×   HOME JAVA NETPLOT OCTAVE Traži ...
  matematika2
Metoda parcijalne integracije     NEODREĐENI INTEGRAL     Integriranje racionalnih funkcija


Rekurzivne formule

Nađite rekurzivnu formulu za integral: $ \displaystyle I_{n}=\int \left(
a^{2}-x^{2}\right) ^{n} dx$ , $ \displaystyle n\in \mathbb{N}$ .

Rješenje. Za $ \displaystyle n=1$ vrijedi

$\displaystyle I_{1}=\int \left( a^{2}-x^{2}\right)  dx=a^{2}x-\frac{x^{3}}{3}+C=x\left(
a^{2}-\frac{x^{2}}{3}\right) +C.
$

Za $ \displaystyle n\geq 2$ vrijedi

$\displaystyle I_{n}$ $\displaystyle =\int \left( a^{2}-x^{2}\right) ^{n} dx=\left\{ \begin{array}{cc...
...,dx   du=-2nx\left( a^{2}-x^{2}\right) ^{n-1} dx & v=x \end{array} \right\}$    
  $\displaystyle =x\left( a^{2}-x^{2}\right) ^{n}-\int -2nx^{2}\left( a^{2}-x^{2}\right) ^{n-1} dx$    
  $\displaystyle =x\left( a^{2}-x^{2}\right) ^{n}+2n\int \left[ -\left( a^{2}-x^{2}\right) \right] ^{n} dx+2n\int a^{2}\left( a^{2}-x^{2}\right) ^{n-1} dx$    
  $\displaystyle =x\left( a^{2}-x^{2}\right) ^{n}-2nI_{n}+2na^{2}I_{n-1}.$    

Izjednačavanjem lijeve i desne strane dobivamo traženu rekurzivnu formulu

$\displaystyle I_{n}$ $\displaystyle =x\left( a^{2}-x^{2}\right) ^{n}-2nI_{n}+2na^{2}I_{n-1}$    
$\displaystyle I_{n}\left( 1+2n\right)$ $\displaystyle =x\left( a^{2}-x^{2}\right) ^{n}+2na^{2}I_{n-1}$    
$\displaystyle I_{n}$ $\displaystyle =\frac{x\left( a^{2}-x^{2}\right) ^{n}}{\left( 2n+1\right) }+\frac{ 2na^{2}}{\left( 2n+1\right) }I_{n-1}.$