×   HOME JAVA NETPLOT OCTAVE Traži ...
  matematika2
ODREĐENI INTEGRAL     ODREĐENI INTEGRAL     Supstitucija i parcijalna integracija


Newton-Leibnitzova formula

Izračunajte integral $ \displaystyle\int\limits_{0}^{1}\frac{x dx}{x^{2}+3x+2}.$

Rješenje.

Vrijedi

$\displaystyle \int\limits_{0}^{1}\frac{x dx}{x^{2}+3x+2}$ $\displaystyle =\int\limits_{0}^{1}\frac{x dx}{ \left( x+2\right) \left( x+1\right) }$    
  $\displaystyle =\left\{ \begin{array}{c} \frac{x}{\left( x+2\right) \left( x+1\right) }=\frac{A}{x+2}+\frac{B}{x+1}  A=2,B=-1 \end{array} \right\}$    
  $\displaystyle =2\int\limits_{0}^{1}\frac{ dx}{x+2}-\int\limits_{0}^{1}\frac{ dx}{x+1}$    
  $\displaystyle =2\ln \left\vert x+2\right\vert \bigg\vert_{0}^{1}-\ln \left\vert x+1\right\vert \bigg\vert_{0}^{1}$    
  $\displaystyle =2\left( \ln 3-\ln 2\right) -\left( \ln 2-\ln 1\right) =2\ln \frac{3}{2} -\ln 2=\ln \frac{9}{8}.$