the diagonals and
fast rotations, to make the analysis clearer. Analysis of the fast rotations is given for
the implicit method in Sect. 3.4. One of the differences between our algorithm and
the standard one is the stopping criterion. This criterion is also used in [13, 29, 31].
Our justification of this criterion is the same as in [13]: according to Th. 2.2.1, the
accuracy of the eigenvalues depends on 1/, (A) (or k(A)) and not on x(H ), so that
we set H,; to zero only if |H¢j|/(HiiHjj)1/2 is small, not just if |H;;|/ maxy |Hy| is
small.

One difference between trigonometric and hyperbolic rotations is that Tr (H') =
Tr (H) after trigonometric, and Tr (H') < Tr (H) after hyperbolic rotation. Using this
trace reduction argument Veseli¢ [29] proved that the hyperbolic parameter ¢ tends
to zero. The second difference is that the condition of the transformation matrix is
in the trigonometric case one, while in the hyperbolic case it can be large. Note,

however, that
\E(A) =1
| tanh y| < L \
VE(A)+1

where A is the scaled matrix, i.e. H = DAD, diag (A) = I. Moreover, if G, J is the
output of the symmetric indefinite decomposition, then the scaled condition of the
matrix GT (G is generally small (see Sect. 4.4, Chap. 5), and it does not grow much
during the Jacobi process (see Sect. 3.2.2, Chap. 5), so the hyperbolic parameters are
generally moderate. In Subsect. 3.2.1 we show how to modify hyperbolic rotations
in order to bound the condition of the transformation matrix. This modification
improves the theoretical bounds, but it does not seem to be of importance in practice.

Veselié¢ [29] proved that the J—orthogonal Jacobi method is globally convergent for
the optimal strategy, threshold strategies, row—cyclic strategy, and all other strategies
which are equivalent to the row—cyclic one (for example, the modulus parallel strategy
[18]). He also proved a very interesting fact that all J—orthogonal matrices V' which
satisfy (3.1.2) have the same condition number. Moreover, if V; and V5 are two such
matrices, then

_ Ui 0
‘/2_‘/1U7 U_[O U2]7

where Uy, Uy are othogonal matrices of order m, n — m, respectively.
Drma¢ and Hari [15] proved that the J—orthogonal Jacobi method is quadratically
convergent.
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3.2 Error bounds for the eigenvalues

In this section we prove that the two-sided J—orthogonal Jacobi method in floating—
point arithmetic applied to the problem (3.1.1) computes eigenvalues with the error
bounds of Chap. 2. Since the computed eigenvector matrix is not orthogonal and
is not needed when applying our algorithm to a single indefinite matrix, we do not
investigate the accuracy of the computed eigenvectors.

Let Hy = DgAgDq be the initial matrix, and H,, = D, A,,D,, where H,, is ob-
tained from H,,_; by applying a single J—orthogonal Jacobi rotation. Here D,, is
diagonal and A,, has unit diagonal as before. All the error bounds in this section
contain the quantities 1/Ain(A) (or k(A )), whereas the perturbation bounds of
Chap. 2 are proportional to x(Ag). Therefore, our claim that J—orthogonal Jacobi
method solves the eigenproblem as accurately as predicted in Chap. 2 depends, as in
[13], on the ratios max,, Amin(Ao)/ Amin(Am) (or max., £(A,)/x(Ag)) being modest
in size. Note that the convergence of H,, to diagonal form is equivalent to the con-
vergence of A, to the identity, or k(A,,) to 1. Thus we expect k(A,,) to be less than
k(Ap) eventually. Demmel and Veseli¢ [13] have overwhelming numerical evidence
that in the positive definite case (J = [) the above ratios are modest in size. Our
experiments of Chap. 5 reveal the same for J # I. Our theoretical understanding of
why these ratios are so small is somewhat weaker; we present our theoretical bounds
in Subsect. 3.2.2.

The section is organized as follows: we first show that one step of the method satis-
fies the perturbation bounds of Chap. 2, and that we can extend this result to an over-
all error bound (modulo the assumption that the quotients max,, Amin(A0)/ Amin(Am)
are modest). In Subsect. 3.2.1 we show how to modify the method in order to bound
potentially large hyperbolic angles, which, in turn, results in better error bounds.

We now present our model of the finite precision floating—point arithmetic. The
floating—point result fI(-) of the operation (-) is given by [33, 13]

fllatbd) = a(l +e1)£b(1+ey)
fllaxb) = (axb)(l+e3) (3.2.1)
flla/b) = (a/b)(1+ e4)

flivVa) = Va(l +¢5)

where |g;| < e, and € < 1 is the machine precision. This is somewhat more general
than the usual model which uses fl(a £b) = (a + b)(1 + £1) and includes machines
like the Cray which do not have a guard digit. This does not greatly complicate
the error analysis, but it is possible that the computed rotation angle may be less
accurate. This may adversely affect convergence, but as we will see it does not affect
the one-step error analysis.

Numerically subscripted &’s will denote independent quantities bounded in mag-
nitude by e. As usual (e.g. [13]), we will make approximations like (141e1)(14 jeq) =
L+ (1 +7)es and (1 +ieq)/(1+jez) =14 (2 + 7)es.
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The next theorem and its corollary justify our accuracy claims for eigenvalues
computed by two-sided J—orthogonal Jacobi method .

Theorem 3.2.1 Let H,, be the sequence of matrices generated by Algorithm 3.1.1
in floating—point arithmetic with precision ¢; that is, H, 11 ts obtained from H,, by
applying a single J-orthogonal Jacobi rotation. Then the following diagram commutes.

floatin
H,,foating, pr
v
y exact

A\

Hy + 0H,y,

The top arrow indicates that H,,11 is obtained from H,, by applying one J-orthogonal
Jacobi rotation in floating—point arithmetic. The diagonal arrow indicates that H,, 1
is obtained from H,, + 0H,, by applying one J-orthogonal Jacobi rotation in exact
arithmetic; thus H,, 11 amd H,,+0H,, are exactly similar. $ H,, is bounded as follows.
Let k = k(An), and write §H,, = Dy, 6 Ay, Dy Then, with the relative error of order

et

[6Amll2 < Che (3.2.2)
where
60 4 58v/n — 2 i trigon. case
. 3
35.5 + (vk + 3)(30.93 4+ 8.24v/n — 2) in hyperdb. case , |(] < @ ,
22242 4+ 46.77\/n — 2 in hyperb. case , |(| > ——=,
22
Cn = 1
b>—a,
. 3
225.5 + 62.45y/n — 2 in hyperb. case , |(]| > ﬁ ,
1
b < 5@ .

In other words, one step of Jacobi satisfies the assumptions needed for the perturbation

bounds of Sect. 2.2.

The bound (3.2.2) seems to be highly discontinuous at |¢| = 3/(2v/2). This disconti-
nuity can be removed as decribed in Rem. 3.2.4, or by using the modified method of

Subsect. 3.2.1.

IThis formulation is explained after the relation (1.12).
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ProoF. The proof of the commuting diagram is a tedious computation. We shall
prove the diagram separately for the trigonometric and for the hyperbolic case. We
assume that multiplications with the parameter hyp in Alg. 3.1.1 have no errors.
Write the 2 by 2 submatrix of the current matrix H,, as

fe a c -
Hm:[cb]:

In both cases we can assume without loss of generality that « > b. By positive
definiteness we have

[ 2 Zdidj] (3.2.3)

O<|o|<zi=(h—1)/(k+1)<1. (3.2.4)

Let @’ and ¥/ be the new values of H;; and H;; computed by the algorithm, respectively.
Trigonometric case. This case was analysed by Demmel and Veseli¢ [13]. Our

proof is essentially the same as theirs, and we repeat it for the sake of completeness.

Small differences in the proof lead to a somewhat better bound for |0 A, ||2-
Systematic application of the formulae (3.2.1) shows that

¢ Jl((b—a)/(2xc))
= (1+€4)(((1+€1)b 1+€2) )/ (1 + e5)2¢))

(e +e9)
N 14 &5 2

where |
7 + &1
b= b= (1 b < 2e.
1 _I_ €9 ( —I_ 66) ? |€b| = 48
Thus N
—a
= (1 — < 3e.
Let 4, ¢s, sn and —&n denote the true values of ¢, ¢s, sn and snl = —sn (i.e.

without rounding error) as a function of «, b and c. Using (3.2.1) again one can show
that

t=(1+e)t, cs = (1 4 eg)cs, sn = (1 +e,,)5n,

where?
e < Te, |ees| < 10e, |en| < 17e.

¢s and sn define the exact trigonometric Jacobi rotation

szl Ei gf]

—8Nn CS

2Calculating sn as sn = ¢/h instead of sn = ¢ - ¢s [13] saves one ¢ in bounding ¢5,. This was
noticed by Drmadc [14].
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which transforms H,, + 0 H,, to H,, 1 in the diagram in the statement of the theorem:
JNHy +6H,) T = Hyyy

Now we begin constructing dH,,. dH,, will be nonzero only in the rows and
columns 7 and j. We first compute its entries outside the 2 by 2 pivot submatrix. Let
Hj) and H}; denote the updated quantities computed by the algorithm. Then

H!, = fl(es* H;, —snx* H;)
= (I+eg)(l4es)esHiyp — (1 +e6)(L +e7)snHj
= (I+e)(P4es)(l +ees)esHy — (L +e6)(1 4+ e7)(L + en)5nH
= GHy — SaHy + e(H),

where
G(H;k) = 5/15<§sz — 5/2571ij7 |€/1| S 125, |€/2| S 19¢.
Similarly,
H]/k = fl(sn * sz + cs * H]k)
= snHy +csHj, + c(H]{k),
where
G(H]/k) = 5%55ij + €£l<§T”LHZ'k, |€é| S 125, |€£1| S 19¢.
Thus
H(k T sz G(sz)
k3 — J
[ H), ] " [ | | ey
sz E(sz)
= J! I
" ([ Hjy ] * [ (Hjx)
H;, 0H;
= J! ! !
(L [+ Lo ])
where
(SHZk = 5/15521"‘]% — 5/255571ij + 5;)55571ij + 5215712]‘]%
(SH]‘k = —5/155571sz + 5/2%2ij + 5%652ij + 521555\7/1]‘]% .
Using -
|H;;| < did s ! ST !
ij| > @4y, CS = —, SN = —,
142 V142
we have p
1 .
§Ai| < — 12 + 31|¢| 2 + 19¢* 3.2.5
0l < o (12310 197 (3.25)
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which is an increasing function for [¢| € [0,1].
Set @ = d;/d;. Note that © < 1. In estimating |0 A;x| we consider two cases:

r<x=.48,and x > z. If # < 7, then, with the relative error of O(¢), we have

1 z

N 1/2 < 1 — 72 °
1 —a? g 1 —a?
2|z|x 2|z|x
Since we want to bound |§A ;x| with a bound of order £, we neglect the relative error
of O(e) in the above inequality. Therefore,

1] =

1
164, < (12 +31-

_j;2

- 19’{2) , 3.2.6
e + € (3.2.6)

which is a decreasing function of 2. Substituting 1 for ¢ and # for d;/d; in (3.2.5),
and 0 for 7 in (3.2.6), we obtain

\JOAZ +8A2 < 5T.3¢ . (3.2.7)

If x > &, then

~ 1
64, < (12 4317 + 19%2) . (3.2.8)
X

1422
which is an increasing function of [t| € [0,1]. Substituting 1 for ¢ and d;/d; in (3.2.5)

and (3.2.8), we obtain
OAZ 5AZ, < 5T4e . (3.2.9)

Note that our choice of & makes bounds in relations (3.2.7) and (3.2.9) almost equal.
Now we construct the 2 by 2 submatrix 6 H,, of 6 H,, at the intersection of the
rows and columns 7 and 5. We will construct it of three components

5ﬁm =A1+ A+ As .
Applying the relations (3.2.1), we obtain

1—|—€2
1—|—€1

Vo= fl(b+ct)= (14 e8)b+ (14 c0)(1 +e10)(1 +20) el

(1 +e2)(1 +¢s) 5,z
e+ o)1 o)1 12 *”)

= (L+e9)(1 ‘|‘510)(1‘|‘5t)(
= (14e)b+ci+eb),
where |ey| < 9¢ and |g}| < 12e. Similarly,

d = flla—ct)=(1+en)a—(14ep)(1+ewm)(l+e)et

= (L4 ea)(a—c).
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where |g,/] < 92. Here we used the fact that ¢ < 0.

Now let
10 0 0 0 T
Al—lo 5bb]+‘]m[0 5;;6]‘]”@'

From earlier discussion we see that

T a c B a—cl 0
Jm(lc b]—l_Al)Jm_[ 0 b—l—c?—l—eéb]'

Next let
e[z i]9)
c b
Thus
JT ac+A+AJ—(1+5)a_cz .
m c b ! 2fgm = ¢ 0 b—l—c?—l—eéb
a’ 0
= 1 al
0y
1+ ey

Now let

A?):Jm

| (i +ea\ | JT sitepl!  cssneytf
0 v (1 1 - a ) m Cssnepb’ 6\5256”6/ )
Ept

where |epn] < |eu| + |ey| < 182. Then

/

a c a 0
Jﬂz([c b]+A1+A2+A3)Jm:[O b’]

as desired. This completes the construction of §H,,. Since b= b(1 4+ ep) and b < b,
16 Amll2 < les] + lej] +2 - Jew] + lew| < 60c

holds with the relative error of O(e). From (3.2.7), (3.2.9), and the above relation, it
finally follows

|0 Am]l2 < (60 +58vVn —2)e . (3.2.10)
This bound improves the bound ||0 A, |2 < (257v/n — 2 + 104)e from [13].

Hyperbolic case. To avoid the confusion with the trigonometric case, we denote the
quantities cs, sn and snl = sn computed by Alg. 3.1.1 with ¢k and sh, respectively.
We first compute ¢, h, ch and sh as the exact values of the parameters computed
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without rounding errors from «a, b and some ¢ = (1 + €.)c. Generally, the following

bounds hold:

1
L
K —1

\/E—1<17
VE+1

|sh| < ech < = ( \/_) :

Let (o = (a + b)/(—2¢) be the exact value of (a + b)/(—2c¢). Systematic application
of (3.2.1) gives

Y

] < (3.2.11)

a+b
=1t (Lh2) =+ el

where |e¢,| < 3e, and

W ( sign (<) )
|G+ /¢ — 1
(14 eq)sign (¢1)
(1+e2)([G] + (1 +23)y /R + ea)(1 +€5) — (1 + 26)
1 +&4 ‘ sign (¢1)

I+ e (I4+eq4)(l+¢
(Gl (1 e) VT +56¢§1 14+ ” Jo
Now let
g=qlrallte)
1—|—€6
Then (3 = (1 + ¢,)(1, where |e¢,| < 1.5e. This implies that
P 1 +&4 sign (¢1)
1 — . 1
PR o (eI e/ - 1
2
sign
= (1 ‘|’5t1) g (CQ)

[SERVICES! 7

where |4, | < 3.5e. Furthermore,
ho= fIY1—8) =1+ e/(L+es) — (L+eo)(1+210)83

(1+eo)(1
_ (1t T@g%_ +519J£ +elo)t%
€g

(14ep)/1 — 1%, (3.2.12)

47




where

(1+¢e9)(1 + c10)
len] < 1.5¢ ty = e t,
ie.
to=(14+e,)t, les,| < 1.5e . (3.2.13)
Therefore,
sign (¢2) 1 1

ty = t25(1—|—522)t2 ,

— 1
|§2|—|—\/C22—1 1—|_€151 (1+5t1)(1+5t2)

where |} | < |y, | + |eg,| < 5e. In exact arithmetic

,_ _ sign (¢)
¢+ V=1

-3

Therefore, in exact arithmetic for (3 we have

implies

1
(= B ((1 + 5;2)t2 +

1
(1 +522>tz) ’

which, in turn, implies

1

5 (624 %) S ()G = (14 eb)(1 4 20)o = (14 22)0 (3.2.14)

where
le¢,| < e, | < 5e et | < Jeb, | + leea| < 9.5¢

Therefore, we can choose ¢.,
lec] < |5/c/2| < 9.5¢,
such that for ¢ = (1 + &.)c in exact arithmetic®

a-+b
—2¢

= (1 +2¢,)6 - (3.2.15)

From (3.2.14) and (3.2.15) it follows that ¢ = 1, is the exact value of the parameter ¢
computed without rounding errors from a, b and ¢. Set

h=11-12, EE:%

3In the trigonometric case we had to perturb b. Here we can perturb either a or ¢, and we perturb
¢ since 1t 1s absolutely smaller.

Y
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For the computed quantities we have

t = ty=(1+e)l, lee] < er,| < 1.5e,

h = (14en)h, len] < 1.5¢ ,

ch = fl(1/h) = (14 cu)ch , leon| < €+ |en] < 2.5¢
sh = fl(t/h) = (1 +e)sh leon| < e+ |y + |en] < 4e .

Here the first line follows from ¢ = t, and (3.2.12), the second line follows from
(3.2.13), and the last two lines follow from the first two lines and the formulae (3.2.1).

ch and sh define the exact hyperbolic rotation
ch sh
o= = —~
l sh ch ]
which transforms H,, + 0 H,, to H,, 1 in the diagram in the statement of the theorem:

Now we begin constructing 6H,,. dH,, will be nonzero only in the rows and
columns ¢ and j. First we compute its entries outside the 2 by 2 (i,7) submatrix.
Let H}, and H’, denote the updated quantities computed by the algorithm. Then,
similarly to the trigonometric case, we have

H!, = fl(ch * Hy, + sh* H;) = chHy + shHy, + e( HY),

where N N
e(H],) = ejchHy, + eysh Hy, leh ] < 4.5e, |&h] < 6e
and N N
where N N
c(Hjy) = eschHjx + eysh iy, 4| < 4.5e, |€)] < 6e.
Thus
H, 7| Hik e(Hix)
K3 — J
)= e
sz — E(sz)
_ JT J 1
(AR Pl
= J, ! ¢ 7
(l Hjy, ] * l 5ij D
where

(SHZk = 5/1;7L2H¢k + 5/2;7L<;7LH]k — €ég7b<;7LHJk — 52;};2]‘]% R
(SH]‘k = —5/1;7L;7LH21§ — 5/2<;7L2H]‘k + 5%;};2ij + €£lg7b<;7LHZk . (3216)
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Contrary to the trigonometric case, we analyse two cases. The first case is when
|C| is near the bound (3.2.11), and the second case is when [(] is bounded away from
(3.2.11). Set, as in the trigonometric case, v = d;/d;. Set?

3 1 1

= —, == . 3.2.17
“ 22 & a+vVar—1 V2 ( )
Case I. |¢| < a.
From our assumption, the definition of ¢, and |¢| < v/ab it follows
at+b<a- 2\/%,
ie.
1
— 4z <2a.
x
This implies
< 1 3 1
> ==
T a+vVa?—1 V2
1 1

i.e. when |(] is near its lower bound, then a and b do not differ much. We now show
that

~ 1 1
<=V — 2.
ch_>2(¢E+ yE) (3.2.19)
holds with the relative error of O(e). Indeed, ¢ = zd;d; implies ¢ = Zd;d; = z(1 +

€c)did]‘. Set
ri=(1+z(14¢e.))/(1 —z2(1+¢.)).

Then
1

vk

ch < (Vr1+ )/2.

A simple calculation shows that
I—s(l4e)=(14)(1-2), | < e+ 1)/2.
Therefore,

4zl 4e) 142
T l-z(1+e) 1-z

(T4 eI +&") < w1+ [ec] +[€])

K1

and (3.2.19) holds. We neglect the relative error of O(e) since it adds only the relative
error of O(¢) in the final estimate. Therefore,

B |
sh' < |shlch < ch” < TVE+3). (3.2.20)

“Note that we can choose some other o, as well. This choice is explained in Rem. 3.2.4 below.
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Using the fact that |H;;| < d;d;, and inserting (3.2.18) and (3.2.20) into (3.2.16),

we obtain

1
[6Hi| < J (Ve 3)(Ierl + [e5] + les] + [ didy
< 5.25(Vk + 3)d;dye
1 1
[$Hikl < (Vi +3)(leal + les] + E(Ieﬂ + |€4]))d;di (3.2.21)

Now we construct the 2 by 2 submatrix (ﬁ-f\m of 6 H,, at the intersection of the rows
and columns ¢ and 7. We will construct it of three components, (ﬁ-f\m =A; +Ay+As.
The analysis is somewhat different from the analysis in the trigonometric case because
a' < a,b <b,sothat, due to subtraction, ¢’ and & can both have large relative errors.

We have
d = fllat+ect)=(1+ep)a+ (1+em)(l+eu)l+e)(l+e)cl
- (1—|—513)(1—|—514)(1—|—5c)(1—|—5t)( 1+ e a+z’{)

(14 ei)(l4+eu)(l +e)(l +e)
= (l+ew)(a+cl+e.a),

where
lear] < 28+ [ec] 4 [ed] < 13,
lea| < B+ |ee] + e < 14e .
Similarly,
b= flb+ct)=(1 +ep)(b+ct+epd),
where
|5b’| S 13¢ 5 |5b| S 14e .
Let
_ 0 e.c 1| €qa O 1
A= [Qc 0 ]—I—Jm l 0 5bb]Jm
B l 0 e.c ] n JLQ@aa + ;ﬁ?ebb —ch ;ﬁ(saa + &4b)
ecc 0 —ch ;ﬁ(saa + &4b) gﬂsaa + gszafbb
and

e[z 1]25)
c b

From earlier discussion we see that

0 c a’ 0
Jm(lc b]+A1+A2)Jm: 0yl
1+ ey

51



Now let

0 0 ~2 ! _~ sh 1 /
Ay =J3! o ddeay |gie | Shewb o —chshenti
0 ¥l-1=, —chshepl!  hepd!

where |epn] < |eu| + |ey| < 26e. Then

a c a 0

to the first order of ¢, as desired. This completes the construction of §H,, and we
have

1 1
el} 2o+ 14 —=5) 4 2few] + (VR + 3)lem]

~ 1
63nllz < Jecl + (VR +3)maxie, -

< (3554 (VK +3)30.93)¢ .

Here we used (3.2.18), (3.2.20), and ¥ < b. Combining (3.2.21) with the above

relation, we finally obtain

164,112 < (35.5 + (Vi + 3)(30.93 + 8.24v/n — 2)) e . (3.2.22)
Case I1. || > o
Our assumption implies
1
] < = —
it < =5,
1
h < —m==V2 3.2.23
& i m b ( )
B
h —=1.
[h] NiEE

These bounds hold with the relative error of O(¢g) for 1, sh and c7t, as well. We split
this case into two subcases.

Subcase Ila. x =d;/d; > 3.
The analysis is identical to the analysis in the first case; only the upper bounds for
3722, |sh|ch and ch’ are now obtained from (3.2.23) and not from (3.2.20). Therefore,

I0Hy| < (2] 4+ V2|eh| + V2leh| + |eh ) didy < 29.85d:dy &
SH| < (V2V2Iel| + |eh] + 25| + V2V2|eh])d;di < 36d;de

e maxtlellal |55 7Y ]

IA

+ 2lew] + lew]

2

1630l s

V2 2

2

IA

222.42¢



and, altogether,
|0 Am]l2 < (22242 +46.77v/n — 2) e . (3.2.24)

Subcase I1b. v =d;/d; < (.

The above assumption implies |¢| < fa. From

¢=—(1+2%)/(2%), =z(l+e),
it follows
1t <2|Z|x/(1 + 2%) <22 .

Here we ignored the relative error of O(e) in z and and used the fact that |Z| < 1.

Therefore,
— ~2 ~2d;
ch|sh| = ch |t| < 2¢h = (3.2.25)

k3

From (3.2.16), (3.2.23), (3.2.25), and our assumption, it follows

1 1
FHi| < (2let] VI VBl s iy < 25.5did e

0H < (V2V2|h] + |eb| + 2leh| + V2V2|eh|)djdy < 5Tdjdie . (3.2.26)

Now we construct the 2 by 2 submatrix §H,,. The analysis is similar to the
analysis in the trigonometric case because @’ can be computed with small relative
error. We have

a' = fl(a+ct)=(1+es)((1+e,)a+t),

where
lea] < 13e leq| < 14e .

Since |t| < 8 and |¢| < Ba, we can write (with the relative error of O(¢), of course)

(1+eu)a+ct=(14+¢e)(a+et),

where - ,
ct a
= e < len o =
Therefore,
a = (1+e)(a+el), et < lear] + [l <27 - e
Also
V= fl(b+ct) = (1+ey)(b+ & +apb), lep| < 13e, |ep] < 14e .
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Let
B 0 e.c 410 0 1
A= [Qc 0]+J [0 5bb]Jm’
sma([zi]es)
c b

0 0 7 -1 %252//6/ —JL ;E@Zubl
0 v 1—1+€a/ S = IR Y. 2 g ?
1_|_ Epr —ch Shé":b//b ch 55//6

Ag — J_l

where |e,| < |¢/,| + |ew| < 40e. Then
A B NN NI N O S I
m c b 1 2 3 m 0 b/ 9

164,12 < Jee| + 3les] + 2|e% | + 3|ehi| < 225.5¢ .
Combining (3.2.26) with the above relation, we finally obtain

and

16 A2 < (225.5 + 62.45v/n — 2) e . (3.2.27)

The theorem now follows from the relations (3.2.10), (3.2.22), (3.2.24) and (3.2.27).
Q.E.D.

Corollary 3.2.2 Assume Algorithm 3.1.1 converges, and that Hyy, J is the final pair.
Write H,, = D,, A, D,, with D,, diagonal and A,, with ones on the diagonal for 0 <
m < M. Let A; be the j-th eigenvalue of the pair H,J = Ho, J and X = (Hn);; Jj;.
Then, with the relative error of O(¢e), the following error bound holds:

NNl

<eg — 4+ n-tol. 3.2.28
PHEREP D vy (3:2.28)

m=0

PROOF. For every vector & and positive definite H we have

“DAD
|w*0Hz| < |v*DSADz| < ||5A|]s|e*DDz| < HMHQ%
[16A]l2
L | *H

Let A, ; denote the j—th eigenvalue of the pair H,,,J. Applying Th. 2.2.1 with
d0J =0 and n; =0, and Th. 3.2.1 to the pairs J, H,, for 0 < m < M — 1, we obtain

At
1—nm§%1jf§1+nm, (3.2.29)

m7]
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where

Applying Th. 2.2.1 and the stopping criterion to the pair J, Hys, and ignoring the
O(tol*) term, we obtain

/

\
l—n-todl < —-<14+n-tol. (3.2.30)
)\M7]

Here we also used the fact that A, (Ay) > 1 —mn-tol. Since

Ao M Ay A A

(3.2.31)

the corollary follows by inserting (3.2.29) and (3.2.30) in the above relation, and ig-
noring the relative error of O(e). Q.E.D.

Here are some remarks about Th. 3.2.1 and Cor. 3.2.2. The remarks hold for all
subsequent theorems and corollaries of the above type.

Remark 3.2.3 In the hyperbolic case for ¢ < a = 3/2y/2 (Case 1), the constant C,,

depends additionally on \/k(A.). Deichmdller [8] also obtained a similar bound for
some non-orthogonal transformations.

Remark 3.2.4 In practical computation Case I of Th. 3.2.1 occurs rarely, and al-
most never if we transform the pair H,I = GJGT I to the pair GTG,J (due to
diagonalizing effect of this transformation). Thus, our choice of o (and its function
3)in (3.2.17) implies that the discontinuity of the bound (3.2.2) at |¢| = 3/(2v/2) has
little practical importance. This discontinuity can be removed by considering Case
I, [¢] < 3/(2V2), as Case I, [¢| > o, for some o' < 3/(2v/2). Also note that 3
cannot have an optimizing function as = in the trigonometric case, where the choice
of & makes the bounds in the relations (3.2.7) and (3.2.9) almost equal. We can
choose another approach when analysing the hyperbolic case in Th. 3.2.1, namely
to analyse only the cases d;/d; > ( and d;/d; < (3. Then the bounds (3.2.22) and
(3.2.27) hold in the first and the second case, respectively. The approach of Th. 3.2.1
is, however, more enlightening and it simplifies the analysis of the modified method
in the following subsection.

Remark 3.2.5 The \/n — 2 part of (), may be multiplied by max,, ;»; |4,.;| < 1.
Thus if the matrices A,, are strongly diagonally dominant, the part of the error term
which depends on n is suppressed.

Remark 3.2.6 Numerical experiments indicate that (3.2.28) grows only slowly with
the increase of n or M.
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3.2.1 The modified method

In order to avoid potentially large C,, in Th. 3.2.1 in the hyperbolic case for [(| < o =
3/(2v/2), we modify the J—orthogonal Jacobi method by bounding the hyperbolic
angle as suggested in [29]. Since the original method converges, large hyperbolic angles
can occur only finitely many times. We first show that the modification does not affect
convergence properties. We then prove that one step of the modified method satisfies
the assumptions needed for the error bounds of Chap. 2, i.e. that Th. 3.2.1 and Cor.
3.2.2 hold with small modifications. The algorithm of the modified J—orthogonal
Jacobi method is similar to Alg. 3.1.1. The only changes are the computation of the
hyperbolic rotation parameters and the update of the pivot submatrix H.

Algorithm 3.2.7 Modified two-sided J—orthogonal Jacobi method for the problem
(3.1.1).

/* compute the parameter hyp: hyp = 1 for the hyperbolic and
hyp = —1 for the trigonometric rotation, respectively */
if 1 <1< npos <j<n then

hyp =1
else
hyp = —1
endif
/* compute the hyperbolic Jacobi rotation which diagonalizes
l Zji ij = Z Z ]; and update the 2 by 2 pivot submatriz */

¢ = —hyp* (b+ hypxa)/(2¢)
if hyp=1 and || < a = 3/(2v/2) then
cs =2
sn = sign(()
snl = sn
Hi=2%a+b—2x2x|c|
Hij =a+2%b—2x2x|c
HZ']‘:H]‘Z':STL* 2>|<(a—|—b)—|—3>|<c
else
t = sign(Q)/(I¢| +v/C* — hyp)
h=+1—hypx*t?
cs =1/h
sn=1t/h
snl = hyp * sn
Hi=a4 hyp*xcxt

H]‘]‘ = b—I—C*t
Hij = Hji =0
endif
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proceed as in Algorithm 3.1.1

The convergence proof for the modified method [29] rests on the trace reduction
which takes place in our case, too. Let |(| < o and let H and H" denote the matrices
after an unmodified and modified step, respectively. Then

a":2a—|—b—2\/§|c|, b”:a+26—2\/§|c|,
and

§Tr' = Tr(H)—="Tr(H") =2|c||t] ,
STr" = Tr(H)—Tr(H") = —2a — 2b+ 4V2]¢| .

The quotient §T+"/§Tr" < 1 is bounded below with 3. For a and g from (3.2.17),

we have

orr” 1

= = 1
§Tr' |t

22 —2/¢]) > 2V2 — 20 = 7
This trace reduction is quite acceptable. Also, modified steps do not affect the
quadratic convergence. Indeed, Drmac¢ and Hari [15] showed that the hyperbolic
tangent is bounded by [t| < /2/6 after the quadratic convergence starts. This, in
turn, implies || > 3/v/2, so the modified steps do not occur after the quadratic
convergence starts.

The next theorem is an analog of Th. 3.2.1 and Cor. 3.2.2 for the modified
J—orthogonal Jacobi method.

Theorem 3.2.8 Let H,, be the sequence of matrices generated by Algorithm 3.2.7 in
floating—point arithmetic with precision €. Then Theorem 3.2.1 holds except that in
the hyperbolic case for |C| < 3/(2v/2) the value of C,, is reduced to

Cpo =82+19.63vn —2. (3.2.32)
Corollary 3.2.2 holds with this exception, too.

PrOOF. The technique of the proof is the same as in Th. 3.2.1. We assume without
loss of generality that sh = 4+1. Then sign (¢) = —1. Using (3.2.1) we obtain

ol = fIN2Hy + Hjy) = V2Hy, + Hjy, + &\ Hyy, + 1 Hj,
Hj = fl(\/Eij + Hy) = \/§ij + Hi + ey Hjp + exHy

where |t], |e}| < 3v/2¢. Since d;/d; > 3, we have

57



Further,
a" = fl(2a+b—2v2|c|]) = 2a 4+ b — 2v2|¢| + eha + £3b + €| ¢|

V' = fl(a+2b—2vV2|c|]) = a+ 2b—2v2|¢| + eqa + £ib + <l ¢|
" = fI(V2(a+b)+3c) = V2(a+b)+3c+ch(a+b)+exe

where
5l [e5] <de s Jeh], lebl S 8V2e, |ef] S 4V2e, e <6
Setting
A= l eha 4+ esb+ glle|  et(a+b)+ege ]
et{a+b) +ege  eqa+elb+ eglc|
we have

a c _ _ a// c//
(23] e[ 5]
Using d;/d; > 3, we obtain R
|0 AL < 82¢

and finally (3.2.32). Q.E.D.
We have thus eliminated k(A,,) from C,, in the hyperbolic case for { < 3/(2\/5) This

makes the one-step error bounds for the modified method of the same type as the
corresponding bounds from [13], that is, the bounds depend only on y/n — 2. For 2 x2
matrices, the use of modified rotations makes obviously no improvement. For n > 3,
however, numerical experiments show that the use of modified rotations generally does
not affect the convergence. Thus, the use of modified rotations generally decreases
relative error estimates.

3.2.2 Growth of the condition of the scaled matrix

As we have seen in Cor. 3.2.2, the behaviour of the quotient Anin(Ao)/Amin(Am)
(or k(A;,)/k(Ag)) is essential for the overall error bound of the J—orthogonal Ja-
cobl method. In this subsection we first state known results. We then show that
K(Ap)/k(Ag) < nif k(A) > k(H). After that we give a simple pattern for the be-
haviour of the upper bound for Apin(Ao)/Amin(Am). As a corollary we show that,
with the appropriate choice of pivots, we can perform n’ < n — 1 successive steps such
that Amin(A0)/ Amin(Am) < n for every 1 < m < n'. In the conclusion, we define an
algorithm for calculating the upper bound for Apin(Ag)/Amin(An) in Jacobi process.
Results of numerical experiments are given in Chap. 5. The results of this subsection
are partially contained in [26].

We now state the known bounds for 1/A,.;,(A;,), which were originally proved for
the case npos = n by Demmel and Veseli¢ [13]. Later Veseli¢ [28] noticed that the
results also hold if the hyperbolic rotations are used, since the proofs do not require
the orthogonality of rotation matrices. Let the pair H,,,J be obtained from the pair
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Hy, J by applying m Jacobi rotations in pairwise nonoverlapping rows and columns
(this means m < n/2), and let (ix, ji) be the pivot pair in the k—th step. We use the
standard scaling, i.e.

Hy = Dy Ay D,y (3.2.33)

where D, is positive definite diagonal matrix, and A,, has ones on the diagonal.
The spectrum of A, coincides with the spectrum of the pencil Ay — AA[, where Aj
coincides with Ag on every rotated element and is the identity otherwise. This implies

T At T At
1 = Al < MAXez0,||r|l,=1 T Apr 14 maxocr<m—1 |40,
Amin(Am) — o#0 2T Aoz = mingo jap=1 7 Aoz Amin(Ao)

(3.2.34)
After m arbitrary steps we have
U IS (O Ak )

The above upper bound for 1/A:,(A.,) is usually a large overestimate.
The second bound is based on the Hadamard measure of a symmetric positive
definite matrix H,

det(H)

I1; Hii

It is easy to see that H(H) < 1 and H(H) = 1 if and only if H is diagonal. H(H) is
independant of the scaling so that

H(H) =

H(H) = H(A) = det A .

Furthermore,
L ¢ (3.2.35)
where e = exp(1), and
1 | A2 1
= AR (3.2.36)

H(Hps1)  H(Hm) ~ H(Hy)

where (¢, 7) is the pivot pair in the m—th step. The above two relations can be used
to monitor the convergence of 1/, (Ay) to 1, but they can be a large overestimate
in the beginning of the diagonalization process. Finally, (3.2.35) and (3.2.36) give the
guaranteed upper bound

€ €

max

! < .
S Nt (A) = det(Ao)  H(1o)

The following simple result seems not to have attracted attention:
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Proposition 3.2.9 Let npos = n and x(A) > k(H). Let H,,,J be the sequence of
pairs obtained by the J—orthogonal Jacobi method from the starting pair H,J. Then

WA 5 Ag) <
where matrices A, are defined by (3.2.33).

PrROOF. The assumption npos = n implies that all rotation matrices are orthogonal.
The assumption k(A) > k(H) and (1.5) imply
k(A < nrrbin/i(DAmD) <nk(H,)=nc(H) <nx(A).

Q.E.D.

Now we come to the central result of this subsection:

Theorem 3.2.10 Let H,, = D,,A,,D,, be the sequence of matrices obtained by Al-
gorithm 3.1.1 from the starting matrizx H = Hy, i.e.

Hy=J Hp, \Jn 1.
Let us define the sequence of matrices T,, by

TO — [
Tm = Tm—lUm
Un = DY J-1.D, .

Then form > 1

A, = THATIT

1 _ _ _ [y
— = A < NATYLNTLE < LA % = ——20E (3,237
s = AR S BAT LTl S 1AG I Tl = 5~ (3:237)
and
1Tl = 1Tt + 240110y Tt - (3.2.38)

Here (1,7) is the pivot pair in the m—th step, and T,,_1 .; denotes the i—th column of
T 1, €ete.

PrOOF. The first two statements of the theorem are obvious. Moreover, since
A, — I as m — oo, the relation

T, A TE = A
implies

lim 7,71 = Ay ,

m—00
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and

limUm+1-----UkU,?-----U£+1:Am.

k—o0

It remains to prove the relation (3.2.38). From the definition of U,, we see that only
its pivot submatrix U, differs from the identity matrix, and that

Umﬁgz — Am—l .
Also, Uﬂ_llAm_lUﬂ;T = A,,. Now we show that
Up=J""D,R, , (3.2.39)

where J,, is a J—orthogonal Jacobi rotation on A,,_1, D;LI scales jT:gAm_ljm, and
R, is orthogonal. Indeed, set

~ [T

Rm - Emjm Dm_ljm_lb\:nl .

Then (3.2.39) is satisfied and R, is orthogonal since

o A2 o~

RTEm = D\_lj\T_le_ljm D _J Dm—ljm—lb\r_nl

m m “m m*Y m
= 7 ~ o ~ -
- Dm Jm_le—lAm—le—ljm—le

= Dy Y HuiJpor D)
= D'H,D'=1
Note that the above relation holds for trigonometric as well as for hyperbolic rotations.
In the multiplication

Tm = Im-1 Um
only the :—th and j—th column of T,,_; change, i.e.

~

T Ty | = | Tucri Tueag | U (3.2.40)
Let a = A, —1,,,5,, and
e ] 5]
s ¢
In the trigonometric case we have
gl T ]

which, together with (3.2.39) and (3.2.40), implies

Tme' Tme‘ ] = [ Tm—l,ki Tm—Lk] ] )

L[ V1 —a—sv1+a 3\/1—a—|—c\/1—|—a]
V2 | —e/l—a—s/14+a —sv/l—a+cey/l4a |’
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After a simple but rather long calculation, we obtain
TT?L,ki + Tfi,kj - Twzl—um' + Té—m]‘ + 20Ty pi Tk - (3.2.41)

The relation (3.2.38) now follows by summing up (3.2.41) for k =1,...,n.
In the hyperbolic case we have

j | ch sh 5 | ViHtta 0
™ sh ch |’ e 0 V1+ta |

where (see Alg. 3.1.1)

—
<

h2 h2:7 hh:—i
A= =g e = T

This, together with (3.2.39) and (3.2.40), implies

B ——| c-ch+s-sh s-ch —c-sh
Lo g Tm’kj]_[Tm_l’]“ Tm_l’k]] l—l_ml—c-sh—s-ch —s-sh+c-ch |’

After a simple but rather long calculation, we obtain again (3.2.41) and the theorem

is proved. Q.E.D.

Corollary 3.2.11 Let the matrices H,, = D,, A, D,,, T,., and U,, be defined as in
Theorem 3.2.10. Let us perform n’ < n — 1 successive steps of the J—orthogonal
Jacobi method such that for every m € {1,....n'} and every k € {1,...,n} ecither
To1kin, =0 or Ty ki, = 0. Here (i, jm) denotes the pivot pair in the m—th step.
(These assumptions are fulfilled e.g. if we choose pivot pairs along the first row, or
along the last column, or along the first off-diagonal.) Then

for every m € {1,...,n'}.

PROOF. By definition is ||T||3; = n. The corollary follows from the assumptions and
the relations (3.2.38) and (3.2.37). Q.E.D.

Now we derive an efficient algorithm for calculating the upper bound for 1/, (Ar)
in Jacobi process. The inequality (3.2.37) implies that

L/ Amin(Am) < | Tl / Amin (Ao) -
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We can calculate || T,,||% using the recursive equation (3.2.38) in the following manner:
instead of keeping the eigenvector matrix V' according to Alg. 3.1.1,

Vo = I
Vm — JOJI T Jm—l — Vm—ljm—l )

we keep the matrix S defined by

So = Dj!
S = DFUIFTIT T =8, 7T

In the trigonometric case we have J-7, = J,., and in the hyperbolic case we have

7 5.4 _ | ch —sh
S = pa = l —sh ch ] '
Also

V.t = DoS Ty = SuDi - (3.2.42)

In order to apply (3.2.38), we need to calculate the scalar product of the i—th and
Jj—th column of T,. From (3.2.42), we see that

T —_— T . .. ..
1o il 5 = S iSm i D i D jj -
Therefore, the sequence ||T,,||3; is given by the recursion

|70l = n (3.2.43)
ITalle = Tl + 21550

m—1,~iSm—17'j ”

at a cost of n + 2 multiplications and n additions in each step.
Suppose that the algorithm converges, and that Hys,J is the final pair. Then
(3.2.42) implies that
Vil = DoSwn

but we want to obtain the eigenvector matrix Vas. Since Vis is J—orthogonal, i.e.
Vi JVar = J, we have
Vi =JVy T

Multiplication with Dg from left has relative error ¢ and multiplications with J have
no error at all.

In numerical experiments sequence ||T,,]|3 behaved extremely well in the sense
that it was approximately n for all m. However, the recursion (3.2.43) does not reveal
the fact that 1/, (A ) tends to one. This convergence can be monitored using the
monotonically decreasing upper bound (3.2.35). This bound is usually large in the
beginning of the diagonalization process, and it meets the bound given by (3.2.43)
after one or two cycles. After that point (3.2.43) is not needed any more. Updating
H(H.,,) according to (3.2.36) is very simple. The only additional effort is to calculate
H(Hy) (for example by using the Cholesky decomposition of Hp).
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Remark 3.2.12 The theoretical results of this section, as well as numerical obser-
vations, do not depend upon whether only trigonometric (J = ), or trigonometric
and hyperbolic rotations are used. This once more justifies the use of the hyperbolic
rotations.

3.3 Implicit J—orthogonal Jacobi method

In this section we present and analyse the implicit (one-sided) J—orthogonal Jacobi
method for solving the eigenvalue problem

Hx = Ax | r#£0, (3.3.1)
where H is a n X n real symmetric matrix of rank rank (H) = r < n. Let H be
decomposed as

H=aGJGT, (3.3.2)
where ¢ is a n X r matrix (i.e. G has full column rank), J = ;05 & (—Ir—npos), and

npos is number of the positive eigenvalues of H. The symmetric indefinite decom-
position (3.3.2) is described in Chap. 4. Since J=! = J, Th. 2.3.1 implies that the
eigenvalues of the pair G, J are the nonzero eigenvalues of H, and that there exists
a J—orthogonal matrix ' (FTJF = J) such that the matrix

FITGTGF = A

is diagonal and positive definite. Therefore, nonzero eigenvalues of the problem (3.3.1)
are the diagonal elements of the diagonal matrix AJ, and the corresponding eigen-
vectors are the columns of the matrix

U=GFA?,

Instead of forming explicitly the matrix G7 (G and applying Alg. 3.1.1 to the pair
GTG, J, we apply the implicit J—orthogonal Jacobi method to the pair G,.J. The
method, originally proposed by Veseli¢ [29], consists of an iterative application of the
one-sided transformation

Gm—l—l = ijm ,

where G = Gy and J,, is a J—orthogonal Jacobi plane rotation.

It & is square and non—singular, the method also solves the hyperbolic singular
value problem [21] for the pair G, J.

Note that in the positive definite case [13], the implicit method can be applied
either to G or GT (since J = I, the matrices GT G and GGT have the same eigenvalues
and simply related eigenvectors). Here, even if H is non—singular (G' is non—singular
and square), only one application makes sense, i.e. from the right on G or from the
left on GT (see also Sect. 2.3).
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The section is organized as follows: we first present the algorithm. Then we prove
that in floating—point arithmetic the method computes the non—zero eigenvalues of
H with the error bounds of Chap. 2. We analyse the simple version of the algorithm,
omitting enhancements like keeping the diagonal in a separate vector and fast rota-
tions, to make the error analysis clearer. In Subsect. 3.3.1 we analyse the version of
the algorithm where diagonal of GT( is kept in a separate vector. In Subsect. 3.3.2
we give the norm error bounds for the computed eigenvectors if H is non—singular
(non—singularity is neccessary since we use the eigenvector perturbation bounds from
Chap. 2). In Sect. 3.4 we analyse the fast version of the algorithm. In Subsect.
3.4.1 we analyse the fast method which uses self-scaling rotations. These rotations,
introduced and analysed by Anda and Park [1] for the trigonometric case, are used
to suppress possible underflow/overflow when accumulating the diagonal of the fast
rotations.

We now present our algorithm:

65



Algorithm 3.3.1 Implicit J—orthogonal Jacobi method for the pair G,J. tol is a

user defined stopping criterion.

repeat
for all pairsi < j

/* compute l Z Z ] = the (i, 7) submatriz of GTG */

a =3} G
b= ZZ:1 Gz]‘
¢ =3k Gri* Gy

/* compute the parameter hyp: hyp =1 for the hyperbolic and
hyp = —1 for the trigonometric rotation, respectively */
if 1 <1v < npos <j <r then

endif

/* compute the J—orthogonal Jacobi rotation which diagonalizes

H“' Hij — a c */
Hji H]‘]‘ - c b

¢ = —hypx(b+ hyp x a)/(2¢)
t = sign(Q)/(I¢| + v/C* — hyp)
h =+/1— hyp * t?

cs =1/h

sn=1t/h

snl = hyp * sn
/* update columns i and j of G */
for k=1 ton
tmp = Gy,
Gri = es xtmp + snl * Gy;
Gy = snxtmp + cs * Gy
endfor
endfor
until convergence (all |¢|/v/ab < tol)
/* the computed non—zero eigenvalues of H = GJGT (and of the pair GTG,J) are
A= (e G i
/* the computed eigenvectors of H are the normalized columns of the final G */

Remark 3.3.2 If (¢ is square and non—singular, then the computed hyperbolic sin-
gular values [21] of the pair G, J are

o=\ G T s
k=1
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and the computed hyperbolic singular vectors are the normalized columns of the final
(. This remark holds for all subsequent implicit methods in this chapter.

The perturbation theory for the problem (3.3.1), as well as for the hyperbolic
singular value problem [21], is given by Theorems 2.3.1 and 2.3.2. Let G,, be the
sequence of matrices obtained by Alg. 3.3.1 from the starting matrix G = Gy. For
every m > 0 write G, = B,,D,,, where D,, is diagonal positive definite, and the
columns of B, have unit norms. All error bounds in this section contain the quan-
tities 1/0umin(Bm), whereas the perturbation bounds in Chap. 2 are proportional
to 1/0min(Bo) (or k(Bg)). Therefore, as in Sect. 3.2, our claim that the implicit
J—orthogonal Jacobi method is as accurate as predicted in Sect. 2.3 depends on
the ratio maxX., Omin(Bo)/Omin(Bm) (or max,, k(B )/k(Bo)) being modest. In ex-
act arithmetic, one-sided Jacobi on G = BD is identical to two-sided Jacobi on
H = G'G = DBT"BD = DAD. Thus, all convergence properties of the explicit
method carry naturally over to the implicit one, and the question of the growth of
K(Bp) = /<;(Am)1/2 is essentially identical to the question of the growth of k(A,,) in
the case of two-sided Jacobi. Therefore, the results of Subsect. 3.2.2 apply here, as
well.

The following theorem and its corollary justify our accuracy claims for the non—
zero eigenvalues of the matrix H = GJGT computed by the implicit J—orthogonal
Jacobi method.

Theorem 3.3.3 Let (), be the sequence of matrices generated by the implicit J—ortho-
gonal Jacobi algorithm in floating—point arithmetic with precision ¢; that is G4 is
obtained from G, by applying a single J—orthogonal Jacobi rotation. Then the fol-
lowing diagram commutes:

floatin
G Taacbiw Gt

\
\d
exact

Y rotation
]

G+ 6Gm

The top arrow indicates that G, 41 is obtained from G, by applying one J—ortho-
gonal Jacobi rotation in floating—point arithmetic. The diagonal arrow indicates that
Gy 18 obtained from G, + 0G,, by applying one J—orthogonal plane rotation in
exact arithmetic; thus Gm_HJGﬁ_H and (G, + §G ) J (G + 6G)T have identical
non-zero eigenvalues and the corresponding eigenvectors. 6G,, is bounded as follows:
let k = k*(B,,), and write G, = §B,,D,,, where D,, is diagonal such that B, in
G = BuD,, has unit columns. Let ar and br be the true values of 3, G3. and
>k sz, respectively. Then, with the relative error of order ¢,

[6Bmlls < Cre, (3.3.3)
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where

26 in trigonomelric case
. . 3

K+ 13k +29 in hyperbolic case , I¢| < @ \
7 in hyperbolic case I<| > —=,

22

Cp = 1

bT Z §C;T )
96 in hyperbolic case > —,

yp Iq 12\/5

bT < §GT .

In other words, one step of the implicit J—orthogonal Jacobi method satisfies the
assumptions needed for the perturbation bounds of Sect. 2.3.

ProoF. The proof of the commuting diagram is a tedious computation. We shall
prove the diagram separately for the trigonometric and for the hyperbolic case. Let
er be the true value of 3°; G, Gy;. As in (3.2.3), we set

aT:df, bT:di, CT:Zdid]‘.

We may assume without loss of generality that ay > by and ep > 0. As in (3.2.4),
we have

0<z<z=(K(Bn) - 1)/(k*(Bn)+1)<1. (3.3.4)

Set @ = d;/d;. Note that + < 1. Systematic application of formulae (3.2.1) shows
that

a=ar(l +¢&,) where |g,] < ne
b=>br(l+¢e;) where |gy] < ne

¢ =cr+en/arby where |e.] < ne.

Trigonometric case. This case was analysed by Demmel and Veseli¢ [13] and we
present it for the sake of completeness. Small differences in the proof give here, again,
a somewhat better bound for ||0 B, ||2.

Let
cs=1/V1+12, sn=t/V1+12.
From (3.2.1) we get
ST, = (4B, el el 36

¢s and sn define the exact rotation

—S8n CS



which takes G, + G, to G 41:
(G +6G ) = Grgr -

Let 7}, and G}; be the new values for these entries computed by the algorithm. Then

G fles * Gy — sno* Gij)
= (1 + 51)(1 + 52)CSGM — (1 + 53)(1 + 54)3nij

= (I4e)(I+e2)(1 +ees)esGri — (1 +e3)(1 + ea)(1 + )5 Gy;

= ¢sGy —snGy + By s (3.3.5)
and, similarly,
i = fl(sn* Gri 4 cs * Gj) = snGr; + 3Gy + Ey; (3.3.6)
where
[Ells < 5(csl|Glls + |snlll G jll2)e
[Ejll2 < 5(snll|Gillz + es]|Gjl2)e -

Here G ; refers to the i-th column of G, etc. Thus

(@ @] = [ G.j][ es gf‘]ﬂE B, |

—3sn ¢S

_ ([G Gi|+| B By [;i }?D[fﬁ ‘?ﬁ]

. s sn
where
[Eill: < csl[Ella + [snl[[ £l
< OIG s +10es|snl|Gjl2) €
< 5(1 4 x)de , (3.3.8)
and
[Ejlla < lsnl - [[Eills + es| £l
< OG ll2 + 10es]snl[|Gill2) €
< 5(1 4 2¢s|sn|/x)d;e . (3.3.9)
We consider two cases, + < & = 048, and = > z. First consider < z. By

inserting = for x in (3.3.8) we obtain
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Our assumption further implies that the subtraction 1 — 22 has a low relative error,
and that z + ne < 1 with a relative error of O(¢e). Therefore

le] ler + ec/arbr|

! —
|| o |b—a| |bT—|—5bbT—aT—5aaT|
|z + e 2| x(z + ne)
< 14+0 ) 3.3.10
|22 = 1+ epa? —g,| = 1 — a2 (1+0()) ( )

We can ignore the (2 4+ ne)(1 + O(¢g)) term, so that |[¢| < z/(1 — z?). Inserting this
inequality into (3.3.9) we obtain

2

_j;2

Here we also used ¢s|sn| < ¢s°|t| < |t|. Therefore,

[6Blls < !

[Falla, [[£5]]2
+ < 26¢ (3.3.11)
d; d

Now consider the case # > z. Inserting 1 for x in (3.3.8) we obtain
| Flille < 10d;e .
Inserting ¢s|sn| < 1/2 and 1/z for 1/x in (3.3.9), we obtain
| F]l2 < 15.5d;¢e

so that (3.3.11) holds again, thus improving the bound ||d B,,||2 < 72¢ from [13].
Hyperbolic case. For the sake of the clarity, we denote the quantities ¢s, sn and
snl = sn computed by Alg. 3.1.1 with c¢h and sh, respectively. Let

ch=1/V1—1, sh=t/V1—1.

Using (3.2.1) we can show that the bounds (3.2.11) hold for ¢, ch and sh with a
relative error of O(e). Suppose that we can write

sh = (14 ¢e4)sh , ch = (1+eum)ch .

ch and sh define the exact rotation

ch sh
Jo=| <
[Sh ch]

which takes G, + §G,, to Gy1:

(G + 6G) T = Gy
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Let G}; and (7} ; be the new values for these entries computed by the algorithm. Then
22» = fl(ch *x G + sh x Gk])

(14 e1)(1 +e3)chGri + (1 4 e3)(1 + e4)shGly;
= (I4+e)(I+e)(1 +em)chGri + (1 + e3)(1 + ea)(1 + &5n)shGy;

= chGhi+ shGyj + B (3.3.12)
and, similarly,
1= [l(sh Gy + ch  Giy) = shGyi + chG; + Exy (3.3.13)
where
1Els < 4 lehlGills + |b][shll| Gl
[Eillz < lesllshll|Glill2 + [eh]ch] |Gl -
Here
le1ls leh] = leen] + 22, |3, €3] = [esn] + 22 (3.3.14)
Thus
(e, ] = [ Gy H JL]—F[EZ £, ]
ch —sh ch sh
— G G E;, E T chsh
([ ]]—I_[ ]]l—sh ch ])[Sh ch]
B ch sh
where
1Fills < chl|Exlla+ [shll| B2
—~2 —~2 — —
< ([ghleh” + |eslsh ) Gllz + (lea] + [ehl)eh|sh|[|G 52
< (lefleh” + [eblsh” + (1] + €4 ehlshlx)d; | (3.3.16)
and
1E5lle < [shl - [[Eills + £,
< (lghleh” + [eh]sh )G sll2 + (le1] + [e5])eh|sh]|Guill2
— — — 1
< (|5;|ch2 + ISR + (1] + |5g|)ch|sh|—) d; | (3.3.17)
X

Now we have to calculate the upper bounds for |£|’s, c7L2, sh’ and c7L|57L|, and to
insert them into relations (3.3.16) and (3.3.17). We consider two cases, |(| < « and
|| > «, where « is defined by (3.2.17).
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First consider |(| < a. As in the proof of Th. 3.2.1 we can show that the relations
(3.2.18) and (3.2.20) hold. From (3.2.11) it follows that

ANVT— )= (1+e)VI—,

where 5 A
il < (gve+g)e-
Therefore,
el el < (3VA+ 1) e
H1Eenl =\ 3 3)¢>
so that

3 13
|a;|§(§\/2+§)5, i=1,...,4.

Inserting 1/x < /2, (3.2.20), and the above relation in (3.3.16) and (3.3.17), we

obtain

[
1E5]l2

(0.375k + 5.46\/k + 13)d;c

<
< (0.46k + 6.6\/k + 15.67)d;c .

This, in turn, implies ||6 B, |2 < Cp, as desired.
Now consider the case |§|2 . As in the proof of Th. 3.2.1, we can show that the
relations (3.2.23) hold for ¢, ch and sh with a relative error of O(¢). Now

AT = (1 +aVI— 8, |l <3,
so that
lesnl, [een] < 4e let] < 6e i=1,...,4. (3.3.18)

We have two subcases, > 8 and « < [, where (3 is defined by (3.2.17). If > g3,
then inserting 1/ < v/2, (3.3.18) and (3.2.23) into (3.3.16) and (3.3.17) yields

1Fdll2 < 35d:c 1F ||, < 42d;= 18B,u|2 < T7¢

as desired.

If + < 3, then
1 2|C| B 2|CT —|—€c\/aTbT|

HH < — = —
S = Tt bl ~ Tz + coar + b1 1 2201]

2|zx + .
<2 1+0 . 3.3.19
|14+ 22 4 g4 + ep2?| — (24 ne)(l+0()) ( )

We can ignore the (z + ne)(1 + O(¢e)) term, so that [t| < 2z. Therefore,
— i~ =2 ~2
ch|sh| = ch |t| < 2¢ch « .
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Inserting this, (3.3.18) and (3.2.23) into (3.3.16) and (3.3.17), we obtain
| Flill2 < 30d;e | ]2 < 66d;¢e , |0 Bin |2 < 96¢

and the theorem is proved. Q.E.D.

Corollary 3.3.4 Assume Algorithm 3.3.1 converges, and that Gy, J is the final pair
which satisfies the stopping criterion. For 0 < m < M write G,, = B,,D,, with D,,
diagonal and B,, with unit columns. Let \; be the j-th non-zero cigenvalue of GoJ G,
and let X be the j-th computed non-zero eigenvalue. Then, with the relative error of

O(e),

>Z

Y

< (1+7)?, (3.3.20)

J

(1—9)<

>

where
M—1

=Y Cim—l—n-tol/Q—l—r-n-e/Z.

m=0 Umzn(Bm)

PROOF. Let A, ; denote the j—th non-zero eigenvalue of the matrix &Z,,JGI. By
substituting (3.3.3) into (2.3.12) and then applying Th. 2.3.1 for every 0 < m < M —1,
we obtain

At s
(1= ) € 55 < (L g)? (3.3.21)
m,J
where
Nm = gcm/o-mzn(Bm) .
Also,
iag () = diag (UG, Gu)) = FUGGrr) +
where

|35 < (ne + tol)||Garill2||Gar, 52 -

Here Gpy.; denotes the 1—th column of Gys. The tol term comes from the stopping
criterion. The ne term comes for the off-diagonal elements of I from the fact that
¢/v/ab in the stopping criterion may be underestimated by as much as ne, and for the
diagonal elements of F' from computing the norms of the columns of Gs. Therefore,

/

A
l—r-n-e—n-tol <2 <1+4+r-n-c+n-tol,
AM,]

and (3.3.20) follows by inserting (3.3.21) and the above relation into (3.2.31), and
ignoring the relative error of O(e). Q.E.D.

An alternative way to prove this corollary is given in the proof of Th. 3.3.9.
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Remark 3.3.5 If G is square and non—singular, then Cor. 3.3.4 can be applied to
the hyperbolic singular value problem. Let o; be the j-th hyperbolic singular value
of G, J and o’ the j-th computed hyperbolic singular value. Then, by taking square
roots in (3.3.20) and ignoring relative errors of O(¢), we obtain

o
l—y—e<L<l4y+¢, (3.3.22)
o

J

where
M—1
Ch,

y=e )

m=0 Tmin(Bm)

+n-tol/2 41 -ne/2.

Extra ¢ in (3.3.22) comes from the fact that o/ = fl(\/E)
This remark holds for all subsequent implicit methods in this chapter.

As we did in Subsect. 3.2.1, we can modify the implicit J—orthogonal Jacobi
method in order to avoid potentially large C,, in Th. 3.4.2 in the hyperbolic case for
|| < a. The algorithm of the modified method is obtained by combining Algorithms
3.3.1 and 3.2.7 in the obvious manner. The comments from Subsect. 3.2.1 hold here,
as well. We have the following:

Theorem 3.3.6 Let (G, be the sequence of matrices generated by the modified im-
plicit J—orthogonal Jacobi method in finite precision arithmetic with precision e.
Then Theorem 3.3.3 holds except that in the hyperbolic case for || < 3/(2v/2) the
value C,, is changed to C,, = 28. Corollary 3.3.4 holds with this exception, too.

PROOF. The technique of proof is the same as in Th. 3.3.3. We assume without loss
of generality that sh = sh = +1. Also, ch = /2, ch = fl(v/2), so that

lean] < e, en=20.
Therefore,
4] 1e4] < 3¢, €5, les] < 2¢,
and the theorem follows by inserting these values and 1/z < /2 into (3.3.16) and
(3.3.17). Q.E.D.

3.3.1 Keeping the diagonal in a separate vector

The approximate operation count for the implicit J—orthogonal Jacobi method of
Alg. 3.3.1 is the following: we need 3n multiplications and 3(n — 1) additions to
calculate a, b, and ¢, and 4n multiplications and 2n additions to update vectors
G ;, G ; per rotation. This gives the total of approximately 3.5n® multiplications and
2.5n* additions per cycle (n(n—1)/2 rotations). Keeping the diagonal elements of the
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matrix GT G in a separate vector makes the calculation of the parameters ¢ and b via
scalar product in each step unnecessary, which leaves the total of 2.5n° multiplications
and 1.5n° additions per cycle.

The main idea (in the notation of Alg. 3.3.1) is the following: at the beginning of
each cycle we calculate

A=Y
k=1

At the beginning of each step we set

GZAZ', b:A]‘, CZZGMGM'

k=1

We update A; and A; by the formulae

A=A —cxt, A=A +cext,
in the trigonometric, and

A=A +cxt, A=A +cxt,

in the hyperbolic case, respectively.

Due to subtractions in updating A;’s, they can become inaccurate, i.e. the relative
error of A; to ||G.;||* can be larger then O(e). Suppose that A; = |[|G.;||*. After one
subtraction we have

AL =GP +e) el <

where the maximum is attained when z tends to its upper bound (3.3.4) and a =
b. Therefore, the relative error of A; can grow considerably, which can affect the
convergence by making the rotation angles inaccurate. This is why the vector A
should be updated at the beginning of each cycle from the columns of the current
matrix G. We did not use the well known Rutishauser’s delayed updates of the
diagonal, since they do not guarantee high relative accuracy of the diagonal at the
beginning of each cycle.

When the pair GT(, J is obtained from the pair GJGT, I, then the probability
that the convergence is actually spoiled is very low. This is due to a non-trivial
diagonalizing effect of the above transition.

We now turn to the one—step error analysis of the method. In the notation of Th.

3.3.3 we have
Ai:d?, A]‘:di, J}:\/Ai/A]‘.

It + > z in the trigonometric, and = > [ in the hyperbolic case, then Th. 3.3.3 holds
irrespectively of the accuracy of A; and A;.
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It + < & in the trigonometric, and = < [ in the hyperbolic case, then Th. 3.3.3
holds if the relations (3.3.10) and (3.3.19) are satisfied, respectively. This is always
the case if

02 < AZA] .
If the above inequality does not hold, then we have to refresh A; and A;. Note that
hyperbolic rotations cause no additional problems over trigonometric ones.

The following algorithm is only a slight modification of Alg. 3.3.1, so only the
parts where the two algorithms differ are stated.

Algorithm 3.3.7 Implicit J—orthogonal method for the pair G,J. The vector A
contains diagonal elements of the matriz GTG.

repeat
/* at the beginning of each cycle refresh the vector
A which contains diagonal of GTG */

for j=1 to r
endfor

for all pairsi < j
/* compute l Z Z ] = the (i,7) submatriz of GTG */

Cc = ZZ:l le * Gk]‘
if & < AJA; then

a = AZ
b=A;
else
a =3 h Gii
b= 352 G
endif

/* compute the parameter hyp: hyp =1 for the hyperbolic and
hyp = —1 for the trigonometric rotation, respectively */
/* compute the J—orthogonal Jacobi rotation which diagonalizes
H“' Hij - a c *
Hji H]‘]‘ - c b /
/* update columns i and j of G */
/" update A; and A; */
A;=a+hypxcxt
A]‘ = b —|— cxt
endfor
until convergence (all |c|//ab < tol)
/* the computed non—zero eigenvalues of H = GJGT (and of the pair GTG,J) are
A= (e G i 7/
/* the computed eigenvectors of H are the normalized columns of the final G */
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Numerical experiments of Chap. 5 showed no difference in the accuracy between Alg.
3.3.7 and other implicit algorithms.

3.3.2 Error bounds for the eigenvectors

Theorems which give one—step error analysis of the implicit J—orthogonal Jacobi
methods in Sections 3.3 and 3.4 imply that one step of any of those methods satisfies
the eigenprojection perturbation bounds of Th. 2.3.3. As a consequence, the eigen
(spectral) projections computed by any of those methods also satisfy those bounds.
We prove the following theorem for the method defined by Alg. 3.3.1. The proof for
other implicit methods is similar. In the proof of the theorem we use the following
lemma due to Veseli¢ [30]:

Lemma 3.3.8 Let
I"F=I1+F, |E|2=€e< 1,

where F' is any matriz with full column rank. Then there exvists a matriz () such that

Q" Q=1 and |[F~Qll: <.

ProoF. We make the polar decomposition F' = QP where Q*¢) = [ and P is
Hermitian positive definite matrix. Since QQ*F = F, we have P> = [ + F, or

(P+1)P-1)=E.

Thus
1P 1l < e/(1+VT=9) <,
so that
I1F=Qll2= QP = Qllz=I1P =12,
and the lemma is proved. Q.E.D.

Theorem 3.3.9 Let G, J, where GG is non—singular, be the starting pair for Alg.
3.3.1. Assume algorithm converges, and that Gy, J is the final pair which satisfies
the stopping criterion. For 0 < m < M write G, = B,,D,,, where D,, diagonal
and B, has unit columns. Let X\ be an eigenvalue of the matriz GJGT and let P be
its eigenprojection. Let P’ be the approximation of the corresponding spectral projec-
tion, i.e. P' is obtained from the final eigenvectors which are obtained by dividing the
columns of G by their norms. Then, with the relative error of O(e),

4
a(A) | _ 31
rga(A)
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where n = n(n +2), and

M-1 C )
n=c«¢ S L — —|—n-t0l—|—n€,
2 ol )

provided 3n/rga(X) < 1. Here rgg(X) is defined by (2.3.1) and the quantities C,, are
defined by Th. 3.3.3.

ProoF. We first show that for every 1 < m < M, the matrix (G, is obtained by
the sequence of exact transformations on some perturbed matrix G' 4+ §G"=Y in the

sense of Th. 3.3.3, i.e.
G = (G + 3G NR, - - - - Ry, (3.3.24)

where

m—1
C
[5G Ve, <= 50—
holds with the relative error of . The proof is by induction on m. For m = 1 the
statement follows from Th. 3.3.3. Now suppose that (3.3.24) holds for some m > 1.
By Th. 3.3.3 and the induction assumption we have

[t (3.3.25)

= [(G+6G"NRy - Ry + G, R,y
= (Ga+5gwwﬂ%..”.3m,
where
S5Gm) ::5(;On—1)+_5(;m(}a).....}an_l)—1‘
Set 64, = 6B,,D,,. Then
16 B2
and (3.3.24) follows from (3.3.25) and Th. 3.3.3, ignoring the relative errors of O(e).

Since the final pair satisfies the stopping criterion, we have

[5G, < [5G Vel + 1B DG (G4 3Gl

BLBy=1+FE, |E|l2 < n - tol +n’e .

The n?c term comes from the fact that c¢/v/ab in the stopping criterion may be
underestimated by as much as ne. Lemma 3.3.8 implies that there exists an orthogonal
matrix

where
16 Barlla < n - tol +n’c .
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Set Gy = By;Dar. As in the first part of the proof, we can show that
Gy = (G+5GMNYRy - ... Ry_y

where H(SG(M)xHQ < n||Gzlla. Since pin(Ba) > 1 — (n - tol + n’e), we ignore the
factor 1/0y,in(Bar) when applying Th. 3.3.3. Let Pj; denote the spectral projection
of the matrix G';JG, which corresponds to the eigenprojection P. Th. 2.3.3 now
implies

4n 1
ga(A) 1 =3n/rge(A)

The spectral projection P}, is obtained from columns of the matrix Bj,, while the

1P = Parlle < - (3.3.26)

approximation P’ is obtained from columns of the matrix
JUGHr - [diag (\)|71?) = B + F

where

| Fiil < [Bargsl(n4+4)e/2 .

Here we used |X[/Dar; < 1 + ne and ignored the relative error of O(e). Using
|Ball2 < 14 n-tol + n’e, and ignoring again the relative error of O(¢g), we finally

have
1P = P'll: < (Bu +6Bw)(Ba +6Bur)" — (B + F)(Bar + F)' |
< 2|16 Barlla + 2[|F'll2
< 2n-tol +n(3n+4),
which, together with (3.3.26), implies (3.3.23). Q.E.D.

3.4 Fast implicit method

In this section we define and analyse the fast implicit J—orthogonal Jacobi method
for the pair G, J. The remarks from Sect. 3.3 hold here as well. The section is also
organized as Sect. 3.3. We first present the algorithm. We then give one—step error
analysis and overall error bound for the eigenvalues. In Th. 3.4.4 we give one-step
error analysis of the modified method. After that we shortly discuss the version of the
algorithm where the diagonal of GT (7 is kept in a separate vector. In Subsect. 3.4.1 we
consider fast self-scaling rotations used in order to avoid possible underflow /overflow
when updating the scaling matrix.
The idea of fast rotations is to use transformation matrices of the form

T = “), (f] , (3.4.1)
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instead of matrices of the form
cs  sn ch sh
—sn cs |’ sh ch |~
This saves 2n multiplications in each step, or approximately n® multiplications in

each cycle. The use of matrices of the type (3.4.1) is possible if the matrices G, are
stored in factorized form

Gm = GmDm 5
where D, is diagonal positive definite.
In the m—th step of the implicit method only the columns 7 and j of the matrix
G, are changed. Let GG,, = G and G,,;1 = G'. If we use the ordinary rotation, then
we have

o e ] (e a][ 5 0]
in the trigonometric, or
y h sh
a a]=[a a9 o]

in the hyperbolic case. Now suppose that G = GD, i.e.
(G G| =[G: G [ b ] . (3.4.2)
Simple calculation shows that

where
el ol _ 2 o 1
EXANEAIFS
Here
D, D
oz:D—jt, 6:_D_jt7 t=snfcs ,
D! = Djcs | D; = Djcs , (3.4.3)
in the trigonometric, and
D, D
oz:D—jt, ﬁ:D—jt, t =sh/ch,
D= D;ch , D’ = Djch (3.4.4)

in the hyperbolic case.
We now state the algorithm:
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Algorithm 3.4.1 Fast implicit J—orthogonal Jacobi method for the pair G,J. tol
is a user defined stopping criterion.

fork=1tor
D=1

endfor

repeat

or all pairsi < j

Jor all pai J

Z ] = the (1, 7) submatriz of GTG */
a=D?Yh_, GF
b= DJZ‘ ZZ:1 Gi;

Cc = DZ'D]' ZZ:l le * Gk]‘

/* compute the parameter hyp: hyp =1 for the hyperbolic and
hyp = —1 for the trigonometric rotation, respectively */
if 1 <1< npos <j<r then

hyp =1
else

/* compute

hyp = —1
endif
/* compute the J—orthogonal Jacobi rotation which diagonalizes
H“' Hij - a c *
Hji H]‘]‘ - c b /
¢ = —hyp* (b+ hyp*a)/(2¢c)
t = sign(¢)/([¢] + v/ ¢* — hyp)
cs = 1/v/1 — hyp * t?
o =1x% DZ/D]
ﬁ = hyp*t*D]‘/Di
/* update columns @ and j of G */
fork=1ton
tmp = Gy,
Gri =tmp+ o * Gk]‘
Gk]‘ = Bxtmp+ Gk]‘
endfor
/* update D; and D; */
D, =D, *c¢s
D;=D;xecs
endfor
until convergence (all |¢|/v/ab < tol)
/* the computed non-zero eigenvalues of H = GJGT (and of the pair GTG,J) are
A= (ke G D355 7/
/* the computed eigenvectors of H are the normalized columns of the final G */
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The following theorem and its corollary justify our accuracy claims for the eigen-
values of the matrix H = GJGT computed by the fast implicit J—orthogonal Jacobi
method .

Theorem 3.4.2 Let (i, D,, be the sequences of matrices generated by the fast im-
plicit J—orthogonal Jacobi algorithm in floating—point arithmetic with precision &;
that is G4y is oblained from G, by applying a single fast rotation, and D,y is
obtained from D,, according to (3.4.3) or (3.4.4). Let G, = G+ D, Since G, is
needed only for theoretical consideration, we suppose that this matriz multiplication
is exact. Then the following diagram commutes.

Gm . Dm = Gm fast floating Gm-l—l . Dm—l—l = Gm-l—l

rotation

exact
rotation

G+ 0G,,

The top arrow indicates that G,,11 ts obtained from G, by applying one fast rota-
tion in floating—point arithmetic. The diagonal arrow indicates that G, 41 is obtained
from G, + 0G,, by applying one J—orthogonal plane rotation in exact arithmetic;
thus Gy1J Grar and (G, + 3G, J (G + 6G)T have identical eigenvalues. §G,, is
bounded as follows. Let k = IQQ(Bm) and write G, = 0B, D,,, where D,, is diagonal
such that B,, in G,, = B,,D,, has unit columns. Let ap and by be the true values of
SR GEoand Y, sz, respectively. Then, with the relative error of order ¢,

[6Bmlls < Cm -, (3.4.5)
where
33 in trigonomelric case

K+ 16y/k + 39 in hyperbolic case , I¢| < % ,
102 in hyperbolic case | I<| > —=,

22

Cp = 1

bT Z §C;T )
125 in hyperbolic case > —,

yp Iq 12\/5

bT < §GT .

In other words, one step of the fast implicit J—orthogonal Jacobi method satisfies the
assumptions needed for the perturbation bounds of Sect. 2.3.

ProoF. The proof of the commuting diagram is a tedious computation. We shall
prove the diagram separately for the trigonometric and for the hyperbolic case. Let
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ar, by and ¢ be the true values of D? >k sz DJZ >k sz and DZ'Dj Yok Gkiékj. We
may assume without loss of generality that az > by and ¢z > 0. As in (3.2.3), we
have

aT:df, bT:di, CT:Zdid]‘.

As in (3.2.4), we can show that (3.3.4) holds. Also let @ = d;/d; < 1. Systematic
application of formulae (3.2.1) shows that

a=ar(l +¢e,) where |g,| < (n+2)e
b=>br(l +e;) where |[g] < (n+2)e

¢ =cr+eanJarbr where || < (n 4+ 2)e

Trigonometric case. This case was analysed by Anda and Park [1] for the Givens
rotation in the QR-algorithm. Our proof is similar to theirs.

Let

cs = 1/V1I+12, sn=t/V1+ 12
a = tDZ'/D]‘, gE—tD]‘/DZ'. (346)

For the calculated transformation parameters we have

es = (14eu)es, lees| < 3¢,

a = (1+e.)d, B=(1+4¢5)8, leal; les] < 2e .

¢cs and sn define the exact rotation

e S

—S8n CS

which takes G, + G, to G 41:

Let G, and G, be the new values for these entries computed by the algorithm. We
have

Wi o= FUGR 4 BGr) = (L4 &) G + (14 2)(1 4 e3)(1 + £5) 3G,
= G+ PG +e1Gri + (22 + 3 + £5) 3G,
D/» = fl(DZ Eg) = DZEE + (54 + €CS)DZ'E§ .

Usin
i G.Z' = Gz DZ 5 G/Z — G/Z D; )

and (3.4.6), and ignoring the relative error of O(e), we obtain

G/Z =cs(G; — gﬁG] + E;
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where

[E.ill2 < (5esl|Gilla + 8sn[[|Gjl2)e -
Here G ; refers to the i-th column of G, etc. Similarly,

G/ = sn(z,; + EEG] + E.]‘

J

where

[ £l < (8snll|Glillz + 5es||Gjll2)e
Now (3.3.7) holds with

[Eills < esl[Eills + [snl[[£]l2
2
< 1th2(5+8t + 13|t|x)d;e
1E5lle < [snl[[Ellz + es[l 4]
< (5 + 8% + 13|t]/x)d;e .

1+1¢2

(3.4.7)

(3.4.8)

We consider two cases, r < & = 0.51, and x > z. First consider # < z. Inserting

z for x in (3.4.7) we obtain

| Fille < 9.82d;e .
Inserting (3.3.10) into (3.4.8) we obtain

1F;]2 < 22.57d;e

and

[ Boull2 < 33¢ .

Now consider the case # > z. Inserting 1 for x in (3.4.7) we obtain
| Flille < 13d;e .
Inserting 1/2 for 1/ in (3.4.8), we obtain
||l < 19.25de

so that (3.4.9) holds again.

(3.4.9)

Hyperbolic case. The proof is a combination of the above proof for the trigonomet-
ric case and the proof for the hyperbolic case of Th. 3.3.3. We denote the quantities

cs, sn and snl = sn computed by Alg. 3.4.1 with ch and sh, respectively. Let

ch = 1/V1—1¢, sh=t/V1— 1
a = tDZ'/D]‘, gEtD]/DZ
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For the calculated transformation parameters we have

ch = (1+¢euq)ch,

o = (1+€Oé)&7 ﬁ:(l‘l‘@ﬁ)ﬁ, |€a|7|€ﬁ|§25'
ch and sh define the exact rotation
ch sh
J, =<
l sh ch ]

which takes G, + G, to G 41:
(G +6G ) = Grgr -

Let (7}, and G} ; be the new values for these entries computed by the algorithm. As
in the proof for the trigonometric case, we obtain

where N N
[ E.ll2 < (26 4 |ecn])eh||Guill2 + (52 + [ean )]sk | G412
and N N
Gl = shGi+ chG; + I
where

Now (3.3.15) holds with

1Ell2 < (52 + [ecn DIl Gallz + (22 + lecn )bl G2 -

1l < (25 + |eal)ch” + (5e + [zanl)sh” + (Te + 2|eal)ch|sh|2)d
1Fills < (264 ean])eh + (52 + Jean)sh + (T2 + 2|eu|)eh|sh| fa)d; (3.4.11)

As in Th. 3.3.3 we consider two cases, |¢| < 3/(2v/2) and [(| > 3/(2V/2). First
consider |¢| <3/(2v/2). Then (3.2.18) and (3.2.20) hold, and

3 _ 7
e < (§\/E+ g) -

The assertion of the theorem now follows by inserting 1/2 < v/2, (3.2.20), and the
above relation into (3.4.11). B B
Now consider |¢| > 3/(2v/2). Then the relations (3.2.23) hold for ¢, ch and sh

with a relative error of O(¢), and
leen] < e . (3.4.12)

We have two subcases, © > 1/v/2 and = < 1/v/2. If > 1//2, then the assertion
of the theorem follows by inserting 1/z < v/2, (3.4.12), and (3.2.23) into (3.4.11).

If + < 1/v/2, then (3.3.19) holds, and the assertion of the theorem follows by
inserting (3.3.19), (3.4.12), and (3.2.23) into (3.4.11). Q.E.D.
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Corollary 3.4.3 Assume Algorithm 3.4.1 converges, and that Gar,J = Dy G, J
is the final pair which satisfies the stopping criterion. For 0 < m < M write GG, =
B, D, with D,, diagonal and B,, with unit columns.

Let X; be the j-th non-zero eigenvalue of GoJGE, and let As be the j-th computed
eigenvalue. Then, with the relative error of O(e),

(1—y)2 <L < (1+79)?2, (3.4.13)

>/|%>:

where
M—1

y=¢ ————+n-tol/2+r(n+2)e/2 .
PROOF. See the proof of Cor. 3.3.4. The r(n+2)c/2 term comes from the facts that
¢/V ab in the stopping criterion may now be underestimated by as much as (n + 2)e,
and that the squares of the norms of the columns of GGj; are computed with a relative
error not greater than (n + 2)e. Q.E.D.

As in Subsect. 3.2.1, we can modify the fast implicit J—orthogonal Jacobi method
in order to avoid potentially large C,, in Th. 3.4.2 in the hyperbolic case for |(| <
3/(2v/2). The algorithm of the modified method is obtained by combining Algorithms
3.4.1 and 3.2.7 in the obvious manner. We have the following:

Theorem 3.4.4 Let (G, be the sequence of matrices generated by the modified fast
implicit J—orthogonal Jacobi method in floating—point arithmetic with precision e.
Then Theorem 3.4.2 holds except that in the hyperbolic case for || < 3/(2v/2) the
value C,, is changed to C,, = 55. Corollary 3.4.3 holds with this exception, too.

PROOF. See the proof of Th. 3.3.6. Q.E.D.

As in Subsect. 3.3.1, we can keep the diagonal of the matrix GT( in a separate
vector, thus saving 2(n + 1) multiplications and 2(n — 1) additions in every step. This
is done as in Alg. 3.3.7, except that A;’s are now refreshed using G, and D,,. All
remarks about Alg. 3.3.7 from Subsect. 3.3.1 hold here, as well.

3.4.1 Self-scaling rotations

Analysing the fast rotation formulae (3.4.3) and (3.4.4), we see that these rotations
make both values D; and D] smaller or larger, respectively. This can lead to un-
derflow/overflow in some D; during floating-point computation. As already men-
tioned, the probability that this happens is in the case of transition from the matrix
H = GJGT to the pair G,.J very low. The probability of underflow/overflow can
further be reduced by using self-scaling rotations suggested by Anda and Park [1].
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The main idea is to "push” the diagonal element of D which is further away from
1 towards 1. We use the "two way branch algorithm” of [1] and generalize it to the
hyperbolic case. This adds four new fast rotations to the already existing ones (3.4.3)
and (3.4.4). In this subsection we define these rotations, give the algorithm of the
method, and present the error analysis.

The trigonometric self-scaling rotations from [1] are the following: suppose that
(3.4.2) holds. Simple calculation shows that either

, 1A A 1 « 1 0 D;
aoay = G G']]l()luﬁlu | (3.4.14)
where
a:&t, ﬁ:—D—cs sn t=snfecs
D, ;
D! = D;/ecs , D; = Djcs , (3.4.15)
or -
, Pl A A 1 0 1 « D!
aoay = G G.]]lﬁlll()lu | (3.4.16)
where
_ b,
ﬁ:_ﬁjt’ a:D—jcs-sn, t=snfecs
D! = Djcs | D; = D;/ecs . (3.4.17)

The hyperbolic versions of the above rotations are either (3.4.14) with

D D;
a = D ﬁ:D—ZCh'Sh, t=sh/ch,
= D;/ch , D’ = Djch (3.4.18)
or (3.4.16) with
D; D;
B==L, a=—ch-sh, t=sh/ch,
D; D,
D! = Djch , D= Dj/ch . (3.4.19)

The rotation (3.4.3) makes both D; and D; smaller. We use it in the trigonometric
case when D;, Dj > 1. The rotation (3.4.4) makes both D; and Dj larger. We use it
in the hyperbolic case when D;, D; < 1.

The rotations (3.4.14), (3.4.15) and (3.4.16), (3.4.19) make D; larger and D;

smaller so they are always used when D; < 1 < D;. The first is also used in the

87



trigonometric case when D; < D; < 1 and the second is used in the hyperbolic case
when 1 < D; < Dj.

The rotations (3.4.16), (3.4.17) and (3.4.14), (3.4.18) make D; smaller and D;
larger so they are always used when D; > 1 > D;. The first is also used in the
trigonometric case when 1 > D; > D;, and the second is used in the hyperbolic case
when D, > Dj > 1.

Thus, we have the following

Algorithm 3.4.5 Fust implicit J—orthogonal Jacobi method with self-scaling rota-
tions for the pair G, J. tol is a user defined stopping criterion.

fork=1tor
D=1

endfor

repeat

for all pairsi < j
/* compute l Z Z ] = the (i, 7) submatriz of GTG */
a= D}y, Gy
Cc = DZ'D]' ZZ:l le * Gk]‘
/* compute the parameter hyp: hyp =1 for the hyperbolic and

hyp = —1 for the trigonometric rotation, respectively */
if 1 <1v < npos <j <r then

endif

/* compute the J—orthogonal Jacobi rotation which diagonalizes

H“' Hij — a c */
Hji H]‘]‘ - c b

¢ = —hyp* (b+ hyp*a)/(2c)
t = sign(Q)/(I¢| + v/C* — hyp)
h =+/1— hyp * t?

cs =1/h

sn=1t/h

/* update columns i and j of G and D; and D; */
if (hyp=1and D;;D; < 1) or (hyp=—1 and D;, D; > 1) then

Oé:t*Di/D]‘

ﬁ:hyp*t*Dj/Di

fork=1ton
tmp = Gy,

Gki = tmp—l—oz* Gk]‘
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Gk]‘ = ﬁ *imp + Gk]‘

endfor
D, =D, *c¢s
D;=D;xecs

elseif (hyp=1 and (D; <1 < D; or D; > D;>1)) or
(hyp=—1 and (D; <1 < Dj or D; < D; <1)) then

Oé:t*Di/D]‘
B =hyp*ecs*snx*D;/D;
fork=1ton

Gk]‘ = ( * sz + Gk]‘
Gri = Gri + B+ Gy

endfor

Di = DZ'/CS

D;=D;xecs
else

ﬁ:hyp*t*Dj/Di
a=cs*xsn*xD;/D;
fork=1ton
Gri = Gri + B+ Gy
Gry = ax* Gy + Gy

endfor

D, =D, *c¢s

D]‘ = D]‘/CS
endif

endfor
until convergence (all |¢|/v/ab < tol)
/* the computed non-zero eigenvalues of H = GJGT (and of the pair GTG,J) are
A=k G DS T3 v/
/* the computed eigenvectors of H are the normalized columns of the final G */

The version of the algorithm where the diagonal of GT( is kept in a separate
vector is obtained by combining Algorithms 3.4.5 and 3.3.7. The only exception from
Alg. 3.3.7 is that A;’s are refreshed using (., and D,,. Further, the modified method
is obtained by combining Algorithms 3.4.5 and 3.2.7. Error analysis of the self-scaling
rotations is similar to the analysis of the fast rotations from previous section. The
following theorem gives error analysis of the modified method:

Theorem 3.4.6 Let (i, D, be the sequences of matrices generated by the modified
fast implicit J—orthogonal Jacobi algorithm with self-scaling rotations in floating—
point arithmetic with precision ¢; that is G, is obtained from G, by applying one
of the fast rotations, and Dy,41 is obtained from D, by one of the formulae (3.4.3),
(3.4.4), (3.4.15), (3.4.17 = 3.4.19). Then Th. 3.4.2 holds with

C, = 191 (3.4.20)
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in all cases. Corollary 3.4.3 holds as well.

PROOF. For the standard fast rotations (3.4.3) and (3.4.4), the theorem follows from
Theorems 3.4.2 and 3.4.4.

Suppose that we apply the hyperbolic self-scaling rotation defined with (3.4.16)
and (3.4.19). Let the quantities ¢s and sn computed by Alg. 3.4.5 be denoted by ch
and sh, respectively. Let

ch = 1/V1 -1, sh=t/V1— 12

Since we are using the modified method, the relations (3.2.23) always hold, and for
the calculated transformation parameters we have

ch = (14eq)ch , sh=(1+egy)sh, |2en], |ean] < 4
B = (1+ep)8, les| < 2e .
a = (I+e.)a, lea] < 1le

ch and sh define the exact rotation

ch sh
Jo=| <
[Sh ch]

which takes G, + 0G, to Gy, ie. (G +6G ) o = Grpgr. Let G and G}, be the

new values for these entries computed by the algorithm. From Alg. 3.4.5 we have

i = JUGK 4 BGh) = (14 21)Gri + (1 + 22)(1 4 5)(1 + 25) 3G,
Gri + BGrj + e1Gri + (62 + €3 + ¢5) 3Gy
D/» = fl(D] Ch) = DZJL + (54 + 5ch)DigfL .

K3

Using - -
G;=G;D;, G.=GLD

and (3.4.21), we obtain

G/ =ch(G,; + ShG.]‘ + E;

K3

where

1E.illz < (6¢h]|Gill2 + 9]shl|Gy]l2)e -
Further,

Yy = TG+ Gry) = (L4 25)(1+ g6)(1 + 2a)al; + (14 €7) Gy
Di = fl(D;/ch) = Dj/ch + (es+e,)Dj/ch

J
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where |¢/,] < 4e, so that
G{j = G/] D; = ;7LG2 + JLG] + E.]‘

where

~2
~ ~ 1 h
I|E.ll2 < (19|3h|”G.¢H2 + (5ch + = + 17;)) €.
c

C

Now (3.3.15) holds with

1Eills < chllBalls+ [shll| £,
< (6ch” +19sh + (4ch|sh| + LT[t|sh” + [t))z)ed; |
[Fllz < Ish] - [ E.ll2 + ch][E]l2
< (25ch|sh|/x 4+ 26sh" + 5ch + 1)ed; . (3.4.22)
Here
HGZHQEdZ 5 HG]HQEd] R R J}Ed]/dZ .

We consider two cases, x > 1/y/2 and = < 1/v/2. If x > 1/v/2, then by inserting
1/z < /2 and (3.2.23) into (3.4.22) we have

[
16 B2

646[2'5 5 HF]HQ S 86d]‘€ 5

<
< [Flla/di + ([ F5]2/d; < 150e .

If v < 1/4/2, then (3.3.19) holds, and by inserting (3.3.19), and (3.2.23) into (3.4.22)

we have

[
16 B2

546[2'5 5 HF]HQ S 137d]‘€ 5

<
< 191e.

The analysis of the three remaining types of the self-scaling rotations is similar.

Q.E.D.
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Chapter 4

Symmetric indefinite
decomposition

4.1 Introduction and algorithm
In order to solve the eigenvalue problem
Hx = Ax | r#£0, (4.1.1)

where H is a n x n real symmetric matrix with rank (H) = » < n, by any of the
implicit (one-sided) Jacobi methods of Chap. 3 for which we have good error bounds,
we first decompose H as

PHPT = GJGT 5 J = [npos S%; _[T—npos . (412)

Here G is a n x r matrix (i.e. G has full column rank), P is a permutation matrix,
and npos is the number of positive eigenvalues of H. The decomposition (1.1) is then
obtained by multiplying (4.1.2) by PT from the left and P from the right, that is, the
implicit Jacobi is applied to the pair PTG, J.

The chapter is organized as follows: in this section we give the algorithm of the
symmetric indefinite decomposition (4.1.2). In Sect. 4.2 we give the error analysis of
the method. In Sect. 4.3 we give the final error bounds for the computed eigensolution
of the symmetric eigenvalue problem. Finally, in Sect. 4.4 we show an interesting
fact that the scaled condition of the matrix G7( is bounded by a function of n
irrespectively of the condition of the starting matrix H.

We now give the algorithm of the symmetric indefinite decomposition (4.1.2). Our
method is essentially the method of Bunch and Parlett [6] with some modifications.
The method of Bunch and Parlett decomposes H as

PHPT = LTL", (4.1.3)
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where L is lower triangular matrix with unit diagonal, and T is block diagonal matrix
with (1 x 1) and (2 x 2) blocks. We shortly describe one step of the algorithm. Let
P be a permutation matrix such that

PHPT = [X CT] : (4.1.4)

C Y
where X is nonsingular k x k& matrix, k € {1,2}, C'is a (n — k) x k matrix, and Y is

a (n — k) x (n — k) matrix. Such P always exists because H is nonsingular. We can
decompose PHPT as

PHPT — L[X 0 ]LT,

0 H
_ I 0
L= [CX—l [n_k]’
H = Y-CcXx'c?. (4.1.5)

Recursive application of (4.1.5) yields (4.1.3) in the obvious manner. We choose 1 x 1

or 2 x 2 pivot according to the unequilibrated diagonal pivoting from [6] : set
a=(1+VvI7)/8,
and calculate
Vo = mqéax |Hi;| , v = max |Hy| . (4.1.6)
£ 7

We choose a 1 x 1 pivot if and only if 11 > ary, and a 2 x 2 pivot otherwise. For a
1 x 1 pivot, we choose P in (4.1.4) to interchange row and column 1 with s, where s
is the least integer such that vy = |Hy,|. Therefore, | X| = 1. For a 2 x 2 pivot, we
choose P to interchange rows and columns 1 with ¢ and 2 with p, where ¢ is the least
column integer and p is the least row integer in the g—th column such that vy = |H,,|
(note that p > ¢). Therefore,

|(PHPT)21| = o,
—det(X) = |det X| >} —rvi. (4.1.7)

Bunch and Parlett [6] showed that the above choice of o minimizes the element
growth which can take place in transition from H to Hp, and that for any pivoting
strategy which satisfies (4.1.7)

L] < { 1.562 it L;; is obtained after a 1 x 1 pivot
g >

2.781 otherwise . (4.1.8)

1See Rem. 4.2.3.
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To obtain decomposition (4.1.2), we futher decompose PH P as
PHPT = LQQTTQQTLT |

where () is orthogonal block diagonal matrix with the same structure as T'. The 1 x 1
blocks of () are 1, and the 2 x 2 blocks of ) are elementary orthogonal plane rotation
matrices of the form

s sn
l ] , es? +snt=1,

—S8n CS

chosen to diagonalize corresponding 2 x 2 blocks of T'. Denoting L; = LG and
Dy = QTTQ we can write PHPT = LlDlLip, where Ly is lower block triangular
and D is diagonal matrix. Due to (4.1.7) the 2 x 2 diagonal blocks of Dy which
correspond to 2 x 2 diagonal blocks of T" always have one positive and one negative
element. Further we have

PHPT = Li\/|Dy|J1+/|D1| LT,
where .J; is diagonal with J; ; € {—1,1}. Finally,
PHPT = L\/|Dy|PPLJ P Pl Dy LT, (4.1.9)

where Pj is a permutation matrix chosen to sort elements of J; according to the rela-
tion (4.1.2). Setting G = L11/|D1|Py and J = PLJ, P, we obtain the decomposition
(4.1.2).

It H is positive definite, the above algorithm reduces to the Cholesky decomposi-
tion with complete pivoting (see e.g. [13]), that is

PHPT = LT . (4.1.10)
Combining (4.1.5) and (4.1.9), and using
Q'XQ=1D,

where D is a 1 x 1 or 2 x 2 diagonal matrix, we obtain (in the notation of (4.1.5))

PHPT — Gl‘] 0 ]GT,

0 H
. B 0
o= |70
B = QID|'*,
7 = CQIp|Tr,
H = Y—-zJ7". (4.1.11)

Thus, we have the following:
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Algorithm 4.1.1 Symmetric indefinite decomposition (4.1.2) of a real symmetric
matrizc H. Vector P is initially defined by P, = 1, + = 1,...,n. The symbol «
denotes interchanging of two elements.

oz:(l—l-\/ﬁ)/S

i=1

npos = 0

r=20

repeat

/* finding vo, 11, p, ¢ and s */
g =10
vy = |Hy

fork=14+1ton
if |Hpr| > 11 then
vy = |Hyl
s=k
endif
forl=1tok—1
if |Hp| > vo then

vo = |Hyl
p==Fk
qg=1
endif
endfor
endfor

if 1n > a1y then
/*1 x 1 pivot; we first check for the non-singularity */
if 1y =0 then
r=1—1
1=n-+1
else
/* permuting */
fork=1ton
Hy; — Hp,
endfor
fork=1ton
Hi — Hgp
endfor
Pi s PS
/* updating H */
Ji = sign(Hy)
if Jy =—1 then
npos = npos + 1
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endif
temp = /[13]
H; =temp
fork=1+1ton
Hyi = Hy + J;[temp
H;p =0
forl=14+1tok
Hy = Hyy — Hy * Hy + J;
Hy = Hy
endfor
endfor
=141
endif
else
/%2 % 2 pivot; we first permute */
fork=1ton
Hki — Hkq
Hy 41 < Hy,
endfor
fork=1ton
Hik — qu
Hip1p < Hyp
endfor
Pi Aad Pq
Pi-l—l Aad Pp

/* caleulating the orthogonal matriz which diagonalizes

(= (Hiy1i41 — Hii) /(2% Hip1)
t=sign(Q)/(ICl+ V¢ +1)
h=+1+12
cs=1/h
sn=t/h
/* updating H */
a = H“ — Hi-l-l,i * 1
b= Hi141+ Hiyri*1
J; = sign(a)
Jit1 = sign(b)
npos = npos + 1

a = |a
b= [b|
Hi;i=c¢sxa

Hi,i-l—l =snx*b
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Hi-l-l,i = —Ss8n *ka
Hi-l—l,i-l—l =cs*b
fork=14+2ton
temp = Hy;
Hy; = (tempx cs — Hyip1 % sn) * J;/a
Hiiv1 = (temp* sn+ Hy 41 % cs)* Jigq1 /b
Hiyp =0
Hit1,=0
forl=14+2tok
Hy = Hy — Hyi » Hyg % J; — Hy g % Hygoq o+ Jia

endif
until 1 > n
/% if non-singularity did not occur, then rank equals dimension */
if r =0 then
r=n
endif
/* permuting the columns of H to sort J */
k =npos + 1
for Ll =1 to npos
if J1=—1 then
while J, = —1
E=k+1
endwhile
form=1ton
Hml Aad Hmk
endfor
E=k+1
endif
endfor
/*ris equal to rank(H) and to the number of columns of G */
/* Matriz G is stored in the first v columns of the array H */
/* Matriz J is given implicitly by npos and r */
/* Vector P describes the pivoting which took place in the sense that H(P,P) = GJGT */
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4.2 Error analysis

In this section we give error analysis of the symmetric indefinite decomposition defined
by Alg. 4.1.1. In our proof we use the approach from Th. 3.3.1 of [16]. We compare
our result with the existing analysis of the algorithm of Bunch and Parlett [6] by
Bunch [3].

Theorem 4.2.1 Let G and J be the factors of a real symmetric matriz H computed
by Alg. 4.1.1 in floating—point arithmetic with precision €. Then, with the relative
error of O(e), G and J satisfy

GJGT = PHPT+E
B < 136n(P|H|PT +1G||G[M)e . (4.2.1)

PRrROOF. The proof is by induction on n. The theorem obviously holds for all matrices
of order 1. To begin the induction, we must also analyse matrices of order 2 for a
2 x 2 pivot. Let

¢ = (Hyn— Hy)/(2Hy)

= sign(Q)/(I+ 1+,

s = 11412,

sno= t/\J1+12,

a = Hy — Hut,

b — H22 —|— Hzlftv, (422)
and ézj denote the exact quantities computed by Alg. 4.1.1, i.e. without rounding

errors. Since

|Hy| = 10, max{|Hy|, [Haa|} <11, (4.2.3)
the fact that we perform a 2 x 2 step implies

8 < { o if sign (Hy1) = —sign (Ha2) , (4.2.4)

a2 otherwise .

Now we show that the computed quantities ¢, cs, sn, a and b have small relative
errors with respect to the exact quantities from (4.2.2). Single subscribed ¢’s denote
quantities of absolute value less than or equal to ¢. Most of the subsequent inequalities
hold with a relative error of O(e). Using (4.2.3) and the maximum in (4.2.4), we have

¢ = fl(H22 — Hyy _ Ho(1 +e1) — Hia(1 + £9)
2Hs 2H2 (1 + e3)

= C—I_{‘:Cv

(1 +¢4)
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where |e¢] < 3ae. This implies that the equality

FULH )= (L4 es)(I+ (CHe*(L+ee) = (L+ )L+

holds for some

€] < 2lecCl + (lesl + lel)C* + Jes] < 4.3¢ .
Further, the equality

FUCTH /L4 ¢) = (L+en(C+ec] + (1 +es) (1 + /21 + ()
= 1+ + Y1+

holds for some

€] < lecl + lel (L + IC]) + les| + [€]/2 < Te
so that finally

t = t(l+e), led] < 8e
cs = fIL/VI+2)=0cs(1l +eg), lees| < 1le
sno= fl{t/V14+13)=sn(l+eg), lesn] < 19¢ . (4.2.5)

Let

a = fl(Hy — Hnt)
= fl(Hy + Hat) . (4.2.6)

If sign (H11) = —sign (H22), then @ and b are both calculated by addition and have
small relative errors, i.e.

a=a(l+e,), b=0b1+¢e), leal, |ep] < 10e . (4.2.7)

Let sign (Hy1) = sign (Haz). Assume further that Hy; > Hz > 0. Then «a is again
calculated by addition and (4.2.7) holds for it. Using (4.2.4), |Ha1| = 1o, and |Hay| <
vy, we have
bl = [Hy+ Hut| > [{]|Hy| — |Ha|
1

Yo (oz/Z +4/1 4+ a?/4

Y

— Oé) Z 00881/0 .

Therefore,

b= Ha(l +e9)+ (1 +e10)(1+e11)(1 + 51&)[‘[21{: 5(1 + 5?,) ,
leb| < (|Hazgs| + (le1o] + |ena| + [ee])[Ha][E]) /0 < 121e
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We conclude that in any case

a=a(l +e,), b=0b1+¢e), leal, |es] < 121€ . (4.2.8)

This implies that, e.g.

Gy = fl(=sny/]a)) = Gau(1 +eq) ,
lea] < lesa] + |eal/2 + 26 < 81.5¢

so that - -
B=G=G+46G, 0G| < 815G . (4.2.9)
Thus,
BJBT = GJGT =(G+5G)J(G+6G) =H+E ,
|E| < 2-81.5|G||G| e
163]G||G[ e (4.2.10)

and (4.2.1) holds.

The induction step must also be done separately for a 1 x 1 and a 2 x 2 pivot. We
can assume without loss of generality that P from (4.1.4) is the identity. Moreover,
permuting the columns of ¢ in order to sort the elements of .J (see (4.1.9)) does not
influence the statement of the theorem. From (4.1.4) and (4.1.11) we conclude that

R A BT

Suppose that we do a 1 x 1 step, and that (4.2.1) holds for all matrices of order n — 1.
Then (4.2.11) holds with

B = fl(|Hu|"Y?) =|Hu|"* + 6B,

6B] < |Hul",
Z = fI(CJ/B)=CJ|Hu| ™ +67 .
[67] < 2e|Cl|Hu| V2,
o, = fIY -ZJZ" =Y -Z2J7" + I,
[ < 2|V +12]12]7) . (4.2.12)

The induction assumption implies that
Gy LWGT = PLH P+ By (4.2.13)

where
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Now Alg. 4.1.1 yields

B 0
G_[PlZ Gll’

so that
J r [ BIBT BJZTPT
G[ i ] ¢ = l PZIBY PZJZTPT + G GE (4.2.14)
Setting P = I & P; and using (4.2.12), we obtain
J T Hy CT | op
0 e - o 9
20 BJ|Hyy|'/? sCT
l s¢ B ypppr |1HOE)
= H+ FE,
where
§C = P(6ZJ|Hy|V* 4+ C|Hyy|7V/%6B) .
Using this and (4.2.12), we obtain
2| Hy, | 3|C|TPT
| < . 4.2.15
1= spicl (e nmp|° :219)

From (4.2.12) it follows that
] < (14 22)(Y] +1211217)
By using (4.2.13), we have
|By 4 PLRVPE < (136(n — 1) + 2)(Pu([Y] + 12121 PE + |GLIGi e . (4.2.16)
Inserting the above relation into (4.2.15) we obtain
1B] < (136(n — 1) + 3)(PIHIPT +|GIIGIT)e

which, in turn, implies (4.2.1).

Now suppose that we do a 2 x 2 pivot, and that (4.2.1) holds for all matrices of
order n — 2. From the analysis of the 1 x 1 step, we see that we can without loss of
generality assume that P equals identity. Let H be partitioned as in (4.1.4), and let
QTXQ = D be the exact spectral decomposition of X. Let () and D be the computed
matrices Q and 5, respectively. The analysis of the 2 x 2 case for n = 2 holds for the
floating—point spectral decomposition of X, as well. Thus, (4.2.5) and (4.2.8) imply
that

Q = Q+6Q.  16QI<19(Q) |
D = D+4D, 6D| < 121|D]e . (4.2.17)
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Now (4.2.11) holds with H; defined by (4.2.12), and B and Z as follows: from (4.2.9)

it follows directly that

B = JIQIDI'"?) = QD["* + 4B .
9B < SL5|Q|D|M%

and from (4.1.11) and (4.2.17) it follows that

Z = fUCQIDITV) = CQID[TM* ) + 687,
67| < 83.5|C||Q|| D% .

As in the 1 x 1 case, the induction assumption (4.2.13), where now
[ B1] < 136(n — 2)e([IL] + |Gh]|Gh]")

implies (4.2.14). This, (4.2.18), (4.2.19), (4.2.12), and (4.2.13), imply that

J [ x cf 5X st ]
Gl JllG_lC Y]+l50 E1+F1]:H+E’

where

5C =62J|D|'*QT + CQ|D|~*J§BT .
From (4.2.10) it follows directly that

6X| <163|B||B| s .
As in the proof of (4.2.16), we have

B+ B < (136(n = 2) + 2)(IV] + [ Z]|1 2] + [Gi ]G )e

(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

(4.2.22)

and it remains to bound |§C| from above. From (4.2.18) and (4.2.19) it follows

[6C| < 165|C1|Q11Q e -
It is easy to see that
CNRNRI" < ICI+ | [Cal [Cal |
where C; denotes the j—th column of C'. Further,

Z|BI" = |CQIDI™? + 62| -||D|'*Q" + §B"|
> |CQIQI" - 165|CIQIIQI < -

Now

(1CQIQI) = [CaT5 — Cudn|cs + |Cysn + Cpfs]|50] .
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Simple checking of all possible combinations for the signs of (;; and sn shows that
either

10165 — Cindin| = O] + |Cl|57] (4.2.24)

or

|Ciisn 4+ Cipes| = |Callsn] + |Cilcs . (4.2.25)
If (4.2.24) holds for some ¢, then

(ICQNQ) )i > |Cal(65* — 02) + 2|Cla |57

From (4.2.4) it follows that

-~ 1
> ——. 4.2.26
=z e (4220
Therefore,
2cs|sn| > (1 + )7V > 0.842
and

(ICQIQI )i = 0.842[Cla| .
If (4.2.25) holds for some ¢, then
(1CQNQ )i > 2|Cial|snles — |Ca|(c5% — 507) .
From (4.2.26) it follows that
st —snt <a(l+a?)V2<054
so that o
(ICQIIQ| )i > 0.842|Cya] — 0.54|Cla | -

The similar analysis holds for the second column of |CC~2||C~2|T, too, and we conclude
that

C1+ [ 1Cal [Cal | < L _conor + (1 + %) ]

0.842 0.842
< L642(|CQlIQIT +1C1) -

Using this and (4.2.23), and ignoring the relative error of O(e), we obtain

16C] 165 - 1.642 (|Z]|B|T +|C| + 165|C|Q|Q| «)e

211 (12| B)F + |C))e .

IA A

Finally, (4.2.1) follows by inserting this, (4.2.21) and (4.2.22) into (4.2.20), and the
theorem is proved. Q.E.D.
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Bunch [3] showed that the decomposition (4.1.3) with the unequilibrated diagonal
pivoting (which is also used in Alg. 4.1.1) is stable in the following sense: let L and
T be the factors of H computed in floating—point arithmetic with precision . Then

LTLY =PHPT + F |

where
| F|lx < m]?XI/(()k)(Zl.Gn +7.9n%)e ,

(%) (%)

and 1’ 1s the value of 14 in the k—th reduction step. The quantity maxy vy’ 1s

further bounded by

m]?XV((Jk) < max | Hy;|3.07 f(n)v/n(n — 1)%46
27]

where
n 1/2
f(n) — (H kl/(k_l)) < 2n(1/4)logn )
k=2

The bound of Th. 4.2.1 compares favourably to the above bounds, since it does not
contain the n%e term. The quantity maxy 8" is implicitly included in the |G|G)T
term of (4.2.1). Note that Th. 4.2.1 holds for a singular H, as well.

From the proof of Th. 4.2.1 we see that 2 x 2 steps contribute much more to the
error bound than 1 x 1 steps. If only 1 x 1 steps are performed (which is always
the case when we decompose a positive definite matrix, and is often the case when
we decompose scaled diagonally dominant matrices of [2]), then the bound (4.2.1)
reduces to

|E] < 3n(PH|PT +|GIIG]")e .

In the positive definite case Alg. 4.1.1 reduces to the Cholesky decomposition with
complete pivoting, and only 1 x 1 steps are performed. The above inequality then
implies
By < 6n((PHPT)a(PHPT)j;)! %

which is similar to the result of Demmel [9]. There the constant 6n is replaced by
(n+1)/(1 — (n 4 1)¢). Note, however, that the above bound holds for the outer
product version of the Cholesky decomposition (Alg. 4.2.2 of [16]) with the addition
of the complete pivoting, while Demmel [9] analysed the Gaxpy version (Alg. 4.2.1 of

[16]).

Remark 4.2.2 Numerical experiments of Chap. 5 indicate that the bound (4.2.1)
increases only slowly with n.

Remark 4.2.3 Other pivot strategies. Note that Th. 4.2.1 and then, in turn, Th.
4.3.1, hold for any pivot strategy for which (4.2.4) holds when we apply a 2 x 2 step.
In particular, these theorems hold for the partial pivot strategy of [5] and for the
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pivot strategy given by Algorithm C of [4], which both require O(n?) search. We
have chosen the unequilibrated diagonal pivoting since it has better bounds for the
element growth, as well as the uniform upper bound for the scaled condition of the
matrix GT (G (see Sect. 4.4). Moreover, since the symmetric indefinite decomposition
takes about 10% of the computing time, an O(n®) search, which is needed by the
unequilibrated diagonal pivoting, does not considerably slow down the algorithm.
However, theoretical and practical investigation of Algorithm C of [4] (for positive
definite matrices this algorithm also reduces to Cholesky decomposition with complete
pivoting), is certainly of interest.

4.3 Overall error bounds

The results of the previous parts of the thesis suggest the following procedure to solve
the real symmetric eigenvalue problem (4.1.1):

1. decompose H as H = GJGT by first using Alg. 4.1.1 to obtain the decompo-
sition (4.1.2), and then setting ¢ = PTG as follows (in the notation of Alg.
4.1.1):

/* Back-permuting the rows of H to obtain the final factor */
fork=1ton
forl=k+1ton
if Pp=Fk then
Pl Aad Pk
form=1tor
Hkm Aad Hlm
endfor
endif
endfor
endfor

2. solve the problem (4.1.1) by applying any of the implicit J—orthogonal Jacobi
methods of Chap. 3 on the pair G, J.

In this section we combine the error analysis of the symmetric indefinite decom-
position, error analysis of the implicit J—orthogonal Jacobi methods, and the pertur-
bation bounds of Chap. 2, to obtain error bounds for the computed eigensolution of
the real symmetric eigenvalue problem. Bounds hold only in the non—singular case,
since we cannot otherwise apply the perturbation theory of Sect. 2.2 to Th. 4.2.1. We
give error bounds for the case when the implicit method of Alg. 3.3.1 is used. Error
bounds for other implicit methods of Chap. 3 are obtained by simply substituting
error bounds for those methods in the final estimate. We then show that an approx-
imation for the error bounds can be obtained using only computed quantities. We
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also discuss what happens in the singular case. We give an interesting example how
a change of the pivoting in the symmetric indefinite decomposition can considerably
improve the accuracy of the obtained eigensolution. In the conclusion, we summarize
some open problems.

Theorem 4.3.1 Let H be a real symmetric non—singular matriz and let X be the 1—th
eigenvalue of H. Let G, J be the decomposition of H obtained by Alg. 4.1.1 in floating—
point arithmetic with precision ¢, and let G = DgBg, where D¢ is diagonal and the
rows of Bg have unit norms. Let \g be the i—th eigenvalue of GJGT. Let G, J
be the sequence of pairs obtained from the pair G,J by Alg. 3.3.1 in floating—point
arithmetic with precision e, and let Gy, J be the final pair which satisfies the stopping
criterion. For m > 0 write G,, = B,,D,,, where D,, is diagonal and columns of B,,
have unit norms. Let X' be the i—th calculated eigenvalue. Then, with the relative
error of O(e), we have

)\/
L=n—m < =< 14yt (4.3.1)
where
B 272 n%e
1 Amin(DGNGIGTIDGY)
M-1 C
m = 2 Z — 4 n-tol+ne, (4.3.2)

m=0 Omin (Bm)

|- | is the spectral absolute value defined in Sect. 2.1, and C,, are constants from Th.
Now suppose X is simple. Let v be the corresponding eigenvector. Lel v’ be the
eigenvector corresponding to X', i.e. the i—th column of Gy divided by its norm. Then

[v' = vlls <

- 7“90)'1_(1+ 1 )77

rg(A)
421 1
. - +2n -tol + n(3n + 4)e | 4.3.3
rga(Aa) 1_ 31 ( ) ( )
rgca(Aa)

provided 1 < (1 + 1/rg(X))n and rga(Ae) < 31. Here rg(A) and rga(X) are defined
by (2.2.29) and (2.3.1), respectively, and

o= n(2+mn),
Ny = (771—|—n-t0l—|—n25)/2,

where n is defined by (4.3.2).
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PROOF. From Th. 4.2.1, by multiplying (4.2.1) by P from the left and by P from
the right, and then setting G = PT(, it follows that

H=GJG" +6H ,

where

0H| < 136n(1H| + |G||GIT)e .

Also,
[H| < |GIGT |+ [§H| < |GG + |6H]

so that, by ignoring the relative error of O(e), we have

|6H | < 272n|G||G) e .

Further,
l2TsHz| < |z|"|0H||z| < 272n|z|"|De EDg||x|e
< 272 nQ:I;TDé:Jcs
272n’e
< NGIG | .
S Wy e Tea L
Applying Th. 2.2.1 to the pair GJGT, I with
. B 272n% ¢ _ 0
77 — 77H - )\mzn(Dc_;lth]GTch_;l) 9 77[ - 9
we obtain

A
1—77§7§1—|-77-

This and Cor. 3.3.4, by ignoring the relative error of O(e), imply (4.3.1).
Let vg be the eigenvector of Ag. Applying (2.3.13) and Th. 2.2.13 to the matrix

GJGT yields
1

lvg —ofl2 <

.
rg(A) 1_(1+rgb))n'

The relation (4.3.3) now follows from the above relation, (2.3.13), Th. 3.3.9, and the
triangle inequality. The assumptions on rg(A) and rge(Aq) together with the proofs
of Theorems 2.2.13 and 3.3.9, implies that A is throughout the algorithm well sepa-
rated from the rest of the spectrum. Q.E.D.

Remark 4.3.2 Th. 4.3.1 also holds if we substitute |GJGT| by |H]in (4.3.2). Indeed,
if we consider GJGT as H — §H, then

272n?
12T Hz| < h e

T
H
< S tmpz " ke
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and we can apply Theorems 2.2.1 and 2.2.13 directly to H. We are using |GJGT|
since (G is the computed factor and Dg its exact scaling.

Th. 4.3.1 implies that the error bounds depend on how D' scales |GJGT| In the
positive definite case |GGT] = GGT and the scaling with D¢ is optimal in the sense of
(2.1.4). Our numerical experiments show that in the indefinite case the scaling with
D¢ is also not far from the almost optimal one by (diag |G.JGT])~/2.

It is natural to want to approximate the bounds (4.3.1) and (4.3.3) by using only
computed quantities. We can substitute rg(A) and rgq(Ag) with rg(A') and rge(N'),
respectively. Although N = A1+ 0(e)) = Ag(1 + O(¢)), the above substitutions can
have large relative errors. However, in numerical tests they are shown to be realistic.
Further, we can substitute |GJGT| with Gy G1,. This is justified as follows: if F' is a
J—orthogonal matrix which diagonalizes some GT'(7 as in the proof of Th. 2.3.1, then
|GJGT| = GFFTGT. Now consider the matrix

M = (Bar +6Ba)Dar = Gar + 6By Dar = (G + §GM) Ry - ... Ry
from the proof of Th. 3.3.9. This matrix has orthogonal columns so that
wGhr =G+ 66" J (G + sG]

and G4,;GL is, in turn, "not far” from G GT,. We have no theoretical results about
the quality of this approximation, but its use is also justified by numerical experi-
ments. Moreover, since we observed that the actual errors increase only slowly as n
and M increase, and that the condition of the scaled matrix grows only little during
the Jacobi process, we expect that

M-Al 1 L2 (4.3.4)
N | S DG GE D T e (B)) i
1 417 |
;o < no . _
HU UH2 = Tg()\’) (i —I—TgG()\/) | 377 ’
rg(A') rgc(N)
where
B €
T N (DE G GT DG
L 3e

We cannot apply Th. 4.3.1 to singular matrices, since |GJGT|_1 is not defined.
However, if we obtain a componentwise accurate factor (7, as in the example (2.3.13),
relative errors of the computed eigenvalues are bounded by Cor. 3.3.4. In this concrete
example, we first have to bring J to the form @ (—1). This is equivalent to performing
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m trigonometric rotations for 7 /4 on G from the right. These rotations add m terms
to v of (3.3.20). Since Th. 3.3.9 (Th. 2.3.3) requires the non—singularity of G, we
have no error bounds for the eigenvectors in this case.

The following example opens an interesting problem about the pivot choice in the
symmetric indefinite decomposition. The example underlines once more the impor-
tance of exact factors, and shows what difficulties we have when trying to do deflation.
Consider the matrix

11 1
H=|{120 0|, (4.3.5)
10

Oé2

where a > 0 is small. Alg. 4.1.1 decomposes H as H = G.JGT with

1
G=111 , J =diag (1,—1,1) .

I 1 Va?—1+41
Since |H] is given by (2.3.16), the error bounds of Th. 4.3.1 are large. Since in
calculating fI(v/a? — 1 + 1) we obtain only log a® — log ¢ accurate digits, these error
bounds are almost attained. However, since 1/0,,:,,(B) ~ 2.5, any implicit Jacobi
method will compute the eigensolution of the pair G, .J with high accuracy. This
means that when using Alg. 4.1.1, we can do deflation only if the submatrix which is
to be reduced at some stage is exactly zero.? One way to accurately decompose H is
given by (2.3.15). Here we give another one: let us first choose 2 x 2 pivot in (4.1.5).
Then we have
1 10
0 1

01 « 1

It is easy to see that with this pivot choice Alg. 4.1.1 returns the factor G which has
componentwise small relative errors. Therefore, the first terms of (4.3.1) and (4.3.3)
are superfluous, and, since 1/0,,,(B) ~ 2, the obtained eigensolution is accurate.
This underlines the importance of accurate factors, and shows that the unequilibrated
diagonal pivoting is not always the best choice.

0
1
o

Now we shortly summarize some open problems:
e finding a realistic upper bound for the growth of 1/0,,:,(Bwm),

e how well does D' scale |GJGT], and how well does A.;, (D5 G GL, DY) ap-
proximate A (DG |GJGTIDGY),

e proving Th. 2.3.3 for the non—square full column rank G,

e improving the pivot strategy in Alg. 4.1.1, to avoid the unnecessary errors as in
the example (4.3.5).

In [6, 5] deflation is also performed only in this case.
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The last problem is very difficult, and it is similar to the problem of finding the best
pivots in Gaussian elimination. It is easy to see (see also Rutishauser [23]) that Gauss’
algorithm with complete pivoting is also inaccurate when applied to (4.3.5).

4.4 Bound for the scaled condition of GI'G

The symmetric indefinite decomposition of Alg. 4.1.1 enables us to transform the
eigenvalue problem (4.1.1) to the eigenvalue problem for the pair GG, .J on which
we can use implicit methods of Chap. 3. In this section we show that the scaled
condition of the matrix GTG is bounded by a function of n irrespectively of the
condition of the starting matrix H. This bound is nearly attainable. For related
results see [19]. Numerical experiments of [13] and Chap. 5 show that the scaled
condition of GT( is generally much smaller than our bound. This has a positive
effect on the speed of the implicit methods applied on the pair GTG, J. The results
of this section are partially contained in [25].

For any positive definite matrix H we define the scaled matrix A = Scal (H) by
H = DAD, where D is diagonal positive definite, and A has ones on the diagonal.

We analyse separately the positive definite and indefinite case. For H positive
definite Alg. 4.1.1 reduces to the Cholesky decomposition with complete pivoting
(4.1.10), PHPT = LLT. Complete pivoting is equivalent to the fact that

J
k=1

This implies
L“'ZL]‘]‘, L“'>|L]‘Z'|, izl,...,n—l,j>i. (441)
Set
Hy=L"L. (4.4.2)
If (A, x) is an eigenpair of H, then (A, L™'2) is an eigenpair of H;. Let A; = Scal (H,),

i.e.

H1 — DlAlDl . (443)

Demmel and Veseli¢ [13] showed that x(A;) is bounded by a constant depending only
on the dimension n. For example, for n = 2 it is easy to see that x(A;) < 3 4 2v/2.
For general n their upper bound is

k(Ay) <e-n-nl, (4.4.4)

which is, as they stated, a large overestimate. Here e = exp (1).
Now we analyse matrix A; in more detail and give a better bound which can be
almost attained. We first illustrate the idea of the analysis on a 3 x 3 example. Let
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PHPT = LL" be the Cholesky decomposition with complete pivoting of a 3 x 3
positive definite matrix H. By

Dy = diag ( \/L f+ L3+ L3, \/ng + L3, La33)

we have
[ 1 Loy Loy + Lz L3y L3 7
VI + L3+ L3/ L% + L3, /L3 + L3, + L3,
A= 1 32
VI3 + L3,
| sym. | |
Now we need two monotonicity properties of the norm || - |[2,
1Al < ANz < Val[Alls (4.4.5)
where |A| = |Ai;], and
|Ai| < Bi; = || All: < || Bl - (4.4.6)

From (4.4.5) and (4.4.1) we conclude that ||A;||2 < ||A’||; where A’ = D=|L|T|L| D71,
i.e. the worst case is when all L;;, ¢ # j, are non—negative. Treating A}, as a
monotonically increasing function of the (positive) variable Lsy, from (4.4.1) it follows

Loy
Al < ————— V/_
L3, + L3,

Treating A}, as an increasing function of Ls; we have

Al L < v@:
J%HJA+L% 2

The element A}, is an increasing function in three (positive) variables Loy, L3 and

L3y. Therefore,
Al < L1 Lo + L11L22 ﬁ
RN TR 12, + I2 3
it + L3

Finally, from (4.4.6) we conclude that

1 \/% \/ﬁ 2 1
| Asl[2 < 2/3 1 \/ﬁ §1_|_J;_|_

1/2 /12 1

5"
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Further, we have A7' = Dy L='L=TD,, where

- i
| 1 T
1 ! - ;1
L_l = 1 L22 _L— 1
L L9 X LH
L33 T _ 8t 1
L L i

From (4.4.5), (4.4.6) and (4.4.1) we see that ||A7!|s < ||D'L/(L)T D'||2, where

1 1 L
r_ 1 2N Ly
b= EE N Lo
T 11 1 1

and D' = diag (\/gLH, V2 Lss, Ls3). Therefore

o1 1 2 ]
L3 L112L22 L113L33 3 V6 243
rrternNT ny oy = r_
D'L(LY'D =D T Toln D= +v6 4 3v21,
2vV3 3v2 6

sym. —

and

AT ]2 < Tr (A) = 13 .
Alltogether we have

R(A1) < 13(1 4+ /2/3 +/1/2) ~ 32.81.

(The bound (4.4.4) for n = 3 is 18e &~ 48.96.)

Theorem 4.4.1 Let H be a real symmetric positive definite matriz of order n, and
let PHPT = LLT be its Cholesky decomposition with complete pivoting. Let Ay =

DTYLTLDTY, where

n 1/2
Dy = diag (D1 sy ..., Dipn) = diag (L*L) , Dy = (Z in) :
k=1

Then

(4) < 1+n§_j1 s 1+22(H)_1 (n+1—1i) (4.4.7)
K — n — 1) . .
1 SVitl) o 3
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PROOF. Reasoning as we did in the 3 x 3 example, we conclude that ||A1]|2 < [|A’]|2

where ) _
=
n n—1 2
Al = 1 n-2 !
- n—1 2
! )
L L
Therefore -
[Aq]l2 < 1+ ; HLl (4.4.8)

which proves the first part of (4.4.7). As in the 3 x 3 example, we also conclude that
AT 2 = IDLLT LT Dalle < 1D L/(L)T D2,
where

D' = diag(vVn,vVn—1,...,v/2,1),

L= [MWpe=n. o,
. 17 ]:kv
LY = {1, k=i j=i+1,....n,

0, otherwise .

For the elements of the matrix I’ we now have

L=y,
L;j = 22_1_]7 i>j ’
0, 1< 7.

Set B = L’(L’)T and C = D’L’(L’)TD’ = D'BD’. Then

i—1 i—1 1—2
RS SRS SRR
7=1 7=1 k=0

22(i—1) -1
= i=1,...n,
and
By = L+ LyLy =277 43 2mtokgimies
k=1 k=1
j—1
= 21T L9t (39 g
k=0
(1 226-1Y) 1
= 27/ (§+?) , t=1,....n; 1> 7.
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Of course, B;; = Bj;. Furthermore,

Cij :Bij\/n—l—l—i\/n—l—l—j .
Finally, ||Clls < Tr (C') and the second part of (4.4.7) is proved. Q.E.D.
In Th. 4.4.1 we have essentially proved that for any positive definite matrix H, the
value k(A;) is smaller than the product ||A’||2||C']]s. We must, however, emphasize

that the second (dominant) part of (4.4.7) is a very good approximation for ||| in
the sense that for all n

(Zn: (1 * 22(_:13#) (n+1- i)) /IICl2 < 1.0001 .

=1

We can further symplify the inequality (4.4.7) by bounding ||A’||2 by n and ||C||2 by

n+1 22e=1) 1 1 1
1+ 1 —a)d —( 2 22”)
J, (+ 3 )("+ Ddr<g (g

which yields

n 1
W) <5 <n2 + 1n2422n) . (4.4.9)

We have experimentally observed that

% <n2 + ﬁz?n) /Il < 1.1708 .
Now we show that the transition from the matrix H to the matrix LT L cannot
spoil the condition of the scaled matrix too much. We use the technique from [14].
Set A= Scal (PHPT)= D 'LLTD™', B= D™'L,and B, = LD;'. Then A = BBT,
A= B?Bl and
Bi'=D,L7' =D,B7'D™" .

From (4.4.1) for every 1 < j <1 < n it follows

|\DyB~'D7; B~

B \IL?Z"FL?H,Z"F”“FL%Z'
LhtLip+ -+ L

< vVn—1+1

Ly _ . _
L |B 1|¢j§\/n—z—|—1|B 1|ij-
73

Thus, (4.4.5) and (4.4.6) imply
1B 2 < 1D BT D7 |2 < Valll BT < nll B2

that is, || A7)z < n?[|A"|s.
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The bound (4.4.7) is almost attained for the matrices of the form i = LLT, where

L = LoDy,
Dy = diag(l,s,s*...,s" 1),
1, 1=y,
(Lo)ij = —c, i>j, (4410)
0, 21<y.
24+ = 1.

These matrices are due to Kahan and are described in [16]. When ¢ — 1, then H
and Scal (H) both tend to singular matrices. Since I} = LTL = DoLL LoDy and L is
itself the optimal Cholesky factor of H, we conclude that

Ay = Scal (Hy) = Scal (L Ly) = Dy LY Lo DT,

where

Dy = diag <\/1—|—(n—1)02,\/1—|—(n—2)02,...,1) .

It is easy to verify that lim._; AT' = C. Therefore, the quotient between the bound
(4.4.7) and k(Ay) is in this case equal to ||A’||2/]|A1]]2 which is smaller than the first
part of (4.4.7) (smaller than n).

At the end we have to point out that, even though the bound of Th. 4.4.1 may
seem pessimistic, experiments from Demmel and Veselié¢ [13] and Chap. 5 show that
k(Aq) is in practice considerably better than x(A) and, thus, the examples like that
of Kahan are very rare. Moreover, for the matrices defined by (4.4.10) it is possible
to obtain much better k(A;). Since H; = 1, the optimal Cholesky decomposition
requires no pivoting. However, permuting the matrix H so that e.g. H,, comes to
the position (1,1) does not contradict the complete pivoting and results in x(A;) < n*.
Demmel and Veseli¢ [13] showed that for positive definite matrix H
H;;
Ai
where A = Scal (H), A; denotes the i—th eigenvalue of H, and H;;’s and A;’s have
the same ordering. This means that the diagonal entries of H can differ from the
eigenvalues only by factors bounded by x(A). Applying this result to H; = LTL,
wee see that the Cholesky decomposition usually has rank-revealing property. The
complete pivoting usually gives satistactory results, but the choice of the optimal
pivoting as in the above example in an open problem. For related results about the

S )\max(A) ’

rank-revealing QR decomposition see [7].
The following theorem holds for a non—singular but possibly indefinite H:

Theorem 4.4.2 Let H be a nonsingular symmetric matriz and let PHPT = GJGT
be its decomposition. Let = 2.781 denote the maximal value of the quantities |L;;|
from (4.1.8), and let Ay = Scal (GTG). Then

k(Ay) < n(1+ 15n)3.781%" . (4.4.11)
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PROOF. From (4.1.9) it follows

[Asll. = [[Scal (GTG)ll2 = [|Scal (P \/I1D1] Ly Liy/I D[ P2

= |[Scal (/| D1| Ly Liy/| Di])]2

= |Scal (Li Ly)lla = | D7 LY Ly D72

where D is diagonal with elements D;; = (LTLy); = (QTLTLQ);. Note that in
estimating || A;||; and ||A7'||2 we can without loss of generality assume that P, = I.
The matrix Ay is positive definite and has unit diagonal, so that

[A]l2 <n . (4.4.12)

Further,
AT )2 = IDLT LT D2 = [|DQTLT' LTI QD2 -

Now we shall maximize elements of the matrices D and Q7 L~" and use the mono-
tonicity properties of the norm || - ||z as we did in Th. 4.4.1. The elements of L~! are
largest in modulus if all under—diagonal elements of L are equal to —u. Let us denote
this "maximal” L' by L. Then

L, 1=,
Lij=9q p(l+p)~"77, i>j,
0, 1< 7.
Now
QTLT < |QTIL <L,
where
L4, =g,
o) )T >
" 17 Z:]_lv
0, 1<y —1.

Element D;; is the norm of the i—th column of LQ). It is easy to verify that

DiiZ\/1+L22+1,¢‘|‘---L72na

when the index 7 corresponds to a 1 x 1 pivot, and

D, = \/052 + sn? + (Lig2i¢8 — Lig2i415n)% 4 (Lyics — Ly ip18n)?

Dit1i:1 = \/082 + sn? 4+ (Ligoip165 + Liyosn)? + (Ly 165 + Lyisn)?

when the indices 7,7+ 1 correspond to a 2 x 2 pivot. Therefore, it is always D;; < D/,
where D’ is diagonal matrix with elements

D, :\/1—|—2(n—i)/,c2.
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Now we have
[AT 2 = IDQTLT'L™TQDI|, < ||[D'L'(L)'D'|l, < Tr (D'L'(L')"D")

SISl IR +§:(1+u11”@+un2u+am—wﬁ>

=1

Il
gER

> L4 (24 @) (14 p)* Y = D] (14 2(n = i)pr?)

.
Il
—

n

p(2 A+ (L4 2np%) D(1 + )

=1

< (L4 2np?)(1 4 p)*

IA

which completes the proof of the theorem. Q.E.D.

Due to the fact that some of the worst cases assumed in the above proof are
impossible, the statement of Th. 4.4.2 is an overestimate. Numerical experiments of
Chap. 5 show that x(Scal (GT()) is, as in the positive definite case, generally very
small.

If H is singular, then Alg. 4.1.1 returns an n x r matrix ¢ of the full column rank.
The nature of the proof of Th. 4.4.2 implies that (4.4.11) holds in this case, too (and
that even with better constants, since some summations have fewer terms).
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Chapter 5

Numerical experiments

In this chapter, we present the results of our numerical experiments. Briefly, we
tested the algorithm of Sect. 4.3 and verified that error bounds of that section held
in all examples. The comparison of our algorithms with the QR and the standard
Jacobi algorithm showed that our algorithms are uniformly more accurate. In fact,
the performance is better than we were able to explain theoretically, both because
we could observe little or no growth in actual errors for increasing dimension, and
because of small values attained by max,, x(B,,)/x(By) during the Jacobi part. The
relative errors in eigenvalues were given by (4.3.4) multiplied by small coefficients
which increased only slowly with n. The norm errors in eigenvectors were smaller
than those predicted by (4.3.4) by an order of magnitude .

Tests were performed using FORTRAN on an IBM RISC/6000. The arithmetic
is IEEE arithmetic with machine precision 5 &~ 5.9604 - 107® in single, and ep =~
1.1102 - 107'¢ in double precision. Overflow/underflow tresholds are approximately
10%3% in single, and 10¥2%® in double precision. The machine has a special multiply—
and—add function, maf, which computes a = b+ ¢*d as a single instruction. In single
precision, maf first computes c¢*d in double precision, adds b, and then rounds a back
to single precision. For IEEFE arithmetic with maf, the constants 272 and C,, from
(4.3.2) are somewhat, but not essentially, smaller.

In our tests we used five different algorithms:

JGJ — the symmetric indefinite decomposition of Alg. 4.1.1 followed by the standard
implicit method of Alg. 3.3.1,

JGJF — the symmetric indefinite decomposition of Alg. 4.1.1 followed by the fast
implicit method of Alg. 3.4.1,

JGJFS — the symmetric indefinite decomposition of Alg. 4.1.1 followed by the fast
implicit method with self-scaling rotations of Alg. 3.4.5,

JAC — the standard Jacobi algorithm (We used Alg. 3.1.1 with J = I. Then no

hyperbolic rotations are performed and H does not have to be positive definite.),
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SSYEV — LAPACK single precision routine which implements tridiagonalization
followed by QR iteration.

In all three implicit Jacobis the diagonal was kept separately according to Alg. 3.3.7.

We tested the accuracy as follows: we considered real symmetric non—singular
eigenproblems. We first solved every problem using JGJ and JAC in double precision.
We assumed that the digits of the computed eigenvalues which overlap in those two
algorithms are correct. We took the eigenvectors computed by JGJ as the ones of
reference. Then we solved the same problem with the single precision versions of
JGJ, JGJF and JGJFS, and compared the answers with the double precision solution
to see if they were as accurate as predicted (which they were). We also compared
the solutions obtained by SSYEV and the single precision version of JAC. Absolutely
small eigenvalues computed by SSYEV were often of the wrong sign, indicating total
loss of relative accuracy. All Jacobi algorithms used the stopping criterion tol = n - ¢
and the parallel cyclic pivot strategy of [24].

The rest of the chapter is organized as follows: we first discuss the test matrix
generation. We then discuss accuracy of the computed eigensolutions. We make an
interesting remark about the sensitivity of the QR and the standard Jacobi algorithms
to the initial permutations of the input matrix. After that we discuss behaviour of
Amin(DE GarGE DZEY), growth of 1/, (B, ) during the implicit Jacobi process, and
behaviour of the diagonal in fast rotations. Finally, we discuss convergence rates.

Test matrix generation. We generated two types of random matrices. The first
type is divided in several categories according to dimension n, K(A) (where Ay = 1,
so that K(A) is at most factor n from C(A,;l) from (2.2.12) ), and x(H). We first
describe the algorithm used to generate a random matrix from these parameters and
then the sets of parameters used. All steps were preformed in double precision. Given
/Q(A), we generated a positive definite diagonal matrix D whose entries’ logarithms
are uniformly distributed between [—0.5log li(;l), 0.5log K(A)] On D we applied five
sweeps of random trigonometric plane rotations, thus obtaining matrix Ag. On Ay
we applied five sweeps of the "anti-Jacobi” method, thus obtaining matrix A. This
method, due to Veseli¢, consists of an iterative application of trigonometric plane

rotations, A, 11 = J%Amjm, where J,, is obtained in the following manner: let

a c¢ cs  sn
c b |’ —sn ¢S ’

be the pivot submatrices of A,, and .J,,, respectively. Then ¢s = 1/h and sn = —t/h,
where

2¢ sign (
:—7 t:—, h: 1—|‘t2
T [Cl+vI+¢

The sequence of matrices obtained by the anti-Jacobi method converges to a matrix

A where A;; = Tr D/n, i.e. k(Scal (A)) = x(A). The convergence is very slow. It
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often required 50 or more sweeps for n = 30. However, after five sweeps x(A) and
k(A) = k(D) differ by no more than 10 %. Given x(H), we generated a positive defi-
nite diagonal matrix [); whose entries’ logarithms are uniformly distributed between
[—0.5log k(H),0.5log k(H)], and formed a positive definite matrix H = D; AD;. We
then calculated the eigendecomposition H = UTAU by our algorithm, and changed
some randomly selected eigenvalues into negative ones, thus obtaining matrix A. Our
random test matrix was then H = UTAU.

The values for K(A) were 10, 10? and 10°, the values for x(H) were 102, 10°, 10?,
10™ and 10?°, and the values for n were 10, 20, 50, 100 and 200. This makes a total
of 3 x5 x5 = 75 different classes of matrices. In each class of dimension n = 10
matrices we generated 500 random matrices, in each class of n = 20 we generated 300
random matrices, in each class of n = 50 we generated 200 random matrices, in each
class of n = 100 we generated 100 random matrices, and in each class of n = 200 we
generated 50 random matrices. This makes a total of 17250 different test matrices.

The second type of test matrices were block scaled diagonally dominant (b.s.d.d)
matrices of Th. 2.2.7 generated according to two parameters, dimension n and «(H ).
We first randomly generated number of diagonal blocks 2 < ny, < n — 1, and the size
of the blocks. We then generated a random symmetric orthogonal matrix A with this
block structure (the elements outside blocks are 0), and formed matrix A = A+ N,
were N is a random symmetric matrix with || N||2 < 0.5. Given x(H), we gener-
ated a positive definite diagonal matrix D whose entries’ logarithms are uniformly
distributed between [—0.5log k(H),0.5log x(H)]. D is constant on the blocks which
correspond to the blocks of A, so that A and D commute. Finally, we formed our
test matrix H = DAD. As above, we have chosen x(H) € {10%,10%,10° 10*,10%°}
and n € {10,20,50,100,200}. In each class of dimension n = 10 and n = 20 matrices
we generated 100 random matrices, in each class of n = 50 we generated 50 random
matrices, in each class of n = 100 we generated 30 random matrices, and in each class
of n =200 we generated 10 random matrices.

Accuracy of the computed eigensolution. For every matrix we first calculated
expected relative error in eigenvalues and expected norm error in eigenvectors accord-
ing to (4.3.4) with ¢ = 5 = 5.9604 - 10~®. For every eigenvalue we calculated relative
error

|Ap: — Asil
Apgl

where Ap; denotes the i—th reference eigenvalue, and Ag; denotes the ¢1—th single
precision eigenvalue. For every eigenvector we calculated the error ||vp; — vs,l2,
where vp; and vg; are the eigenvectors corresponding to Ap; and Ag;, respectively.
Table 1 shows quotients of the maximum of the relative errors in single precision
eigenvalues and the expected relative error of (4.3.4). For all quantities we give
mean value, standard deviation, maximum and minimum attained on the respective
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Table 1: maxi{[Ap.i — )\SZ|/|)\D2|}
expected relative error
n MEAN | STD | MAX | MIN
10 JGJ 1.551 | 1.342 | 6.710 | .0676
JGJF 1.562 | 1.372 | 7.658 | .0554
JGJFS 1.225 | 1.024 | 6.347 | .0565
20 JGJ 2.267 | 2.137 | 10.53 | .1105
JGJF 2.330 | 2.199 | 10.32 | .1231
JGJFS 1.618 | 1.509 | 8.216 | .0984
50 JGJ 4.282 | 4.165 | 17.01 | .2256
JGJF 4.355 | 4.282 | 18.34 | .2332
JGJFS 2,737 | 2.625 | 11.14 | .1872
100 JGJ 6.653 | 6.528 | 26.56 | .3609
JGJF 6.803 | 6.721 | 27.45 | .3595
JGJFS 4.191 | 4.168 | 20.06 | .2357
200 JGJ 12.13 | 11.53 | 38.97 | .9087
JGJF 12.26 | 11.60 | 39.11 | .9693
JGJFS 7.546 | 7.239 | 25.62 | .5904

class of test matrices. We see that the expectations were fulfilled up to a slowly
growing constant, thus the statements of Remarks 3.2.6 and 4.2.2 that the actual
errors increase only slowly as n or M increases. Note that the quotients in Table 1
increase at most linearly in n, which is still far below the theoretical growth of O(n?)
from (4.3.2). Comparing the data for JGJ and JGJF indicates that the use of maf
makes no difference in practice (maf is theoretically fully exploited by fast rotations
in JGJF, and only partially exploited in JGJ). Note that JGJFS is slightly more
accurate than JGJ and JGJF.

Table 2 shows quotients of the maximum of the norm errors in single precision
eigenvectors and the expected norm error. We see that the actual errors are consid-
erably smaller than the expected ones, for which we have no explanation. Note, also,
that the quotients are almost independent of n, and that JGJFS is now somewhat
less accurate than JGJ and JGJF.

Table 3 shows quotients between maximal relative errors in eigenvalues of SSYEV
(JAC) and JGJFS. We see that SSYEV and JAC often had no accurate digits, and
are therefore unreliable. SSYEV and JAC performed as well or even slightly better
than our algorithms on those matrices for which parameter x(H) was small, i.e. on
the matrices where our perturbation theory and the standard one do not differ much.

Tables 1, 2 and 3 are obtained from the first type of test matrices. Data for
b.s.d.d matrices are similar, except that JAC is for those matrices as accurate as our
algorithms.
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max; [[vp,; — vs,||2

Table 2:
expected norm error

n MEAN | STD | MAX | MIN
10 JGJ .0144 | .0106 | .0895 | .0002
JGJF 0147 | .0118 | .1258 | .0003
JGJES 0149 | .0111 | .0945 | .0003
20 JGJ 0138 | .0120 | .1095 | .0008
JGJF 0145 | .0133 | .1099 | .0009
JGJES 0159 | .0144 | .1112 | .0002
30 JGJ 0168 | .0152 | .1056 | .0004
JGJF 0181 | .0169 | .1018 | .0007
JGJES 0230 | .0232 | .1364 | .0014
100 JGJ 0177 | .0175 | 1397 | .0008
JGJF 0195 | .0197 | .1356 | .0010
JGJES 0285 | .0292 | .1938 | .0012
200 JGJ 0198 | .0191 | .0808 | .0001
JGJF 0231 | .0223 | .1045 | .0003
JGJES 0365 | .0349 | .1467 | .0011

Table 3: Quotients of maximal relative errors in eigenvalues

n MEAN STD MAX | MIN

10 | SSYEV/JGJFS | 6.6-10° | 9.3-10° | 4.5-10° | .1687
JAC/JGJFS | 1.0-10* | 1.3-10° | 3.1-10° | .1055

20 | SSYEV/JGJFS | 4.2-10° | 4.9-10° | 2.1-10° | .1812
JAC/JGJFS | 4.8-10* | 1.6 -10° | 1.2-10° | .1282

50 | SSYEV/JGJFS | 2.2-10° | 2.1-10° | 8.3-10° | .1136
JAC/JGJFS | 1.2-10° | 1.9-10° | 7.6 - 10° | .1595

100 | SSYEV/JGJFS | 1.2-10° | 1.1-10° | 4.5-10° | .0631
JAC/JGJFS | 1.0-10° | 1.1-10° | 4.5-10° | .1608

200 | SSYEV/JGJFS | 4.1-10* | 4.4-10* | 1.4-10° | .0553
JAC/JGJFS | 3.7-10* | 4.4-10* | 1.4-10° | .1877
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Amin(A)
Amin (DG Gu Gl DY)

n MEAN | STD | MAX MIN
10 | TYPE 1 1.216 | .2970 | 3.076 | 0.9166
TYPE 2 2.742 | 1.249 | 6.000 1.100
20 | TYPE 1 1.412 | .1665 | 4.411 .9696
TYPE 2 3.816 | 1.505 | 8.300 1.100
50 | TYPE 1 1.821 | .6617 | 5.000 1.000
TYPE 2 6.944 | 3.318 | 17.00 1.100
100 | TYPE 1 2.347 1 .9997 | 5.5H8% 1.200
TYPE 2 12.12 | 7.186 | 25.00 1.500
200 | TYPE 1 3.522 | 1.654 | 7.272 1.608
TYPE 2 20.85 | 8.900 | 37.00 6.500

Table 4:

Remark. We have observed that the QR and the standard Jacobi algorithm often
improved in accuracy when the starting matrix was permuted so that the symmetric
indefinite decomposition needs no permutations. In many cases even the accuracy of
our algorithms was achieved. This phenomenon in an interesting open problem, and
can serve as an empirical advice to someone using QR or the standard Jacobi.

Behaviour of 1/\,.;,(D5'GyGE,DZY). Table 4 displays values of

Amin (DG GarGL,DEY)

where the denominator comes from (4.3.4), and A = (diag |H|)~"'/2|H] (diag |H])~*/2.
We see that the quotients are small, thus implying that the errors induced by the
symmetric indefinite decomposition satisfy the perturbation bounds of Sect. 2.2 al-
most optimally. The same values were obtained by all three of our algorithms. There

are small differences between test matrices of the first and the second type.

Behaviour of 1/0,;,(Bn). Let G = B, D, denote the sequence of matrices
which was obtained by the implicit Jacobi from the starting pair Go,.J. As usual,
the columns of B,, have unit norms. Also, let A,, = D;'GL G, D;t. We calculated
upper bounds for max,, 0min(Bo)/Omin(Bm) in two ways. Table 5 gives four values:

SIGMA, HAD/SIGMA, BOUND and ROT. Here
SIGMA = 1/0,min(Bo) , HAD = (exp (1)/det (Ag))Y/? .

BOUND and ROT were computed as follows: we computed a decreasing sequence
h,, as

ho — I’LA]:)Q7
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oyt = ho(1 — A2

mﬂ), m > 0.

Each sweep of the parallel pivot strategy of [24] has n parallel steps each having
p = (n — 1)/2 rotations for n odd, and n — 1 parallel steps each having p = n/2
rotations for n even. We computed a non—decreasing sequence s, defined by

so = SIGMAZ*
Sm = Spm_1 s m>1, mmodp=#0,
smo = Smep(lt max [Anpiril) m>1, mmodp=0.

Recursive application of (3.2.34) implies that 1/02, (B,.) < s,.. Recursive applica-

tion of (3.2.36), together with (3.2.35), implies that 1/02, (B,.) < h,. Therefore,

1/02,,(By) < min{s,, hy,} for every m > 0. Also, sg < hg. Let m’ be the largest m

min

such that s,, < h,,. Then
BOUND = (s,,/s0)"/? , ROT =m'.

In other words, BOUND is the guaranteed upper bound for max,, ¢.nin(Bo)/min( B )-

The values of 1/0,,i,(Bo) in Table 5 are very small, thus showing the non—trivial
diagonalizing effect of the transition from matrix H to pair GT (7, .J. We also see that
the guaranteed upper bound is reliable only for smaller dimensions, and that s,, and
h,, usually meet in the first sweep. The data of Table 5 come from test matrices of
the first type. Data for b.s.d.d matrices are similar.

A much better upper bound for max,, omin(Bo)/Omin(Bm) was obtained by the
algorithm of Sect. 3.2.2 (which, however, requires additional computational effort).
This bound is by its nature always greater or equal \/n, and the largest value attained
in all experiments was 1.05y/n. In fact, accuracy of computed eigensolutions implies
that this is also an overestimate, that is, 1/0,(By) can grow only little before
converging to 1.

Behaviour of the diagonal in fast rotations. Table 6 shows four values: MINF is
the smallest element of the diagonal of fast rotations obtained by JGJF, MINF/MINS
is the quotient of this element and the smallest element of the diagonal of fast self-
scaling rotations obtained by JGJFS, MAXF is the largest element of the diagonal of
JGJF, and MAXF/MAXS is the quotient of this element and the largest element of
the diagonal of JGJFS. We see that, even for large n, there is actually no danger of
underflow /overflow.

Convergence rates. We compared computing times of JGJF and SSYEV, com-
puting times of JGJ and JGJFS, and number of sweeps and rotations of JAC and
JGJF. The speed ratio of JGJF and SSYEV is the following: for n = 200, mean
value, standard deviation, maximum and minimum are for matrices of the first type

(4.9,0.5,5.8,3.6), and for b.s.d.d matrices (4.9,0.8,6.4,3.3). These ratios are realistic
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Table 5: Behaviour of 1/0,,in(Bnm)

n MEAN STD MAX | MIN
10 SIGMA 1.940 7408 5.193 | 1.032
HAD/SIGMA 2.014 1.103 10.86 | 1.217
BOUND 1.331 2513 2.877 | 1.649

ROT 23 10 60 3

20 SIGMA 2.813 1.249 9.481 | 1.130
HAD/SIGMA 29.92 87.97 100.2 | 1.277
BOUND 2.606 1.771 14.06 | 1.649

ROT 89 28 170 10

30 SIGMA 4.696 2.707 14.65 | 1.524
HAD/SIGMA | 1.0-10' | 1.4 -10" | 2.9-10' | 2.182
BOUND 330.1 784.8 550.5 | 1.649

ROT 653 223 1175 75

100 SIGMA 7.146 4.654 23.07 | 2.003
HAD/SIGMA | 3.2-10% | 6.9-10 | 1.4-10% | 57.41
BOUND | 4.1-10°|8.6-10' | 1.8 10" | 9.220

ROT 3247 1251 15500 105

Table 6: Behaviour of the diagonal in fast rotations
n MEAN | STD | MAX | MIN
100 MINF | .2839 | .1869 | .7100 | .0051
MINF/MINS | 4150 | .2584 | .9838 | .0086
MAXF | 1.323 | .1076 | 1.700 | 1.100
MAXF/MAXS | .9633 | .0767 | 1.230 | .7857

200 MINF | .0876 | .0855 | .3300 | .0005
MINF/MINS | .1418 | .1352 | .5409 | .0009
MAXF | 1.439 | .1158 | 1.900 | 1.300
MAXF/MAXS | 1.028 | .0827 | 1.357 | .9285
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although JGJF could be made slightly faster. Namely, SSYEV uses BLAS routines
which are distributed together with RISC/6000 (and are therefore highly optimized),
while our algorithm uses some extra BLAS type routines written by us (e.g. hyperbolic
plane rotation).

Use of fast rotations, JGJFS, brought only about 5% speed up over JGJ.

We begin the comparison of sweeps and rotations needed for convergence of JAC
and JGJF with a few details. JAC stopped when the last n(n — 1)/2 stopping tests
|H;j| < tol\/|Hy||Hjj;| succeeded. Since our implicit algorithms keep the diagonal in
a separate vector, JGJF stopped after an empty sweep. Since one scalar product
is needed to determine (GT();; even if no rotation is performed, an empty sweep in
JGJF requires approximately 1/3 of the computation time of the full sweep, which is a
slight dissadvantage. The symmetric indefinite decomposition used in JGJF amounts
to no more than 2/9 of one sweep and is neglected. Table 7 shows number of sweeps
and rotations for JAC and JGJF, and quotient of numbers of rotations for JAC and
JGJF.

We see that JAC needed averagely twice as much rotations as JGJF. Another
important phenomenon, not readily seen in this table, is that number of rotations in
JGJF is somewhat stable, that is, it did not depend much on parameters K(A) and
k(H), while in JAC number of rotations grew as x(H) grew. Data in Table 7 come
from matrices of the first type. For b.s.d.d matrices, JAC performs better, that is, it
needs averagely 1.5 times more rotations than JGJF.
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Table 7: Sweeps and rotations for JAC and JGJF

n MEAN | STD | MAX| MIN
10 | SWEEP JAC 51| .96 9 3
ROT JAC 166 30 257 105

SWEEP JGJF 11| .65 6 3
ROT JGJF 107 | 30 191 43
JAC/JGIF 1.6 4 1.2 98

20 | SWEEP JAC T2 L7 12 1
ROT JAC 935 | 191 | 1556 530

SWEEP JGJF 18| 72 7 3
ROT JGJF 545 | 152 017 | 254
JAC/JGJF 1.8 6 1.2 1.0

50 | SWEEP JAC | 10.7| 2.7 17 1
ROT JAC | 8305 | 1740 | 12719 | 4089

SWEEP JGJF 57| .92 8 1
ROT JGJF | 4317 | 1361 | 7427 | 2084
JAC/JGIF 2.1 9 1.9 96

100 | SWEEP JAC | 13.2| 2.7 19 6
ROT JAC | 40431 | 10814 | 213460 | 19908
SWEEP JGJF 65| 1.1 9 5
ROT JGJF | 20502 | 7816 | 92408 | 9059
JAC/JGIF 22| 1.0 5.6 91

200 | SWEEP JAC | 143 | 2.7 19 9
ROT JAC | 173952 | 25326 | 231892 | 135121
SWEEP JGJF 80| 1.3 10 6
ROT JGJF | 108607 | 31874 | 161841 | 57715
JAC/JGIF L7 3.6 85
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