×   HOME JAVA NETPLOT OCTAVE Traži ...
  matematika2
Binomni integral     NEODREĐENI INTEGRAL     Zadaci za vježbu


Integriranje razvojem u red

Riješite integral $ \int \sin x^{2} dx$ razvojem u red potencija, koristeći razvoj

$\displaystyle \sin x=\sum\limits_{n=0}^{
\infty }(-1)^{n}
\frac{x^{2n+1}}{(2n+1)!}.
$

Rješenje. Zadana podintegralna funkcija je $ \sin x^{2}$ pa koristeći zadani razvoj sinusa dobivamo

$\displaystyle \sin x^{2}$ $\displaystyle ={}\sum\limits_{n=0}^{\infty }\left( -1\right) ^{n}\frac{\left( x...
...eft( 2n+1\right) !}=\left( -1\right) ^{n}\frac{ x^{4n+2}}{\left( 2n+1\right) !}$    
  $\displaystyle =x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\cdot...
...t( -1\right) ^{n-1}\frac{x^{2\left( 2n+1\right) }}{\left( 2n+1\right) !}+\cdots$    

Odavde slijedi

$\displaystyle \int \sin x^{2} dx$ $\displaystyle =\int \left[ x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}- \frac{x^{1...
...left( -1\right) ^{n-1}\frac{x^{4n+2}}{\left( 2n+1\right) !}+\cdots \right]  dx$    
  $\displaystyle =\frac{x^{3}}{3}-\frac{x^{7}}{7\cdot 3!}+\frac{x^{11}}{11\cdot 5!...
...-1\right) ^{n-1}\frac{x^{4n+3}}{\left( 4n+3\right) \left( 2n+1\right) !}+\cdots$    
  $\displaystyle ={}\sum\limits_{n=0}^{\infty }\left( -1\right) ^{n}\frac{x^{4n+3}}{\left( 4n+3\right) \left( 2n+1\right) !}+C.$