×   HOME JAVA NETPLOT OCTAVE Traži ...
  matematika2
Zadaci za vježbu     FUNKCIJE VIŠE VARIJABLA     VIŠESTRUKI INTEGRALI


Rješenja zadataka za vježbu

1.
a)
$ \displaystyle \mathbb{R}^2\backslash\{(0,0)\}$ ,
b)
$ \displaystyle \mathbb{R}^2 \backslash \{(x,y) \colon
y=x^2\}$ ,
c)
$ \displaystyle \{(x,y) \colon y>-x^2\}$ ,
d)
$ \displaystyle \mathbb{R}^2$ ,
e)
$ \displaystyle \{(x,y) \colon y\leq 0, y\leq
-2x\}\cup\{(x,y) \colon y\geq 0, y\geq -2x\}$ ,
f)
$ \displaystyle \{(x,y) \colon -1\leq x\leq 1,-1\leq y\leq
1\}$ ,
g)
$ \displaystyle \{(x,y) \colon x^2+y^2\leq 1\}\cup\{(x,y)
\colon x^2+y^2\geq 4\}$ ,
h)
$ \displaystyle \bigg(\cup_{k\in\mathbb{Z}}\{(x,y) \colon
y\geq 0,2k\pi\leq x\l...
...{l\in\mathbb{Z}} \{(x,y) \colon y\leq
0,(2l+1)\pi\leq x\leq 2(l+1)\pi\} \bigg)$ ,
i)
$ \displaystyle \{(x,y) \colon x>0,y> x+1\}\cup\{(x,y)
\colon x<0,x<y<x+1\}$ .

2.
a)
$ \displaystyle \frac{\partial f}{\partial
x}=\frac{\vert y\vert}{y\sqrt{y^2-x^2}} $ ,     $ \displaystyle \frac{\partial f}{\partial
y}=\frac{-x\vert y\vert}{y^2\sqrt{y^2-x^2}} $ ,

b)
$ \displaystyle \frac{\partial f}{\partial x}= y^z
x^{(y^z-1)}$ ,     $ \displaystyle \frac{\partial f}{\partial y}= (x^{y^z} \ln
x)zy^{z-1}$ ,     $ \displaystyle \frac{\partial f}{\partial z}=(x^{y^z} \ln x) (y^z \ln
y)$ .

3.
a)
$ \displaystyle \frac{\partial^2 f}{\partial
x^2}=\frac{2y-2x^2}{(x^2+y)^2} $ ,     $ \displaystyle \frac{\partial^2 f}{\partial y
\partial x}=\frac{\partial^2 f}{\partial x
\partial y}=\frac{-2x}{(x^2+y)^2}$ ,     $ \displaystyle  \frac{\partial^2 f}{\partial
y^2}=\frac{-1}{(x^2+y)^2} $ ,

b)
$ \displaystyle \frac{\partial^2 f}{\partial
x^2}=\frac{-3xy^2}{(x^2+y^2)^{5/2}} $ , $ \displaystyle \frac{\partial^2 f}{\partial
y\partial x}=\frac{\partial^2 f}{\partial x
\partial y}=\frac{2x^2y-y^3}{(x^2+y^2)^{5/2}}$ , $ \displaystyle \frac{\partial^2 f}{\partial
y^2}=\frac{2xy^2-x^3}{(x^2+y^2)^{5/2}}$ .

4.
$ \displaystyle \frac{\partial^3 u}{\partial
x^3}=e^{xyz}y^3z^3$ ,     $ \displaystyle \frac{\partial^3 u}{\partial
y^3}=e^{xyz}x^3z^3$ ,     $ \displaystyle \frac{\partial^3 u}{\partial
z^3}=e^{xyz}x^3y^3$ .

5.
$ \displaystyle \frac{\partial^2z}{\partial y
\partial x }=\frac{-y^2}{(2xy+y^2)^{3/2}}$ .

6.
$ \displaystyle \frac{\partial^3z}{\partial^2 x
\partial y }=0$ .

7.
$ \displaystyle z(x,y)=2xy+\frac{y^2}{2}+\varphi (x)$ .

8.
$ \displaystyle z(x,y)=y^2+xy+1$ .

9.
$ \displaystyle dz=\frac{1}{x+y}dx-\frac{x}{y\left(
x+y\right) }dy$ .

10.
$ \displaystyle d^{2}z=-\frac{1}{x}dx^{2}+\frac{2}{y}dx dy-\frac{x}{
y^{2}}dy^{2}$ .

11.
a)
$ \displaystyle \frac{dz}{dt}=\frac{3-12t^{2}}{\sqrt{1-\left(
3t-4t^{3}\right) ^{2}}}$ ,
b)
$ \displaystyle \frac{dz}{dt}=\frac{3-\frac{4}{t^{3}}-\frac{1}{2
\sqrt{t}}}{\cos ^{2}\left( 3t+\frac{2}{t^{2}}-\sqrt{t}\right)}$ .

12.
a)
$ \displaystyle \frac{\partial z}{\partial u}=2u\cos u^{2}-\frac{
2uv^{2}\left( 1+v^{4}\right) }{\left( v^{2}+u^{2}v^{4}+u^{2}\right) ^{2}}$ ,     $ \displaystyle \frac{\partial z}{\partial v}=\frac{2u^{2}v\left( 1-v^{4}\right) }{\left(
v^{2}+u^{2}v^{4}+u^{2}\right) ^{2}}$ ,

b)
$ \displaystyle \frac{\partial z}{\partial
u}=0$ ,     $ \displaystyle \frac{\partial z}{\partial v}=1$ .

13.
$ \displaystyle y^{\prime }=-\frac{x}{y}$ ,     $ \displaystyle y^{\prime \prime }=-
\frac{x^{2}+y^{2}}{y^{3}}$ .

14.
$ \displaystyle \frac{\partial z}{\partial x}=\frac{z}{x\left(
z-1\right) }$ ,     $ \displaystyle \frac{\partial z}{\partial y}=\frac{z}{y\left( z-1\right) }$ .

15.
$ \displaystyle dz=\frac{\left( yz-1\right) dx+\left(
xz-1\right) dy}{1-xy}$ .

16.
$ \displaystyle R_{t}\ldots 2x-2y+4z-\pi =0$ ,      $ \displaystyle n\ldots \frac{x-1}{1}=\frac{y-1}{-1}=\frac{z-\frac{\pi }{4}}{2
}$ .

17.
Lokalni minimum je u točki $ \displaystyle T=(1,0)$ .

18.
Lokalni maksimum je u točki $ \displaystyle T=\left(\frac{\pi}{3},\frac{\pi}{6}\right)$ .

19.
$ \displaystyle d=\frac{5\sqrt{6}}{6}$ .

20.
$ \displaystyle V=4 \textrm{ m}^2$ .

21.
Lokalni minimum je u točki $ \displaystyle T_1=(1,-1,-2)$ , a lokalni maksimum je u točki $ \displaystyle T_2=(1,-2,6)$ .

22.
$ \displaystyle f_{maks}=125, f_{min}=-75$ .

23.
Minimum je u točki $ \displaystyle T_1=\left(\frac{4}{5},\frac{3}{5}\right)$ , a maksimum je u točki $ \displaystyle T_2=\left(-\frac{4}{5},-\frac{3}{5}\right)$ .

24.
$ \displaystyle P=\frac{3\sqrt{3}}{4}R^2$ .

25.
Najmanje udaljena točka je $ \displaystyle T_1=\left(\frac{4}{\sqrt{5}},-\frac{3}{\sqrt{5}}\right)$ , a najviše udaljena točka je $ \displaystyle T_2=\left(-\frac{4}{\sqrt{5}},\frac{3}{\sqrt{5}}\right)$ .

26.
Minimum je u točki $ \displaystyle T_1=\left(-\frac{1}{3},\frac{2}{3},-\frac{2}{3}\right)$ , maksimum je u $ \displaystyle T_2=\left(\frac{1}{3},-\frac{2}{3},\frac{2}{3}\right)$ .

27.
Nema ekstrema u točki $ \displaystyle T_1=\left(-\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$ .

28.
$ \displaystyle T=\left(\frac{2P}{3a},\frac{2P}{3b},\frac{2P}{3c}\right)$ .


Zadaci za vježbu     FUNKCIJE VIŠE VARIJABLA     VIŠESTRUKI INTEGRALI